A review on the evolution and characteristics of post-mortem imaging techniques

Abstract: Up until the beginning of the 21st century, the technique of choice for the forensic medical examination of a deceased individual was the traditional medical autopsy. This, however, has begun to change with the introduction of post-mortem imaging. Post-mortem imaging, or ‘virtual autopsy’, is a novel area of radiology that utilises non-invasive imaging techniques for the examination of a body. Many of the techniques used to conduct a virtual autopsy are more commonly employed within clinical diagnostic, such as computed tomography or magnetic resonance imaging. In recent years, post-mortem imaging has gathered significant momentum as a robust and objective methodology capable of compiling relevant intelligence without disturbing a body. This review identifies and describes the techniques currently available for post-mortem imaging and provides an insight on their advantages and disadvantages compared to traditional autopsy methods. The aim of this paper is to highlight the most relevant milestones accomplished in this field and the potential application of this technique within current forensic frameworks.

Keywords: post-mortem imaging, virtual autopsy, forensic medical examination, radiology, computed tomography, magnetic resonance imaging.

1. Introduction

Forensic medicine often involves the application of every branch of medicine to provide clinical evidence that can be delivered in court. This is obtained through the assessment of individuals, who might have been injured or killed [1]. One of the most challenging tasks for any forensic pathologist is determining the cause of death of an individual and any factors that can provide essential information for the resolution of an investigation. This is usually achieved using a process known as a ‘post-mortem’ or ‘autopsy’. The post-mortem remains a relevant technique that provides important insight on the different pathological processes that the human body can undergo.

However, traditional autopsy is a time-consuming technique with significant financial costs. Additionally, there is also the issue that certain religions and/or cultures do not allow any form of bodily intrusion, limiting the type of examinations that can be carried out. As a result, there have been calls for the modernisation of forensic medical examination. A resolution could be found in the use of post-mortem imaging, a series of techniques, commonly grouped under the term of ‘virtual autopsy’, that are beginning to find routine employment in legal investigations [2].

Virtual autopsy is well recognized for its capability to report relevant evidence from a body using minimally invasive, non-destructive techniques [2]. This review will highlight the progress that has been made in this field so far, with a focus on the techniques that are most used in forensic examination. The information gathered here will shed some light on the advantages and disadvantages of these methods and their potential implementation as routine techniques in legal investigation. It will also provide some insight on their different potential applications in forensic medical examination, something that has yet to be discussed in detail.

2. History of the Virtual Autopsy
One of the most used techniques in the field of radiology is X-ray documentation. X-rays have been used for forensic medical examination almost since their discovery. In fact, the first X-ray image of a corpse as part of a criminal investigation was taken in 1898 [3]. In routine practice the examiner takes a series of X-ray images of the area of interest, which can act as evidence in court. This, however, is a tedious process since the possibility of skeletal fractures is often considered only after the external examination. Any subsequent examinations will require transporting the body to an X-ray facility, increasing the time needed and potentially losing any evidence on the body. Other limitations of this technique are the inability to obtain other information besides macroscopic features of the bones or the potential presence of foreign bodies (meaning that the technique cannot replace a full-body autopsy when it comes to soft tissue examination), as well as the costs associated with the safety equipment necessary to protect the operators from radiation [4].

As a result, newer techniques, such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), rapidly replaced X-ray imaging. The first CT device was released in 1972 [5], quickly followed by MRI in 1973 [6] and although the initial prototypes offered very limited image quality, both methods were immediately embraced in the field of radiology. These techniques saw a rapid development in the 70s and 80s, becoming fast examination methodologies that provide high-resolution images of the internal structures of the human body in a significantly shorter time frame. It was this fast development that attracted the interest of experts in the use of both CT and MRI in post-mortem examination in the late 80s and early 90s. It was around this time that the first use of post-mortem imaging in a legal inquiry was reported in the US. In 1997, photographs taken of a motorist a few days after an incident were compared against data from CT and MRI to establish the relation between external patterned injuries and the deeper tissue damage to determine whether blows from a police baton landed in the victim's craniofacial area or not [7].

The rapid development of these techniques has caused some authors to question whether traditional autopsy methods can be replaced entirely with imaging-only approaches [8]. The first publication suggesting this was released in 2000. In this study, the authors recreated an injury on from a real forensic case and used imaging techniques such as CT and MRI to study the surface morphological damage caused by the weapon. Their results demonstrated the ability of imaging techniques to provide accurate information without changing or damaging evidence [9]. In the United Kingdom, post-mortem imaging has also been applied to forensic casework, particularly for the examination of projectile injuries [10] and in mass disaster victim identification [11,12]. Meanwhile, in 2007, forensic scientists from the Victorian Institute of Forensic Science (Australia) described the use of Multi-slice Computed Tomography (MSCT) in the investigation of mass disaster cases involving plane crashes to provide fast and effective identification and reconciliation of body parts found at the scene. The authors of this study emphasized that the installation of MSCT in mortuaries would open up great prospects for forensic and legal investigation [13].

3. Current Techniques for Post-mortem Imaging

3.1 Computed Tomography (CT)

CT is a non-destructive method used for studying the internal structure of the body. The method is based on the measurement and complex processing of the attenuation of X-ray radiation by
tissues of different density [14]. Currently, CT is the main method for studying internal organs. The scientific and technological development of CT scanners is directly related to the progress and development of new detectors. The first generation of CT scanners appeared in 1972 [5]. These devices utilised a ‘step-by-step’ methodology, with one X-ray tube (the emission source) aimed at a small set of 30 detectors (one at a time) as the tube translated across the body and then rotated around to scan the next section. This scanning was done by one revolution per layer, which meant that each scan would take approximately 18 seconds to perform. For the second generation, a ‘fan’ type design was used in which detectors (usually 300-500) were mounted on a rotation ring opposite to the X-ray tube. Since the detectors in this array only covered a small section of the body, this layout required for the detectors to be fully stabilised for good resolution. However, this design helped reduce scan time to 3 seconds. The third generation of CT employed an array of 700-1000 detectors set on a fixed ring. With these devices, only the X-ray tube would rotate around the body, also resulting in a scan of 3 seconds but without the need for detector stabilisation, thereby increasing image resolution and reducing the incidence of artefacts due to unexpected motions [14]. Recently a novel modality of CT, known as spiral-computed tomography, has been developed. This new generation of instruments can, in one step, have the X-ray tube and the detectors synchronously rotate clockwise, reducing the screening time which, as a consequence, decreases the time that the patient must spend in the scanner as well as reduce the incidence of artefacts generated by small movements (such as breathing) [15]. In general, CT shows greater speed and resolution compared to conventional tomography. Furthermore, CT also shows greater sensitivity, as the beam is passed exclusively through the plane or side of the body, whereas traditional tomography would frequently produce a series of artefacts due to unwanted information from material at either side of the slide [14].

Currently, PMCT has proven to be a valuable technique for the detection of radio-opaque objects and the identification of traumatic processes such as blunt force or haemorrhage, and especially in osseous lesions; when compared to traditional autopsy [10,16-20]. However, this technique shows a limited visualization of soft-tissue, making it unsuitable for the study of non-traumatic deaths, such ischaemic heart disease or pulmonary embolism [20].

3.2 Multi-slice Computed Tomography (MSCT)

MSCT, also known as Multidetector Computed Tomography (MDCT), was first introduced by Elscint Co. in 1992 [21]. The difference between MSCT and spiral tomography from previous generations is that not one, but two or more rows of detectors are located around the circumference of the gantry. In 1992, the first two-slice (double-helix) MSCTs consisted of two rows of detectors. By 1998 a four-slice (four-spiral) MSCT was released with four rows of detectors. These additional units of data acquisition doubled and quadrupled the speed of data collection over single-section data scanners, respectively [22]. These modifications also allowed for the number of revolutions of the X-ray tube to be increased from one to two per second. These combined features managed to increase the scanning speed to eight times over single-section CT [22]. Additionally, the presence of multiple detector rows means that slice thickness is not determined by the X-ray tube but by the configuration of the detectors, known as detector collimation [22,23]. This allows the scanning of thinner sections, leading to increased spatial resolution. Moreover, increased speed contributes to an improved temporal resolution due to a lower incidence of motion artefacts and also allows for a faster administration of intravenous contrast solutions, thereby improving the performance of contrast imaging [22]. More recently, the number of detector rows has increased from 4 to 64 and even up to 320-slice systems. This has significantly increased the speed and resolution while also reducing radiation dose to patients.
and operators. This increase in quality and speed has turned MSCT into a valuable technique not only for structural analysis but also for ‘real time’ physiological function studies [24].

3.3 Post-mortem Computed Tomography Angiography (PMCTA)

Unless a combination of factors coexists, such as severe and circumferential vascular calcification and/or extensive accumulation of intravascular gas [25], the examination of vascular structures with unenhanced PMCT is challenging. Hence why in 2008, Grabherr et al. studied the use of a modified heart-lung bypass instrument to perfuse an iodized oil-based solution as a contrast agent into the cardiovascular system of four different bodies by cannulation of the right femoral artery [26]. In no more than 3 minutes after the perfusion, visualisation of cardiovascular structures was attempted using MSCT. A panel of four board-certified experts (one anatomist, one radiologist and two pathologists) then evaluated the resulting angiograms. Final reports showed that the new technique effectively visualised even small supplying and draining vessels and that the examining experts were able to outline vascular changes and damages caused by self-IV drug administration and other pathological factors.

PMCTA has slowly become the standard technique for the examination of suspected cardiovascular pathology and injuries. It is especially effective for pinpointing the source of haemorrhage in areas that are delicate and/or not easily accessible with traditional autopsy, such as cerebrovascular injuries [27] or other scenarios of suspected vascular trauma like surgical error [28,29], arterial disease [28,30] or traumatic death [31,32]. Further research is also currently being undertaken to adapt this technique to more complex structures, such as in the investigation of coronary pathologies [33-35].

3.4 Magnetic Resonance Imaging (MRI)

MRI employs a magnetic field and radio frequency (RF) signals to generate anatomical images to study the structure of the human body, detect pathological conditions and monitor various physiological processes. Originally based on the scientific background of Nuclear Magnetic Resonance (NMR) spectroscopy, the possibility of using NMR to generate spatial maps of spin distribution of an object was first proposed in 1973 by Paul Lauterbur [6]. By 1980, full-body NMR scans were made available, with clinicians studying their applicability to medical diagnosis by 1981 [36]. It was during these studies that experts observed that MRI had a contrast far superior than X-ray CT. Moreover, this contrast could also be adjusted by changing the settings of the radiofrequency of the pulses. With these features, along with its readily available multiplanar and three-dimensional technology, MRI quickly became a highly desirable technique [36].

Current MRI instruments display RF signals emitted by the tissue during the imaging process. These signals are the result of the magnetization produced when the tissue is placed in a strong magnetic field. The visibility of physical features in an MRI image is often highly dependent upon how the magnetic field is shifted during the acquisition process. The imaging process itself consists of an acquisition cycle that is repeated several times to cause magnetization [37]. MRI generates images that are significantly different from those generated by other imaging techniques. For example, MRI can simultaneously and exclusively image several features from the same tissue. This is advantageous in scenarios where a pathologic process has a targeted effect exclusively on some features of the same tissue, making it more likely to be detected [37].
In addition to this, MRI is also capable of monitoring chemical shifts in cells that could be used to track metabolic processes in real time [36].

3.5 3D Surface Scanning

Beyond the examination of internal injuries, some radiological techniques have been used for the documentation of external injuries [38]. This task used to be performed through traditional photography, allowing the comparison of a wound with different potential injury-causing objects and, with deeper wounds, by inserting a swab into the wound [39]. However, the potential destruction of evidence through this process and its two-dimensional nature limit its usefulness [38,40]. It was because of this that experts started to look into the use of other non-contact digital imaging techniques [38,39].

Some of the first studies describe the use of photogrammetry for the examination of external injuries [39]. This process involves the computerisation of colour- and light-balanced information from photographs to extract geometrical information. Photogrammetry software may be used to produce accurate data on the size, depth and volume of an injury from a two-dimensional image. Some early studies proposed the use of photogrammetry for the matching of vehicle tire marks left on the heads of victims during pedestrian-vehicle collisions. In these studies, accurate digital models were produced of injuries and successfully matched them, proving the usefulness of this technique not only in the study of flat weapons but also in more complex objects, such as tires [41]. However, this technique was also found to be limited by its low image resolution, preventing its use in the assessment of smaller wounds. To overcome this, studies on the use of a newer version of photogrammetry, known as forensic three-dimensional/computer aided design (CAD)-supported photogrammetry (FPHG), were undertaken [38,42,43]. With FPHG, morphological data of both injury and potential injury-causing objects are gathered through a series of photographs. These are then analysed with digital software to measure relevant morphological points to create accurate digital 3D models of each object. Then, using the 3D/CAD programme, the model of the injury is compared against the model of the potential injury-causing object to provide a match or exclusion [38,42,43]. More recently, this technique has been automated, significantly reducing the presence of human error during model building [44]. Moreover, experts are studying the combination of this technique with other radiological instruments such as MSCT and MRI, and with animations from real data, for the reconstruction of traffic accidents [40], as well as its use in the examination of injuries in living individuals [45].

3.6 Multimodal Imaging (MMI)

In recent years, many experts have proposed that a combined approach to 3D post-mortem examination may be more beneficial than the use of a single standalone technique. This approach, known as Multimodal Imaging (MMI), was first reported by Aalders et al. in 2017 [46]. It was discussed that the rapid development of new technologies for data analysis and processing has made it possible to merge information gathered from different techniques over multiple time frames and morphological points for a new way of visualizing information. Since then, it has been proposed in further studies that the combined use of all these techniques could resolve current issues related to analytical accuracy of post-mortem imaging techniques when used alone [47].

This new approach, whilst still in its infancy, is consistently being improved. Studies have already been carried in the combination of macroscopic and microscopic imaging techniques for obtaining information with enhanced spatial resolution [48], as well to provide new ways of
synthesising and displaying the information using novel 3D and 4D displays (and even through animation or virtual reality) [49-51].

4. Applications of virtual autopsy

The techniques previously discussed have demonstrated their applicability in the examination of internal morphological features and have been exploited for the following forensic purposes:

4.1 Accidental Deaths by Blunt Force Trauma – In scenarios of blunt force trauma, techniques like PMCT and PMCTA have proven to be better methods than traditional autopsy for the detection of skeletal injuries, detecting significant fractures that were missed by physical investigation. Moreover, PMCT was able to effectively depict and outline small fractures in areas that are not easily accessed with traditional autopsy, such as the facial bones or the vertebral column. This shows that these techniques can prove valuable in the identification and classification of injuries associated with accidental death through blunt force trauma [17,52-54].

4.2 Aging of the Deceased – The use of three-dimensional geometric morphometric analysis of sections of large bones, such as the femur, the pelvis or the ribs, using PMCT, allows the identification of age-related features. Said features could be used to establish the age of the deceased at the time of their death [55-58]. To do this, a series of relevant geometrical landmarks are examined, from morphological features, such as the bicondylar breadth (BCB) in the case of the femur [55] or the inter-pubic distance in the case of the pelvis [57]; to age-related physiological processes like the ossification around sternum and ribs ends [58]. These different features may be imaged and processed using data analysis software. Studies have concluded that macroscopic ossification and degeneration patterns can be accurately correlated with age, thus making it possible to differentiate individuals younger or older than 40 years old in the case of distal femur and “chest plate” examination [55,56,58] and establish a trend in morphological changes in the ages between 15 to 70 years old in the case of the pelvis [57].

4.3 Burned Bodies – PMCT is valuable for the examination and categorisation of charred human remains [59]. In their study, Blau et al investigated the use of PMCT in the examination of 41 bags containing charred human remains potentially belonging to two or more separate individuals. After two days of examination, the authors managed to reconcile 34 of those bags to two individuals. It was concluded that the ability to digitally erase the soft tissue layers to view the skeletal remains allowed the examiners to more rapidly inspect and categorise remains for further confirmation with other techniques [13]. The use of MSCT and MRI in the examination of charred bodies may also help in establishing the height, sex, age and other anthropometric information of the deceased through the examination of morphological features of the skeletal remains once they have been attributed to a single individual [60].

4.4 Dental Identification – The use of preventive odontology has significantly decreased the need for dental restoration, reducing the presence of dental identifiers frequently exploited in traditional autopsy. In their study, Franco et al. observed that, from a sample of 103 bodies that underwent a full-body CT scan; 91 had teeth and from those 91 individuals, 16 of them had never received any kind of dental treatment (thereby limiting the potential for identification). However, the authors of this study also noted that the use of 3D image reconstruction allowed for the identification of additional morphological identifiers not previously discussed in the Interpol dental codes. Furthermore, the 3D image reconstructions allowed to specify the location and volumetric features of these identifiers. It was concluded that the combined use of PMCT and 3D
reconstruction could potentially improve identification outcomes from the dental examination of highly damaged remains [61].

4.5 Drowning – A major challenge during the examination of remains found in water is determining whether death was caused via drowning. Several studies recently have been carried out on the use of imaging for the correlation of different internal pathological changes and drowning. In their study, Leth and Madsen observed that the combined information from the comparison of the radio densities of the blood in the heart chambers and the PMCT-measured total lung volume may allow experts to establish cases of drowning in water (Figure 1). This, however, did not make it possible to determine whether the death occurred in sea or fresh water [62]. In a study by Kawasumi et al., it was observed that the accumulation of fluid in the maxillary or sphenoidal sinuses, which can be easily visualised using PMCT, is more common in drowning victims than those that died via other means (but whose remains were still found in water). The following year the same authors observed in a new study that the volume and density of fluid accumulation in the maxillary or sphenoidal sinuses differed significantly between drowning and non-drowning victims, providing further information for identifying this cause of death [63]. Two years later, a study by Bolliger et al. showed that the presence of waterborne foreign bodies in the internal cavities of human remains is indicative of drowning and that the presence of these foreign bodies, such as shell fragments, can be visualised using PMCT [64].

4.6 Gunshot wounds – Traditional radiography is frequently used for the examination of gunshot wounds and for the location of bullets in the body. However, the sensitivity to metallic fragments and the possibility of 3D imaging from techniques such as MSCT [65] could prove helpful in identifying the site of lethal injury and the prediction of gunshot wound tracks (as observed in Figure 2). Levy et al. examined 13 gunshot wounds with a 16-section MSCT followed by traditional autopsy. The study showed that MSCT aided in the correct identification of all lethal wounds and had a 100% precision in the location of metallic fragments [65]. In a similar investigation, Valdes et al. studied the use of PMCT followed by traditional autopsy and showed that post-mortem imaging can be used for the accurate measurement and profiling of bullets trapped in the body of living victims that cannot be extracted through surgery [16].
4.7 Infection – The use of post-mortem imaging has proven to be a valuable tool for the examination of suspected infections. Previous studies and case reports suggest that the use of techniques such as PMCT [67-72] and MSCT and MRI [73] can provide nearly as much or more information than traditional autopsy, with some examples where post-mortem imaging managed to identify new diagnostic signs of septicemia not previously exploited [68,72]. Furthermore, some of these studies showcase the value of these non-invasive techniques for their ability to (a) protect the examiner from high risk infectious diseases that might not have been previously identified [70,71]; and (b) guide the pathologist in a more targeted examination of areas that may have been overlooked in a standard autopsy protocol [69].

4.8 Suicide - PMCT can assist in the investigation of suspected suicide by giving more accurate information on the cause of death through three-dimensional image reconstruction. This technique has been utilised in cases of potential self-hanging for the visualisation of ligature marks around the neck, especially in scenarios where these marks are not easily detected through visual examination, such as in cases of thin ligatures or when it is difficult to differentiate the mark from the skinfolds due to the weight of the individual [18]. Furthermore, muscular lesions, which are not visible even with unenhanced PMCT, can be identified through associated haematomas and vascular lesions, visible with PMCTA [74]. Additionally, PMCT and MRI are also useful in finding and identifying bullets and the projectile trajectory in cases of suicide with firearms [75].

4.9 Traffic Accidents – PMCT can also be a vital tool in the investigation of road traffic accidents. In a study by Moskala et al. it was found, through the evaluation of 48 separate cases of road traffic accident, that the accuracy of PMCT is, at least, in concordance with traditional autopsy [19]. Furthermore, PCMT was able to find more information than manual autopsy in certain cases, such as skull, clavicle or scapula fractures. In a related study by Leth et al., 994 different injuries from 67 different road traffic accidents were studied and a comparison of the performance of autopsy and PMCT was carried out. Out of these 994 injuries, only 5% were successfully identified with traditional autopsy, whereas PMCT was able to correctly identify 12%. However, it was also stated that a combined approach of both techniques managed to
successfully identify 83% of these injuries, proving that, even if post-mortem imaging cannot be used exclusively, it is still a powerful supporting technique that should be used in combination with traditional autopsy [76].

5. Advantages and Limitations of Virtual Autopsy

The techniques discussed within this review: PMCT, PMCTA, MSCT, MRI, 3D scanning and Multimodal Imaging, have shown great promise in post-mortem examination. However, prior to their implementation, their advantages and disadvantages need to be weighted. These have been outlined in Table 1.

Table 1: Overview of the advantages and disadvantages of X-ray, Post-Mortem Computed Tomography (PMCT), Multi-Slice Computed Tomography (MSCT), Post-mortem Computed Tomography Angiography (PMCTA), Magnetic Resonance Imaging (MRI), 3D Scanning and Multimodal Imaging. Adapted from “Post-mortem imaging in forensic investigations: current utility, limitations, and ongoing developments” by Grabherr et al, 2016 [77].

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray</td>
<td>• Fast analysis</td>
<td>• Need for radiation protection</td>
</tr>
<tr>
<td></td>
<td>• Easy to use</td>
<td>• No 3D reconstruction</td>
</tr>
<tr>
<td></td>
<td>• Simplified data storage</td>
<td>• Limited application in soft tissues</td>
</tr>
<tr>
<td></td>
<td>• Low cost</td>
<td>• Superimposed images</td>
</tr>
<tr>
<td></td>
<td>• Visualisation of skeletal features</td>
<td>• Output quality dependant on acquisition</td>
</tr>
<tr>
<td></td>
<td>• Detection of foreign bodies</td>
<td></td>
</tr>
<tr>
<td>PMCT</td>
<td>• Fast analysis</td>
<td>• Need for radiation protection</td>
</tr>
<tr>
<td></td>
<td>• 3D reconstruction capability</td>
<td>• Limited data storage</td>
</tr>
<tr>
<td></td>
<td>• Low cost</td>
<td>• Limited application in soft tissue</td>
</tr>
<tr>
<td></td>
<td>• Visualisation of both skeleton and gaseous deposits</td>
<td>• Specialised training needed for handling</td>
</tr>
<tr>
<td>MSCT</td>
<td>• Larger imaging range</td>
<td>• Long processing times</td>
</tr>
<tr>
<td></td>
<td>• Fast analysis</td>
<td>• Need large digital storage capacity</td>
</tr>
<tr>
<td></td>
<td>• Visualisation of microstructures</td>
<td>• Need training for accurate interpretation</td>
</tr>
<tr>
<td></td>
<td>• Real-time monitoring of physiological processes</td>
<td>• Higher radiation dose than single slice CT</td>
</tr>
<tr>
<td>PMCTA</td>
<td>• Visualisation of vascular structures</td>
<td>• High equipment costs</td>
</tr>
<tr>
<td></td>
<td>• Low extravasation rate of contrast</td>
<td>• Time consuming</td>
</tr>
<tr>
<td></td>
<td>• Flushing of blood clots</td>
<td>• Need for radiation protection</td>
</tr>
<tr>
<td></td>
<td>• Allows visualisation of specific structures</td>
<td>• Need training for body preparation and accurate interpretation</td>
</tr>
<tr>
<td>MRI</td>
<td>• Application in soft tissues, organs and vascular walls</td>
<td>• High costs and time consuming</td>
</tr>
<tr>
<td></td>
<td>• No radiation exposure</td>
<td>• Need specifically designed infrastructures</td>
</tr>
<tr>
<td></td>
<td>• Can provide chemical information</td>
<td>• Limited data storage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Need training for accurate interpretation</td>
</tr>
<tr>
<td>3D Surface Scanning</td>
<td>• Application in surface examination</td>
<td>• Limited to surface examination</td>
</tr>
<tr>
<td></td>
<td>• 3D reconstruction capability</td>
<td>• Need specialised training for accurate model construction</td>
</tr>
<tr>
<td></td>
<td>• Comparison of weapons and injuries</td>
<td>• Time consuming</td>
</tr>
<tr>
<td></td>
<td>• No radiation exposure</td>
<td>• Need specialised software</td>
</tr>
<tr>
<td></td>
<td>• Low cost</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Compatible with animation technology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No infrastructures requirements</td>
<td></td>
</tr>
<tr>
<td>Multimodal imaging</td>
<td>• Higher accuracy</td>
<td>• Not enough scientific background</td>
</tr>
<tr>
<td></td>
<td>• Higher image resolution</td>
<td>• High costs and time consuming</td>
</tr>
<tr>
<td></td>
<td>• Combined information of surface and Internal injuries</td>
<td>• Need large digital storage capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Need training for accurate interpretation</td>
</tr>
</tbody>
</table>
An obvious advantage is the reduction of the necessary time for examination, in comparison to traditional autopsy. For example, a full body CT scan will require 5 to 15 minutes, a full body MRI will take no more than 30 minutes [3] and a tenth of the length for a CT scan in the case of MSCT [78]. A full examination from the start of the scan to the study of the images obtained and formation of the report can be done in 2.5 hours [60]. On average, the production of a full report can take from 1.5 to 3-4 hours with additional analysis; unlike traditional autopsy, where the procedure alone takes minimum 3 hours. Modern post-mortem imaging techniques also allow for more accurate and measurable information to be obtained from injuries and other pathological processes that cannot be easily discerned through visual examination (e.g. present in microstructures) or that are not easily accessible during traditional autopsy (e.g. brain haemorrhages or facial bone microfractures).

In addition, the use of post-mortem imaging represents a suitable alternative in countries where traditional autopsy is restricted due to cultural or religious reasons. In countries where performing an autopsy is still a challenge, such as Saudi Arabia or Qatar, studies on the use of MSCT and MRI have already been carried out for this purpose. These studies have proven the applicability of post-mortem imaging and how their low degree of invasiveness would make them acceptable under current cultural limitations (Figure 3) [79].

Another advantage is that techniques like PMCT and MRI show great sensitivity (low number of false negatives [80]), this nearing a concordance of 100% with traditional autopsy in some scenarios, such as in the diagnosis of pneumothorax [81] or in the detection of metallic fragments within the body [65]. On this very topic, past and recent systematic reviews have shown that imaging techniques, especially PMCT and MRI, are equally or more powerful diagnostic techniques than traditional autopsy in certain scenarios. This is particularly true in cases of traumatic injuries and intracorporeal liquid or gas accumulations, as observed by Jalalzadeh et al [54]; as well as in the visualisation of relevant diagnostic signs for aortic dissection, shown in the review by Ampanozi et al [82]. It is generally agreed in these and other systematic reviews that, in scenarios where the applicability of traditional autopsy is limited, post-mortem imaging can assist in achieving a more accurate diagnosis in these particular cases [54,82-85].
Furthermore, since digital files are generated, all information gathered can be easily stored in digital records. This opens the path to fast and easy information sharing between experts around the world for discussion or even audit [86]. This also means that the images can be easily displayed in court, preventing the jury from being exposed to gruesome medical images whilst also providing information that traditional 2D photography cannot convey (such as wound trajectories). Linked to this feature, a final advantage of virtual autopsy is its potential application in education, as the digital images created with these techniques could be used to teach general anatomy in institutions where biological material is not available [3].

However, there are also disadvantages associated with these techniques that must be considered. The main limitation for touch-free autopsy is the high cost associated with these techniques, including both equipment and staff training. According to the 2012 report from the NHS Implementation Sub-Group of the Department of Health Post-mortem Forensic and Disaster Imaging Group, the average cost for a traditional autopsy in England was £96.80 for a single examination, whereas the estimated cost for a single examination through cross-sectional imaging, which does not include costs for any additional laboratory tests or the court attendance fees, could range from £279.00 up to £2460.00 in cases of Home Office investigation [87]. There may also be additional costs also associated with the setup and maintenance of the imaging equipment itself, such as the need for specialised architectural infrastructure that can house large machinery.

Finally, experts should also be cautious when considering the information gathered within the current literature, since the scientific publications available on virtual autopsy are mainly based on a small volume of cases studied, the minimum number of cases is from 1 to 3 [88], in which a comparative analysis of MSCT, MRI and traditional autopsy was performed; and the maximum

Figure 3: a) Coronal and (b) axial mid-abdomen cross-sectional CT image used for the diagnosis of Autosomal Recessive Polycystic kidney disease (ARPKD) in Saudi Arabia. Figure reprinted with permission from Aljerian K, Alhawas A, Alqahtani S, Golding B, Alkahtani T (2015) First virtual autopsy in Saudi Arabia: A case report with literature review. J Forensic Radiol Im 3 (1):76-79. doi:10.1016/j.jofri.2014.11.002 [79]
number in some cases being 182 [20]. Furthermore, previous systematic reviews have shown that there is a significant variability in the design of past studies, with differences not only in the sample size but also on the experimental design, the imaging process, the definition of the standard method(s), the terminology and the blinding [54,83-85]. It is agreed among experts that current studies are insufficient and further development and testing, as well as proper standardisation of the experimental protocols, is still required, as pointed by Eriksson et al and other authors [54,83-86,89]. Once proper guidelines for forensic and medical examination through imaging techniques have been set, it is expected by the experts that the quality of both forensic and clinical evidence will be enhanced [85].

6. Conclusions

A review of the literature has shown that novel techniques for post-mortem imaging are currently being evaluated for forensic applications. These techniques have proven to be at least as accurate as traditional autopsy and can provide further information that would normally remain undiscovered during traditional examination, whilst also allowing for the rapid, interactive and touch-free study and comparison of injuries.

However, despite the benefits of these techniques, it is likely that conventional autopsies will still be required in complex cases where the clinical and radiological diagnosis of cause of death is inconclusive. Nevertheless, post-mortem imaging can still be an indispensable tool for autopsy, making the invisible visible and improving the quality of examination. Moreover, these new methods open the path to broad prospects for the development of forensic expertise in general.

Many of the drawbacks of post-mortem imaging are outweighed by the benefits of the method, such as reduced examination times, increased sensitivity and the fact that the body remains undisturbed. As a result, some authors believe that a significant percentage of cases of full-open-body autopsy can be avoided by using post-mortem imaging and targeted biopsy, significantly increasing the accuracy of cause of death determination.

However, the information gathered in this review shows that further research is needed. A thorough validation of this approach for use in forensic medical examination will significantly increase the prevalence of minimally invasive or non-invasive techniques, which, in combination with targeted biopsy and post-mortem angiography, could replace traditional manual autopsy.

Acknowledgements: The authors would like to thank the Kazakhstan Center for Internal Programs for funding this work as part of the Bolashaq International Scholarship Scheme, as well as the Kazakhstan Ministry of Justice for their continued support.

Compliance with Ethical Standards

- Funding: This work was funded by the Kazakhstan Center for International Programs through the Bolashaq International Scholarship Scheme. The funding source had no involvement in the study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.
- Conflicts of interest/Competing interests: The authors declare that they have no conflict of interest.
- Research involving Human Participants and/or Animals: As a review article, this study did not require the use of Human and/or animal participants.
Informed Consent: This article does not include any content for which informed consent would need to be obtained.

References
doi:10.1016/j.forsciint.2012.08.006
87. Can cross-sectional imaging as an adjunct and/or alternative to the invasive autopsy be implemented within the NHS? (2012). NHS Implementation Sub-Group of the Department of Health Post Mortem Forensic and Disaster Imaging Group.