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Robotic Untangling of Herbs and Salads with Parallel Grippers

Prabhakar Ray1∗ & Matthew J. Howard

Abstract— Robotic packaging of fresh leafy produce such
as herbs and salads generally involves picking out a target
mass from a pile or crate of plant material. Typically, for
low-complexity parallel grippers, the weight picked can be
controlled by varying the opening aperture. However, often
individual strands of plant material get entangled with each
other, causing more to be picked out than desired. This paper
presents a simple spread-and-pick approach that significantly
reduces the degree of entanglement in a herb pile when picking.
Compared to the traditional approach of picking from an
entanglement-free point in the pile, the proposed approach
results in a decrease of up to 29.06% of the variance in for
separate homogeneous piles of fresh herbs. Moreover, it shows
good generalisation with up to 55.53% decrease in picked
weight variance for herbs previously unseen by the system.

I. INTRODUCTION

Industries manufacturing machinery, transportation equip-
ment and various everyday retail products on a large scale
have benefited immensely from intelligent and collaborative
assembly-line robots. However, to date, the application of
such technologies to the processing of fresh horticultural
produce remains mostly dependent on manual labour. The
suppliers of fresh herbs and salads, for instance, grow stock
under glass or in fields and then must transport them to pack-
aging stations and pack them as per the weight requirements
of retailers. The manual packaging process involved is not
only costly in terms of labour, but also suffers from human
errors and low production efficiency.

A more scalable approach could be automation through
adaptive robotic systems, however, their deployment presents
several challenges. Fresh horticultural produce can be highly
variable in terms of its handling properties, even within a
single plant variety, making it difficult to design robotic con-
trollers for their manipulation. Herbs and salads in particular,
tend to present as a highly stochastic, tangled mass (see
Fig. 1(a)), making it difficult for a robotic system to extract a
uniform quantity suitable for supply to the consumer. These
problems are exacerbated when the robot must adaptively
handle multiple types of herbs (e.g., parsley, dill, coriander),
and do so in a way that does not damage them (herbs and
salads are highly prone to bruising, that adversely affects
both shelf-life and appearance).

In the past, the entanglement between objects in a pile or
a bin has been addressed through physical interaction [1],
[2]. However, existing methods do not consider the case of
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Fig. 1: Handling fresh salads and herbs. (a) Plant material
enters the packaging centre as a tangled mass in crates or
boxes. (b) Smaller, fixed-mass portions must be extracted
and fed via conveyor belt for packaging. (c) Tangling makes
the mass lifted in a simple pick operation difficult to predict.

singulating and picking multiple objects under external con-
straints such as weight. Moreover, often picking approaches
rely on detailed models (e.g., from CAD) of the objects in
the bin. Acquiring such models when the objects in question
are leafy herbs and salads is highly challenging. Vision-based
methods have also been explored [3], however, their iterative
nature adds to the cycle time, which is not favourable in an
industrial setting.

As an alternative, this paper proposes a spread-and-pick
method, which reduces entanglement in the herb pile, and in
turn makes the pick operation more predictable in terms of
the picked-up weight. The proposed method has the benefit
that it does not require any large scale data collection and
does not depend on the prior availability of any geometrical
information. Experiments are reported in which a 7-degree of
freedom (DoF) robot equipped with a parallel gripper is used
for picking herbs and a significant reduction in the variance
of weight picked among the trials is seen. Moreover, picking
trials on herbs previously unseen by the system show good
generalisation. Overall, the results suggest that the proposed
method could be an effective solution for manipulating a
variety of these challenging materials in food production.

II. RELATED WORK

The picking of (individual, rigid) objects from containers
is frequently termed as the bin-picking problem and has
a long history in the robotic automation literature. Tradi-
tionally, researchers have studied bin-picking in the context
of two main challenges: (i) gripper-object collision and
(ii) object entanglement. The issue of gripper-object collision
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Fig. 2: Overview of the proposed spread-and-pick approach.
(a) Top view of the pile. (b) Front view showing the gripper.
The dashed green line represents the initial orientation of the
x-axis of the gripper. The dashed blue line represents the line
of entanglement. The black curved arrow represents the di-
rection of rotation. Once the collision-free and entanglement
points are identified, the gripper is rotated around the z-axis
such that it aligns with the line of entanglement.

has received much more attention than object entanglement.
In regard to (i), most methods rely either on geometrical
information of the objects or a vision-based module. The
advent of efficient cameras has resulted in increased popu-
larity of vision-based methods.

Taylor et al. [4] propose using simple geometric primitives
such as planes, spheres, cylinders and cones for object
recognition in the bin. Changes in surface types and depth
discontinuities are then used to segment the cluttered scene.
A vision-based algorithm is proposed in [5], to resolve
gripper-object collision by identifying and picking the top-
most object in a pile. Schwarz et al. [6] propose a deep
learning-based approach for picking individual objects from
a cluttered bin. These methods prove effective for avoiding
gripper-object collision. However, they do not address the
issue of potential entanglement of objects.

Kaipa et al. [7] use CAD models for planning singu-
lation of individual objects from a heterogeneous pile. A
human-robot collaboration approach is proposed in [8] for
dealing with grasping errors due to issues such as object
occlusion and random object posture in a bin, including
object entanglement. Although the latter considers the issue
of entanglement directly, the objective is the singulation of a
single rigid individual object, rather than extracting a uniform
quantity of material, as considered in this paper.

Recently, Schenck et al. [9] explore the manipulation of
a granular media, specifically pinto beans, with the aim of
extracting a small quantity from a bigger pile and dropping
it into a container. However, as pinto beans do not tangle,
the issue of picking excess mass due to entanglement—as
considered here—was not encountered.

In terms of objective, perhaps the closest work to the
present study is that of Kuriyama et al. [10] in which the
design of a soft pneumatic gripper is presented for packaging
chopped food materials such as green onion. The authors

report that although the amount (weight) of material picked
using the gripper can be controlled by varying the insertion
depth, the variation among trials is significant—likely due to
the effect of tangling.

Finally, Matsumura et al. [11] explicitly consider entangle-
ment when seeking ways to extract individual items from a
tangled pile. In their approach, a convolution neural network
(CNN) is trained to detect when the picking of individual
items is likely to be unsuccessful due to entanglement.
Their approach can be considered complementary to that
considered here: while they avoid picking objects where
there is tangling, here it is acknowledged that entanglement
is unavoidable for the plant material considered. The aim
instead is to reduce entanglement to a level where the picked
weight is predictable.

III. METHOD

Severe entanglement in the herb pile causes the picked
weight to be highly variable for any given grasping strategy.
Although some level of tangling is unavoidable in the plant
material considered, the primary aim of the present work is
to reduce the variability of picking through a spread-and-
pick strategy. Fig. 2 illustrates how the proposed approach
works. In the first step, the location of a collision-free point
is estimated from an image of the grasping scene as a picking
location. This helps to reduce the risk of damage to the
plant material by minimising contact with the gripper, but
usually still leads to variable picking weight due to tangling.
Therefore, in the second step, the peak entanglement point is
estimated, and used to perform a spreading action such that
the target weight is separated from the rest of the pile.

A. Collision-free Gripper Pose: Graspability Index

The graspability index (GI) [12] is a vision-based measure
for evaluating candidate grasping poses, which has proved
useful in industrial pick and place settings. It uses a single
depth map of the scene to estimate the optimal gripper
position and orientation for picking an object. It can be
applied for use with different hand mechanisms, including
parallel, multi-finger and vacuum grippers. It is particularly
suitable for the picking problem considered here since it
is unaffected by colour variation (that may occur between
different plants) since only a depth map and a 2D gray-
scale image are needed to process the scene. It should be
noted, however, that this use of depth maps means it is most
effective when a perpendicular view of the scene is available.

For an insertion depth rz , GI estimates a point r =
(rx, ry, rθ)

> in the bin such that the parallel plates of the
gripper could be inserted without colliding with the objects
inside (where rθ denotes the orientation of the gripper around
its z-axis). A range of rθ is evaluated using GI and for the
optimal r∗θ , the best picking point (r∗x, r∗y) is estimated.

Fig. 3 provides an overview of the GI method. First, a
depth map of the cluttered scene is acquired using vision
(e.g., RGB-D camera). Oc (see Fig. 3(b)) represents the
region of the target object that should lie between the gripper
plates for a successful grasp. It is obtained by thresholding
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Fig. 3: Estimating the grasping position (rx, ry) using graspability index for gripper rotation rθ = 90◦. The scene contains
three wooden blocks. In this example, the highest object (middle block) is the target object and the insertion depth rz is
set such that the tips of the gripper just touch the surface of the table. The collision-free pick-up point (r∗x, r

∗
y) is estimated

from the peak of the graspability map G.

the depth map by the height of the target object (middle block
in Fig. 3(a)). Oc′ represents the region in which a collision
might occur while the gripper is moving downwards. It is
obtained by thresholding the depth map by the insertion
depth rz (see Fig. 3(c)). Gc and Gc′ (see Fig. 3(d) and
(e), respectively) represent the contact distance between the
parallel plates and collision regions (i.e., lateral width of the
plates) for the gripper and are obtained through millimetre-
to-pixel unit conversion. They are recomputed whenever the
opening aperture of the gripper changes. The region where
part of the target object lies between the gripper plates
(Fig. 3(f)) is computed through the convolution1

Wc = Oc ∗Gc. (1)

Similarly, the region where the gripper plates could collide
with the objects in the pile is obtained as (see Fig. 3(g))

Wc′ = Oc′ ∗Gc′ . (2)

The region of interest for successful picking is the area
where contact between the gripper plates and the target object
is detected and there is no collision with other objects in the
bin. Since Wc′ represents the region where collisions might
occur the latter may be expressed as (Wc ∩Wc′ ), where
the notation A represents the NOT operation on A and ∩
denotes intersection (see Fig. 3(i)). Finally, using a Gaussian
g (see Fig. 3(j)), the graspability map G is computed as

G = (Wc ∩Wc′) ∗ g. (3)

Convolution with a Gaussian g is used to smooth and
reduce the noise in the graspability map. The peak of G is
obtained for a range of gripper orientations rθ to determine
the respective pick up point (rx, ry) by maximising

f(x, y, rθ) =

{
(G)xy, if (Wc′)xy=0

0, otherwise.
(4)

1Here, and throughout the paper, ∗ represents the convolution operation.

where (G)xy and (Wc′)xy represents the value of G and
Wc′ at position (x, y) respectively. Gripper orientations for
which no peak could be detected are discarded and rθ

∗ is
set to the the gripper orientation for which the peak could
be determined in G yielding the picking position

r∗ = (r∗x, r
∗
y)
> = argmax

x,y
f(x, y, rθ

∗). (5)

The optimal gripper position and orientation as obtained
from the GI identify a reference for the gripper for collision-
free picking of the target object. However, this ignores the
possibility that parts of the target object could be entangled
with other items in the bin such that it may end up picking
them along with the target. In case of herbs, experience tells
that this frequently occurs resulting in more than the desired
weight being picked (see Fig. 1(c)). In the next section, a
strategy is proposed for reducing tangling during the pick
operation to help alleviate this problem.

B. Tangle Reduction
To reduce the level of tangling and thereby achieve more

consistent picking, this paper proposes a spread-and-pick
approach, inspired by human behaviour. In humans, it is
frequently observed that they use their fingers to separate
things while picking, especially when they have to work
with one hand. The idea here is to mimic this behaviour by
adjusting the pick to include a spreading step: specifically, if
the target object is between the plates of the gripper, instead
of moving them inwards (closing) to grasp the object, they
are first moved outward to try to disentangle any nearby
objects before proceeding with the pick.

The proposed approach extends the GI by identifying
regions of high entanglement in the scene and then defining
a spreading movement to disentangle them. For a specific rθ,
Gc′ is used to obtain Wc′ , the region that represents gripper-
object collision. Wc′ is then used to identify the region of
entanglement

G′ = Wc′ ∗ g. (6)
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Fig. 4: Time lapse illustrating spread-and-pick approach. (a) Robot reaches a fixed point above the pile. (b) Gripper orientation
adjusted to align with line of peak entanglement. (c) Gripper aperture set to chosen width. (d) Gripper moved into herb
pile to pick from the optimal collision-free point according to GI. (e) Gripper plates moved outwards to maximum aperture
width. (f) Gripper closed. (g) Gripper raised with items picked. (h) Picked items dropped onto scale to record weight.

Using G′, the peak entanglement position is computed as

r′ = (rx
′, ry

′)> = argmax
x,y

h(x, y) (7)

where

h(x, y) =

{
(G′)xy, if (Wc′)xy=1

0, otherwise.
(8)

The line of peak entanglement is then defined as that
intersecting r′ and r∗. This line defines the spreading move-
ment in the proposed approach: during the pick operation
the gripper plates are moved outwards along this line to
disperse the tangle and improve the consistency of picking.
Fig. 4 illustrates the working of the robot while following the
spread-and-pick approach. Please refer to the supplementary
video to see the robot in operation.

IV. EXPERIMENTS

In this section, the proposed spread-and-pick method is
evaluated with respect to its efficacy in improving picking
accuracy and consistency in an industrial herb and salad
picking task. The experimental procedure is as follows 2.

A. Procedure

The experimental set up is a mock-up of the herb-packing
workstation of a large fresh herbs and salads producer
equipped with a robotic manipulator (see Fig. 5). As the
robotic platform, a 7-DoF Rethink Robotics Sawyer is used,
with a maximum reach of ±1260mm and precision of
0.1mm. The robot is equipped with a parallel gripper from
Actobotics as its end-effector. The latter has maximum
opening aperture of w = 71.12mm and is controlled using
a Hitec HS-422 Servo Motor with operating voltage range
4.8V-6.0V. As the vision module, the platform uses an
Intel realsense d435i depth camera mounted on a stand at
a fixed position and orientation with respect to the robot.

2The data supporting this research are openly available from King’s
College London at https://doi.org/10.6084/m9.figshare.
12685883.v1. Further information about the data and conditions of access
can be found by emailing research.data@kcl.ac.uk

For simplicity of image processing, the camera’s position is
chosen such that its field of view exactly covers the picking
area and it records depth data at a frequency of 15Hz.
During the experiment, the main herb pile is located in the
picking area of dimension (30 cm x 25 cm). The weight
picked is recorded using a parallel beam type load cell with a
combined error of ±0.05% and maximum weighing capacity
of 10 kg. A HX711 amplifier combined with an Arduino
microcontroller is used for data acquisition from the load
cell.

Using this set up, a series of robotic picking operations
are conducted. Each picking operation consists of the robot
reaching into a pile of tangled plant material (herbs or salad
leaves) of fixed mass, closing its gripper, and lifting what is
grasped free of the surface. More specifically, in each pick,
the gripper orientation is initialised to θz = 90◦ and the
insertion depth rz is set such that the tips of the gripper
just touch the surface of the picking area. The robot moves
its end-effector to a fixed position above the picking area,
sets the gripper aperture w to the chosen width and lowers
it into the pile. There, it closes the gripper plates, moves
its end-effector vertically upwards to a fixed position, and
drops what has been picked into the weighing device to
record the weight. For simplicity and lower cycle-time, only
3-DoF of the robot are used for picking movements and
the highest point in the pile is chosen as the target picking
location. To ensure a similar physical arrangement of the
plant material between trials, any material picked is returned
to the picking area, and the entire quantity is transferred to
a 18 cm×13.5 cm×7 cm container before being returned to
the picking area for the next pick. The results reported below
include experiments on batches of (i) plastic and (ii) real
herbs and salads (wild rocket and parsley)(see Fig. 6). The
use of plastic herbs enables the effectiveness of the proposed
approach to be assessed without spurious effects arising
from natural variations in the herbs, or changes in their
physical properties (e.g., due to plant material drying out, or
becoming damaged over successive picks). When using real
plant material, for each method and each w, a fresh batch of

https://doi.org/10.6084/m9.figshare.12685883.v1
https://doi.org/10.6084/m9.figshare.12685883.v1
research.data@kcl.ac.uk
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Fig. 5: Overview of the experimental set up. Red, green and
blue arrows represent x-, y- and z-axes, respectively. The
coordinate frame attached to the robot is used as the frame
of reference.

herbs or salad leaves is used to try to minimise such effects.
In the industrial setting, the picking task is typically spec-

ified in terms of a target weight mt so it is necessary to find
a way to translate this into the gripper aperture required. In
the experiments reported here, a simple calibration procedure
is used. Specifically, for each type of plant material used,
and each picking approach considered, picking is conducted
20 times for w ∈ {20, 30, 40, 50, 60}mm for plastic herbs
and 10 times for w ∈ {20, 30, 40}mm for real herbs. The
resultant data is used to fit a simple linear relationship

m = N(w) (9)

between the gripper aperture width w and weight picked m
that is then inverted to provide an estimate of the required
gripper width for target weight mt

w = N−1(mt). (10)

To evaluate performance, the accuracy and consistency of
picking when using the proposed spread-and-pick approach
is measured for a series of target weights. In particular, 20
trials of picking are conducted for mt ∈ {8, 10, 12} for
plastic herbs and 10 trials of picking for mt ∈ {15, 20}
for real herbs, and the mean and standard deviation of the
weight picked is recorded. For comparison, the experiment
is also repeated using standard GI-based picking, where the
experimental procedure is identical with the exception that
the spreading movement is not performed during the picking
operation.

B. Results & Discussion

Table I reports the weight picked for plastic herbs for the
GI and spread-and-pick approaches. It is observed that for
the proposed method, the standard deviation of the picked-up
weight is smaller for the proposed approach. The maximum
percentage decrease in standard deviation is 61.71% in the
case of plastic herbs.

TABLE I: Picked weight of plastic herbs (mean±s.d. over
20 trials) for different target weights.

Target Weight(g) Method Picked Weight(g)

8 Graspability Index 4.832±5.013
Spread and Pick 8.318±4.681

10 Graspability Index 8.791±9.176
Spread and Pick 7.228±3.514

12 Graspability Index 12.621±9.307
Spread and Pick 10.523±5.907

Table II shows the result of picking for a pile of wild
rocket. Similar to plastic herbs, a decrease in the stan-
dard deviation of the picked-up weight is observed for
the proposed spread-and-pick approach up to a maximum
29.06% decrease. This suggests that the proposed approach
is successful in reducing tangling in both real and plastic
plant material.

To test the robustness of this result, a further experiment
was conducted in which the picking model for wild rocket is
applied for picking material from a different plant, namely,
flat-leaf parsley. Table III provides the mean and standard
deviation of the picked weight for parsley using the model
derived for wild rocket. As can be seen, the standard devi-
ation of the picked weight is again lower for the proposed
approach compared to the GI-based approach for all target
weights considered, with a maximum decrease of 55.53%
observed.

A decrease in the standard deviation of the picked weight
suggests that the proposed spread-and-pick approach effec-
tively improves the consistency and predictability of picking
for a variety of herbs and salads. In comparison with the
plastic herbs, the observed percentage decrease for real herbs
and salads is lower. This difference is attributed to factors
such as moisture variation and a generally higher degree
of entanglement in the real herbs. It is worth noting that
in case of real herbs and salads, occasionally the gripper
plates could not open completely due to this tangling. The
presence of moisture in real plant material also tends to
cause adhesion between herb strands in addition to the
mechanical entanglement, potentially exacerbating the effect.
In terms of mean picked weight, surprisingly, the wild rocket
least squares model performs better on parsley for both GI
and spread-and-pick methods despite being fit on picking
data from a different plant (see Table II and III). This
behaviour is attributed to variability in the physical properties
of wild rocket and parsley. The presence of transverse ends
leads to mechanical entanglement in a pile and longer the
length of these transverse ends, the higher is the degree of
entanglement [13]. The leaves extending out from the stem
of a herb strand could be considered equivalent to these
transverse ends (see Fig. 7), and in the case of parsley, as
the leaves extend out to a greater length, a higher degree
of entanglement is expected and hence a greater amount is
picked up than that which can fit between the plates of the
gripper causing the mean picked weight to be closer to the
target weight.



TABLE II: Picked weight of wild rocket (mean±s.d. over 10
trials) for different target weights.

Target Weight(g) Method Picked Weight(g)

15 Graspability Index 9.434±3.937
Spread and Pick 10.033±2.793

20 Graspability Index 14.137±6.274
Spread and Pick 15.799±4.819

TABLE III: Picked weight of flat-leaf parsley (mean±s.d.
over 10 trials) for different target weights. Gripper widths w
are estimated using the wild rocket least squares model.

Target Weight(g) Method Picked Weight(g)

15 Graspability Index 14.250±8.944
Spread and Pick 12.228±7.064

20 Graspability Index 15.921±8.886
Spread and Pick 17.893±3.951

(a) (b)

Fig. 6: Separate homogeneous piles used in experiments,
composed of (a) plastic and (b) real herbs.

(a) (b)

Transverse endsTransverse ends

Transverse endsTransverse ends

Fig. 7: Sample strands of (a) wild rocket and (b) parsley
showing the difference in the transverse ends.

V. CONCLUSION

In this paper, a method for countering the unpredictable
nature of picking tangle-prone materials such as fresh herbs
and salads is described. The proposed method augments
the normal picking operation with a spreading manoeuvre,
specifically aimed at reducing the entanglement and thereby
enhancing the consistency of picking a desired weight of
material. The method does not require any large scale data
collection and is effectual in the absence of 3D object
models.

The effectiveness of the approach has been demonstrated
through picking operations involving a physical robot and
homogeneous tangle-prone piles composed of real herbs
including (i) wild rocket and (ii) flat-leaf parsley.

Future work will further explore ways of reducing entan-
glement and quantifying the performance of spread-and-pick
in an industrial setting. Estimating the line of entanglement
for a range of initial gripper orientations could improve the
performance of spread-and-pick approach. It would also be
beneficial to move a little closer to the real-world scenario

of picking without replacement. Moreover, the computational
neurobiology of untangling is also an interesting avenue to
study various techniques used by humans, especially when
manipulating a tangle-prone media such as a pile of herbs
or salads using just one hand.
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