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Abstract

The large-scale behaviour of entanglement entropy in finite-density states, in and out
of equilibrium, can be understood using the physical picture of particle pairs. However,
the full theoretical origin of this picture is not fully established yet. In this work, we
clarify this picture by investigating entanglement entropy using its connection with the
large-deviation theory for thermodynamic and hydrodynamic fluctuations. We apply the
universal framework of Ballistic Fluctuation Theory (BFT), based the Euler hydrodynam-
ics of the model, to correlation functions of branch-point twist fields, the starting point
for computing Rényi entanglement entropies within the replica approach. Focusing on
free fermionic systems in order to illustrate the ideas, we show that both the equilibrium
behavior and the dynamics of Rényi entanglement entropies can be fully derived from
the BFT. In particular, we emphasise that long-range correlations develop after quantum
quenches, and accounting for these explain the structure of the entanglement growth.
We further show that this growth is related to fluctuations of charge transport, general-
ising to quantum quenches the relation between charge fluctuations and entanglement
observed earlier. The general ideas we introduce suggest that the large-scale behaviour
of entanglement has its origin within hydrodynamic fluctuations.
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1 Introduction

The understanding of entanglement in quantum many-body systems received a considerable
boost in the last decades, with the introduction and characterization of many different quanti-
ties which “measure” the amount of entanglement in a given quantum state [1–4]. An impor-
tant set of such measures are the so-called entanglement Rényi entropies. Given a quantum
system described by a density matrix ρ and a subsystem A of the total system, with Ā denot-
ing its complement, consider the associated reduced density matrix ρA = trĀρ. Then, for any
α ∈ R+, the α-Rényi entropy is defined as

Sα =
1

1−α
log trραA . (1)

They are good entanglement measures for all pure quantum states, i.e. states of the form
ρ = |Ψ〉〈Ψ|. They fully characterise the entanglement spectrum, and an important property is
that in the limit α→ 1 they reduce to the famous entanglement Von Neumann entropy

S = −tr (ρA logρA) . (2)

In the context of one-dimensional systems, which is the focus of this paper, several exact
results are available for such quantities. For example, at equilibrium, Rényi and entanglement
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entropies or their asymptotic behaviours can be obtained in the ground state states of criti-
cal [5], gapped [6] and more general integrable [7] field theories, as well as beyond integra-
bility [8] (note that for free theories results were first obtained in [9]). In the case of critical
systems described by a conformal field theory (CFT), such results are easily generalized to
finite temperature states (i.e., Gibbs ensembles) [5], and also results for generic thermody-
namic macrostates (i.e., generalized Gibbs ensembles [10]) have been obtained [11–13] in
the context of integrable models relying on (thermodynamic) Bethe ansatz [14] methods.

When moving to out-of-equilibrium scenarios, the situation is more complicated and avail-
able results are mainly qualitative or in the form of conjecture (an exception, however, is the
exact result in [15]). For example, an imaginary time path-integral formulation, together with
conformal invariance, has been used for a qualitative understanding of the ubiquitous linear
growth of entanglement [16] observed after quantum quenches [17, 18]. Moreover, the dy-
namics of the entanglement entropy (2) for a generic integrable system was understood in
terms of a semiclassical “quasiparticle picture” (whose original version was proposed in [16]),
complemented with the Bethe ansatz knowledge of the stationary state attained at late times,
as conjectured in [19] (see also [20]). These results have been extensively verified numerically
(see, e.g., [20]). An important point to stress is that the quasi-particle picture does not admit
a generalization for describing, for generic α, the growth of Rényi entropies [21,22] (with the
exception of free systems [11]).

A common starting point for (most of) these results is the so-called “replica approach”,
whose main idea is that trραA (cf. (1)) can be computed by considering α copies (with α an
integer) of the original model, ending up with a “replicated” theory. Appropriate analytic
continuation to α ∈ R+, gives the Rényi and the Von Neumann entropy (see, e.g., [6]).

In particular, within this approach, powerful tools are the so-called branch point twist fields,
Tα and its hermitian conjugate T̄α. Twist fields, in general, are special fields associated to a
given symmetry of the theory; they exist, in a many-body system, for every symmetry trans-
formation. The branch point twist fields are special kind of those: as the replicated theory is
invariant under permutations of the copies, Tα, T̄α are the twist fields associated to the gen-
erator of cyclic permutations i 7→ i+1 mod α and its inverse, respectively. The quantities trραA
can be related to correlation functions of such twist fields, as first pointed out in quantum field
theory in [7] clarifying ideas from [6], and as shown in quantum chains in [23].

In this work, we make use of the large-deviation theory for ballistic transport, dubbed
ballistic fluctuations theory (BFT), introduced in [24, 25], in order to study the Rényi entan-
glement entropy. The BFT, which is based on hydrodynamic projection principles, gives access
to the large-deviation theory for fluctuations of total 2-currents on arbitrary rays in space-
time, in homogeneous and stationary states. It generalises in a natural fashion the specific
free energy from thermodynamics. By the relation between currents and twist fields, the BFT,
as pointed out in [24], also gives access to two-point functions of twist fields.

Concentrating on (generic) free fermionic systems, we show that both the equilibrium and
the dynamics of Rényi entropies at large scales of space and time can be obtained from large-
deviation principles and the BFT as applied to branch-point twist fields. The resulting form
of the Rényi entanglement entropy growth and saturation agree with previous results based
on counting particle pairs, but the method is new, and brings out, we believe, important new
physics underlying the entanglement entropies. The main two observations are:

(1) We obtain an exact relation between the growth of the Rényi entanglement entropies af-
ter a so-called integrable [26–28], pair-production quench, and static and dynamic “full count-
ing statistics" in the final GGE. Consider N<,> :=

∫

|v(θ )|<,>ξ/2 dθ ψ†
θ
ψθ the conserved quantity

giving the total number of “slow" and “fast" fermionic modes ψθ , with speeds |v(θ )| < ξ/2
and |v(θ )|> ξ/2, respectively, where ξ= x/t is a spacetime ray. Let us denote

F<,ξ
dyn (λ) = lim

t→∞
t−1 log 〈eλJN< (t)〉

3
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the scaled cumulant generating function for the total current JN<(t) of slow modes passing
through a point in the time interval [0, t] in the final GGE; and

F>,ξ
stat (λ) = lim

x→∞
x−1 log 〈eλN>(x)〉

the scaled cumulant generating function for the total number N>(x) of fast modes lying on the
spatial interval [0, x] in the final GGE. Consider for simplicity α to be even. Then, as x , t →∞
with x/t = ξ fixed, the Rényi entanglement entropy on the interval [0, x], at time t after the
quench, has asymptotic form:

Sα(x , t)∼
1

1−α

�

2t
α/2
∑

q=−α/2+1

F<,ξ
dyn (ih2q−1) + x

α/2
∑

q=−α/2+1

F>,ξ
stat (ih2q−1)
�

, hp =
πp
α

. (3)

This extends earlier observations of the connection between entanglement entropy and full
counting statistics [29–31] to non-equilibrium quenches. Our calculations also provide a fun-
damental explanation of such relations in terms of twist fields and the large-deviation theory
for their asymptotic behaviours, which, as far as we know, has not been noticed before.

(2) We give a new exact derivation of the so-called quasi-particle picture in the case of
free fermions with generic dispersion relation. Our derivation is completely independent from
the other exact result for the Ising model in [15], which was based instead on Toeplitz matrix
representation and multidimensional phase methods. In particular, our method makes trans-
parent how it is the simple structure of long-range correlations induced by particle pairs in
integrable quenches that allows one to describe both the growth and saturation of entangle-
ment in a simple and universal way in terms of the long-time GGE, as this structure allows
the separation of the contributions of fast and slow modes as per (3). The emphasis on the
structure of long-range correlations also gives a clear understanding as to why for quenches
starting from more complicated states, for instance producing correlated groups of more than
two particles, more information about the initial state is needed to describe the entanglement
growth; in these case no simple formula exists (as showed for example in [32,33]).

We concentrate on free fermion models for simplicity and in order to most clearly illustrate
the method and physics. However, as the method is based on general large-deviation and hy-
drodynamic principles, it is expected to be much more widely applicable, which we leave for
future works. In particular, it suggests that hydrodynamic modes and hydrodynamic projec-
tions are the more accurate notions at the root of the large-scale behaviour of the entanglement
dynamics, rather than particles and their productions.

The paper is organized as follows. Sec. 2 is an introduction to BFT and its relation to twist
fields. In Sec. 3 we review the replica approach and the associated branch-point twist fields,
and we discuss the simplifications occurring in the free fermionic case. Sec. 4 is the core of the
paper, where we derive an expression for correlation function of twist fields from BFT, both in-
and out-of- equilibrium, and use them to obtain (3) and recover the known formulas for Rényi
and entanglement entropies. A discussion of our method and results is given in Sec.5. The
appendices complement the main text with observations and details of the calculations. In
particular, App. A contains remarks on notions of locality and twist fields. App. B contains all
the details about the applicability of BFT in the different situations we consider, by explicitly
computing correlations, and their long-range behaviour, after a quench from a state with pair
structure. Finally, App. C is about the structure of the S-matrix in the α-copy theory.

2 Ballistic Fluctuation Theory and twist fields

The BFT [24, 25], detailed below, is a theory describing the large-scale, ballistic fluctuations.
It is expected to apply to a large class of quantum and classical many-body, extensive systems.

4
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It applies to generic systems with space-translation invariant dynamics and interaction range
that is short enough. It has been developed originally for states that are spacetime stationary
and clustering in space, but many of the ideas have been extended to more general situations
[34,35].

In this paper, we use the BFT as originally developed in [24,25],and show how, and under
which assumptions, it can be applied to states that emerge after quantum quenches as well.
Quantum quenches give rise to states that are locally spacetime stationary, but present time-
varying long-range correlations, as we will explain below. We will explain how simple ideas
based on the principles explained in [24] allow us to nevertheless use the BFT. We mention
that long-range correlations can also, in principle, be accounted for directly by using the more
sophisticated ballistic macroscopic fluctuation theory (BMFT) [35], which we leave for further
studies.

2.1 General setting

The main strength of the BFT is that it stipulates that only some emergent properties of the
system are required in order to describe the large-scale, ballistic fluctuations: the data of its
Euler hydrodynamics. We assume the system of interest to have a certain number N (which
in our application to free fermions will be infinite, as the system is integrable) of conserved
quantities

Q i =

∫

d x qi(x , t) (4)

such that dQ i/d t = 0. They are assumed to be hermitian (in quantum systems), or real (in
classical systems). They include the Hamiltonian H =

∫

d x h(x , t), which generates time
translations. For simplicity of the discussion we assume these to be in involution, [Q i,Q j] = 0
for all i, j ∈ {1, · · · , N}, however this is not necessary in general. They have associated conser-
vation laws ∂tqi + ∂x ji = 0. The observables qi , ji are the corresponding charge density and
current, assumed to be “local". In the present paper, locality of qi and ji simply means that
Q i has appropriate extensivity properties; we keep the general discussion formal in order to
avoid technicalities, but see the remark about locality concepts in the literature in App. A.

Within such systems, we focus on states belonging to the manifold of maximal entropy
states (MES). Each state is characterized in terms of a vector β = {β1, · · · ,βN} of “Lagrange
multipliers", with N components (there are as many number of components as the number of
conserved quantities Q i). Given such a vector, the density matrix defining the system reads4

ρβ ∝ e−
∑

i βiQ i . (5)

These include the GGEs studied in integrable systems. We consider the system to be in infinite
volume. Below, when no ambiguity occurs, expectation values on such states will be denoted
simply as 〈·〉. Importantly, we assume such states to be clustering strongly enough: connected
correlations tend to zero quickly enough at large spatial separations,

〈a(x , 0)b(y, 0)〉c := 〈a(x , 0)b(y, 0)〉 − 〈a(x , 0)〉〈b(y, 0)〉 → 0 (|x − y| →∞). (6)

Here and below, a(x , t) is a local observable at the position x and evolved to time t.
As per basic principles of statistical mechanics, the averages of densities are generated by

the free energy

〈qi〉=
∂

∂ βi
f (β) (7)

4In (5), an infinite-volume limit needs to be taken. In quantum spin chains, it is shown that if the weight
determining the density matrix,

∑

i βiQ i , is short-range, then this defines a state that is unique and exponentially
clustering in space [36]. More generally, one can construct states using the Hilbert space of extensive charges,
see [37].

5
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and the mapping
〈q〉↔ β (8)

is bijective (in appropriate regions of values of 〈qi〉 and βi).
As mentioned, states that are spacetime stationary for local observables, but with spacetime

varying long-range correlations, arise naturally in quantum quenches even after long times.
This is because for thermalisation to happen on large regions of the system takes a long time.
In such cases, the state is not described by the MES (5). A precise description of states with
long-range correlations is more involved, see e.g. [35, 38]. But the concept of MES is still
useful in these situations, as, nevertheless, averages of all local observables, or observables
supported on regions smaller than the correlation range, still are described by (5). We will
explain how to use this fact in order to “avoid” long-range correlations and apply the results
of the BFT.

2.2 Large deviation theory of currents

Consider some conserved quantity Q = Q i∗ (for a given i∗ ∈ {1, · · · , N}), with associated
density q = qi∗ and current j = ji∗ .

It is instructive to start with a description of the large-deviation theory for extensive charges
at equilibrium, before discussing currents. In a given state ρβ , a natural question is to char-

acterize the restriction ∆J(x) = −
∫ x

0 d x ′ q(x ′, 0) of the charge Q to a spatial interval [0, x],
and its fluctuations within this interval. Here x denotes the horizontal path from (0,0) to
(x , 0) (and the notation ∆J(x) is adapted to generalising to currents, as done below). The
fluctuations are fully characterized by the cumulants of ∆J(x). It is a simple result that the
cumulant generating function at large x is given by a difference of specific free energies f (β)
of the system,

〈eλ∆J(x)〉 ≍ e−x∆ f (λ), ∆ f (λ) = f ({βi +δii∗λ}i)− f (β). (9)

Here and below, we use the notation A(s) ≍ B(s) with the meaning that lims→∞
log A(s)
log B(s) = 1.

Therefore
∆ f (λ) = − lim

x→∞
x−1 log〈eλ∆J(x)〉, (10)

and this generates the scaled cumulants cm,

∆ f (λ) =
∞
∑

m=1

λm

m!
cm, cm = − lim

x→∞
x−1〈
�

∆J(x)
�m 〉c. (11)

When studying transport, similarly, we are interested in characterizing the total current
passing by a given spatial point (e.g., the origin) in a given interval of time [0, t]. One is
therefore interested in the total transfer of Q in time t, i.e., ∆J(t) =

∫ t
0 d t ′ j(0, t ′), where

now t denotes the vertical path from (0,0) to (0, t). As argued in [24] using hydrodynamic
principles, the structure parallels closely the equilibrium case in ballistic systems, such as those
admitting many conserved charges. At large times t →∞, a large-deviation principle holds
generically for linear scaling with t.

In fact, one can go further and consider the 2-current j = ( j, q), and the integral along a
more general path ℓ, starting in (0, 0) and ending in (x , t), over its perpendicular component
to the path. This defines the following object

∆J(ℓ) =

∫ (x ,t)

(0,0)
j(x ′, t ′)∧ dℓ (12)

6
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where dℓ= (d x ′, d t ′) and j∧dℓ= jd t ′−qd x ′. By current conservation, the integral (12) is in
fact independent of the path chosen, and therefore the result only depends on the end-points
(0, 0) and (x , t) (for lightness of notation, we keep implicit the dependence on (0,0))

∆J(ℓ) =∆J(x , t). (13)

For example, we may choose to connect the initial and final points of the path via a segment
of ray

x
t
= tanγ, |γ|<

π

2
, (14)

as will be done below.
Let us consider the Euclidean distance between the initial and final points,

ℓ=
p

x2 + t2 (15)

(we do not assume Euclidean spacetime symmetry, this is simply a convenient way of con-
trolling the scale of x and t). As mentioned, in ballistic systems a large-deviation principle
holds generically for ∆J(x , t)∝ ℓ. Then, as in the equilibrium case, we can define the scaled
cumulant generating function (SCGF) F(λ) of ∆J(x , t) as

〈eλ∆J(x ,t)〉 ≍ eℓF(λ), F(λ) = lim
ℓ→∞

ℓ−1 log〈eλ∆J(x ,t)〉=
∞
∑

m=1

λm

m!
cm(γ) . (16)

The function F(λ) also depends on the angle γ, which we keep implicit. The coefficients cm(γ)
are the scaled cumulants of ∆J(x , t),

cm(γ) = lim
ℓ→∞

ℓ−1〈
�

∆J(x , t)
�m〉c, (17)

which are m-point correlation functions of currents and densities integrated over the path ℓ.
The finiteness of scaled cumulants depends on the asymptotic behavior of density and current
correlation functions at large spacetime separations. See App. B for more details.

2.3 F(λ) in MES: biased measure, flow equation

From the explanations above, at γ= π/2 (in the spatial direction) we have that F(λ) = −∆ f (λ),
explicitly given in terms of thermodynamic quantities (cf. (9)). What is the corresponding
quantity for finite values of γ (i.e., involving the time direction)? It turns out that the answer
is completely given using the data of the Euler hydrodynamics of the model.

The Euler hydrodynamics controls the motion and correlations of the many-body system
at large scales of space and time. For our purposes, it is sufficient to recall that it is completely
fixed by the flux jacobian matrix, defined as (using the bijection (8))

Ai j =
∂ 〈 ji〉
∂ 〈q j〉

. (18)

In integrable systems, the flux Jacobian is in fact an infinite dimensional matrix, or more
precisely an integral operator [39].

From the definition it is clear that Ai j is basis-dependent. Its fundamental information is
contained in its spectrum

�

veff
k

	

k=1,··· ,N , which is composed of eigenvalues if N is finite, and
which admits a continuum in integrable systems (where N =∞). The spectrum is interpreted
as the set of effective velocities, or “generalized sound velocities,” associated to normal modes
of the hydrodynamics [39].

7
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In order to compute F(λ) in (16), the idea is to bias the measure ρβ defining the MES
(where expectation values are considered), by multiplying it by the exponential of the inte-
grated 2-current ∆J(x , t), as appears in (16). The state thus becomes λ−dependent, and it
is in fact a MES, which we write as ρλ;β . Associated to the segment of path from (0,0) to
(x , t), with tanγ = x/t, one can derive a flow equation for ρλ;β , within the space of MES,
starting from ρ0;β = ρβ . Conveniently, this can be written as a flow equation for the Lagrange
multipliers β(λ;γ) themselves as follows [24]

∂

∂ λ
β j(λ;γ) = −sgn [A(λ;γ)− tanγ IN ]i∗ j , β j(0;γ) = β j (19)

where we explicitly introduced the dependence on λ as well as on the path (through γ) in all
quantities.

The main result of BFT is that, solving the flow (19), one can get an expression of the SCGF
directly in terms of the 2-current j evaluated along the flow, namely

F(λ) =

∫ λ

0

dλ′ (cosγ〈 j〉λ′ − sinγ〈q〉λ′) (20)

where 〈·〉λ denotes expectation values on ρλ;β (recall that 〈·〉0 ≡ 〈·〉) and 〈 j〉λ′ = 〈 j(0,0)〉λ′ ,
〈q〉λ′ = 〈q(0,0)〉λ′ . Crucially, from Eq. (20), one has that F(λ) is given in terms of thermody-
namic and Euler hydrodynamic objects only.

The result (20) with (19) follows from a large-deviation principle. The full derivation of
Eqs. (19-20) is not reported here, but can be found in [24].

The main assumption underlying the validity of (20) is that of “strong enough” clustering
along the space-time ray of velocity x/t = tanγ. Specifically, spatial clustering (6) is not enough:
one needs vanishing of correlation functions of perpendicular currents j⊥(x , t) := j(x , t)∧dℓ,
the integrand in (12), when the distance along the ray (0, 0)→ (x , t) goes to infinity,

〈 j⊥(y, s) j⊥(y + ℓ sinγ, s+ ℓ cosγ)〉c→ 0 (ℓ→∞, y/s = tanγ) (21)

and similar requirements for all multipoint functions of perpendicular currents. The vanishing
must be fast enough to make integrals defining the cumulants rapidly converging.

A crucial remark for our work, concerning the requirement of clustering, is Remark 3.3
of [24]. Recall that ∆J(x , t) =∆J(ℓ) in (12) is independent of the path ℓ, and only depends
on the end-points (0,0) (which we have kept implicit) and (x , t). One may therefore hope
to apply the general result of the BFT for each path element and obtain, in place of (20), the
expression

F(λ) = lim
ℓ→∞

ℓ−1

∫ λ

0

dλ′
∫ (x ,t)

(0,0)
〈 j(x ′, t ′)〉λ′ ∧ dℓ, (22)

for any path ℓ (with a well-defined large-scale limit ℓ → ∞). As explained in [24, Rem
3.3], this is expected to be correct if and only if there are no strong correlations between the
perpendicular currents amongst different points on the path.

Eq. (22) is the main result from BFT which will be applied below to expectation values
of observables (specifically, of twist fields) both at equilibrium in states described by GGEs
(in Sec. 4.1), and out-of-equilibrium in states emerging after quenches (in Sec. 4.2 and the
following ones). In the latter case, this can be done by choosing a path that “avoids" the long-
range correlations that such states present, so that expectation values in the pre-quench state
can be approximated with the ones in the corresponding long-time GGE (where correlations
can be shown to decay fast enough).

8
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Remark (clustering and the ballistic large-deviation principle). If there is no path that satisfies
strong clustering, then typically the ballistic large deviation principle is broken, and the SCGF
resulting from the BFT may be infinite or zero. Exponential clustering, which is sufficiently
strong, is expected to hold on rays away from the fluid velocities, tanγ ̸= veff

i ∀i, in generic
equilibrium states. In GGEs of integrable systems at nonzero entropy density, the spectrum of
the flux Jacobian contains a continuum, and clustering is in fact a power-law, with power 1/ℓ2

for the perpendicular currents, Eq. (21), for all rays within this continuum, see App. B.1 for
the case of free fermions. This is still strong enough for the BFT results to hold, as confirmed
numerically for the hard rods [25]. By contrast, in non-integrable systems, where the flux
Jacobian has a discrete spectrum, clustering is too weak on rays along any of the eigenvalues
of the spectrum of the flux Jacobian (fluid velocties), tanγ= veff

i for some i. In these directions,
the ballistic large-deviation principle is broken. See the discussion in [24]. In general, at zero
temperatures when there is no gap, weak power-law clustering is seen and the ballistic large-
deviation principle is also broken. When the breaking of the large-deviation principle happens
as we change a parameter (a (generalised) temperature, a coupling), this can be seen as a
“dynamical phase transition".

2.4 Application of the BFT to twist fields

One of the most important application of the BFT is to two-point correlation functions of so-
called “twist fields”. This is useful, because, as explained in the introduction, twist fields are
probably the most efficient way of studying entanglement entropy, the main object of this
work.

There are a number of ways of defining twist fields, and we will discuss two natural ap-
proaches. The first is natural in the context of the large-deviation theory as recalled above and
based on the explicit knowledge of extensive conserved quantities; it applies to classical and
quantum systems alike. The second is a more abstract formulation that does not require the
explicit knowledge of extensive conserved quantities, but that is better adapted to quantum
systems.

Consider as above an extensive conserved quantity Q. Recall that Q has associated density
and current q(x , t) and j(x , t). It is convenient to define the height fieldϕ(x , t) via the relations

q(x , t) = ∂xϕ(x , t), j(x , t) = −∂tϕ(x , t). (23)

This ensures that the continuity equation ∂tq + ∂x j = 0 is automatically satisfied. The height
field is unbounded (because the charge is extensive), and we note in particular that differences
grow linearly,

ϕ(0, 0)−ϕ(x , t) =∆J(x , t)∝ ℓ. (24)

The height field may be written as an integral over half space5,

ϕ(x , t) = −
∫ ∞

x
d y q(y, t) +ϕ(∞, t). (25)

One finds that the boundary term at infinity is constant in time, ϕ(∞, t) = ϕ(∞) (which
can be chosen to vanish). Further, it is clear that the result is independent from the choice of
path in spacetime thanks to the conservation laws,

ϕ(x , t) =

∫ (∞,t)

(x ,t)
j ∧ dℓ+ϕ(∞), (26)

5This expression is somewhat formal. In quantum spin chains, by applying a time derivative to (25), one can
make the result mathematically rigorous using an appropriate Hilbert space of the Gelfand-Naimark-Segal type, as
proved in [40].
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and thus the height field ϕ(x , t) only depends on the point (x , t). This justifies the notation.
One may also choose a different direction for the half-space integral, the difference being
encoded within

ϕ(∞)−ϕ(−∞) =Q. (27)

Exponentials of ϕ(x , t), that is
Tλ = eλϕ, (28)

are known in general as “twist fields”. Because of the expression (25), they are not “local" in
the naïve sense, but are usually referred to as “semilocal" in the literature (see App. A for an
overview); this is made clearer below using exchange relations. As an immediate result of the
large-deviation analysis, using

Tλ(0,0)T−λ(x , t) = eλ(ϕ(0,0)−ϕ(x ,t)) (29)

with (24), we get the leading exponential behavior of the two-point correlations of twist fields
as

〈Tλ(0, 0)T−λ(x , t)〉 ≍ eℓF(λ) . (30)

That is, if the ballistic large-derivation principle holds for the charge Q, then the associated
twist field shows an exponential behaviour at large space-time separations. Because eλϕ is not
bounded for λ ∈ R, Tλ should be referred to as an “unbounded twist field".

In quantum models, because of the lack of commutativity of observables, and a fortiori in
quantum field theory (QFT), because, additionally, of the necessary renormalisation procedure
applied to the twist fields, the relation (29) is not strictly valid. However, corrections do
not affect the leading exponential behaviour of the two-point function, as argued for the XX
quantum chain in [41].

A second viewpoint on twist fields is as follows. A twist field T (x , t) is in general an
operator associated to a symmetry transformation that “acts locally enough". This is a trans-
formation a(x , t) 7→ ã(x , t) of the model, that maps local observables to local observables,
and that preserves the operator algebra; one usually also requires that it preserves the Hamil-
tonian density, h̃(x , t) = h(x , t). The property of an operator T (x , t) that makes it a twist field
associated to such a symmetry, is the following equal-time exchange relation:

T (x , t)a(y, t) =

�

ã(y, t)T (x , t) y ≫ x
a(y, t)T (x , t) y ≪ x

(31)

for every local observable a(y, t). Corrections at larges distances |y − x | should be small
enough, for instance exponentially decaying. This equal-time exchange relation is known in
the literature as expressing the “semilocality" of the twist field6 T (x , t).

In general, symmetry transformations act via unitary operators U as ã(x , t) = Ua(x , t)U−1.
For instance, in quantum spin chains, one often can write U =

∏

x∈Z Ux where Ux acts non-
trivially on a neighbourhood of x (possibly up to exponentially decaying corrections); this is
indeed local enough. In such instances, one can simple set

T (x , 0) =
∏

y≥x

Uy . (32)

How does the exchange-relation formulation (31) connect with the height-field formula-
tion (28) of twist fields? This is from the general principle that every extensive conserved quan-
tity gives rise to a continuous, one-parameter unitary group of symmetry transformations that act

6If the twist field indeed preserves the hamiltonian density, it commutes with it at large distances, up to small
(e.g. exponential) corrections. This has important implications, which justifies considering twist fields, for many
purposes, on the same footing as local fields; for instance, the time-evolved twist field is analytic in the time variable
at small enough times.
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locally enough. That is, given an extensive Q (recall that it is assumed to be hermitian), we
may consider the symmetry transformation

ã(x , t) = eiηQa(x , t)e−iηQ (33)

for a real parameter η ∈ R. It is simple to see that this acts locally enough, as described above.
Indeed, by conservation we can replace Q by Q(t) in (33), and by locality of the density q(x , t),
we have that
∫ L
−L d x [q(x , t), a(0, t)] approaches its limit as L→∞ quickly enough, and gives

in the limit a local observable supported at x = 0 at time t. Therefore, by using the Baker-
Campbell-Hausdorff formula, at least for all η small enough, eiηQa(x , t)e−iηQ gives rise to a
local observable at (x , t). Using the same principles, it is then a simple matter to show that
(31) holds with the choice (25) for the height field, and the identification in (28)

T = T−iη. (34)

Because e−iηϕ is bounded, we will referred to these as “bounded twist fields”. Bounded twist
fields are the ones usually considered in the literature. In particular, because they are bounded,
their two-point functions should decay in spacetime,

ℜF(−iη)≤ 0. (35)

One may in fact argue that, viceversa, to every symmetry transformation that acts locally
enough, we can associate an extensive conserved quantity. In quantum field theory, Noether’s
theorem shows that, for continuous symmetry groups, we indeed have U = eiηQ for some con-
served quantity Q associated to a conserved 2-current; again this is local enough. In general,
for any local enough transformations, one can identify, formally, an extensive charge Q with
the operator −i log U (thus taking (33) with η = 1), a formal construction that, we expect,
could be used fruitfully within the BFT. In the present paper, we will consider a twist field as-
sociated to a discrete symmetry transformation, but this will be embedded within a continuous
symmetry group thanks to the free-fermion structure, thus the charge Q will be explicit.

Finally, we observe that applying the BFT for the bounded twist fields, using the identifica-
tion (34), requires an analytic continuation of λ in the BFT formulae, to purely imaginary values
−iη. This is a subtle aspect, as for purely imaginary values of λ, the modified state by the
flow equation is not strictly a MES (because the resulting linear functional on the algebra of
observables is not necessarily positive). We believe that if fluid velocities are well separated, as
is typically the case in non-integrable systems, then the analytic continuation can be obtained
meaningfully by keeping the sign of the eigenvalues constant in the flow equation (19) (as
the analytic continuation will not “see" the jumps in eigenvalues), and integrating the flow
in the complex λ-plane. In free fermion models, the analytic continuation can be performed
directly on the explicit result for F(λ), as done in [41] and in the next section. We will show
below that the BFT indeed predicts decay of correlation functions in this case. We leave the
discussion for interacting integrable systems to future works.

See App. A for a brief discussion of notions of locality and twist fields.

2.5 Explicit expression of F(λ) in free fermionic theories

Up to now, the theory was general, and all equations correctly give the ballistic part of large de-
viations in general systems with the properties detailed in Secs. 2.1 and 2.3. When considering
integrable systems, Eq. (20) gets further simplified. In fact, using the theory of generalized hy-
drodynamics (GHD) [42,43], an explicit expression of the hydrodynamic quantities 〈q〉λ, 〈 j〉λ
along the flow can be worked out.

We now overview the simplified expression for F(λ) in the special case of free fermions in
the continuum, arguably the easieast among 1D integrable systems, which is our focus in this
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paper (the corresponding results in the case of generic interacting integrable models can be
found in [25]).

In order to keep the structure general, we simply assume that a fermionic, complex field
ψ(x , t) exists with interactions that are quadratic and short-range. Its Fourier modes are
denoted ψθ , with anti-commutation relation {ψ†

θ
,ψθ ′} = δ(θ − θ ′). Here θ represents the

momentum, which we assume takes values in R for simplicity (for quantum chains, this would
be a bounded subset instead, but the general ideas are not affected). We also denote the
dispersion relation as E(θ ), which we assume is strictly convex and symmetric E(θ ) = E(−θ ).
Thus, under canonical normalisation,

ψ(x , t) =
1
p

2π

∫

dθ eiθ x−iE(θ )tψθ . (36)

As it is integrable, the model possesses an infinite number of conserved quantities. A “scat-
tering basis" for these is given by Qθ = ψ

†
θ
ψθ , θ ∈ R. Strictly speaking, the Qθ ’s are not

linearly extensive, but (for generic dispersion relation) any extensive conserved quantity can
be obtained by a suitable “linear combination", or basis decomposition, Q i =

∫

dθ hi(θ )Qθ .
Here, hi(θ ) is the one-particle eigenvalue of the extensive charge Q i . Examples are the num-
ber of fermions N =

∫

dθ Qθ , the total momentum P =
∫

dθ θQθ , and the total energy

H =
∫

dθ E(θ )Qθ . A typical GGE (5) takes the form ρw := ρβ ∝ e−
∫

dθ w(θ )Qθ , where

w(θ ) =
∑

i βihi(θ ) is the generalised Boltzmann weight in the particle basis . For example,

for a thermal state, we have ρw∝ e−β(H−µN) = e−
∫

dθ β(E(θ )−µ)Qθ , so w(θ ) = β(E(θ )−µ).
In general, the physical meaning of the Lagrange multipliers βi depends on the choice of

the set of charges Q i , i.e. on the choice of the set of one-particle eigenvalues hi(θ ). But there
is no need to choose any particular infinite set of charges Q i , or to write explcitly w(θ ) in a
basis decomposition w(θ ) =

∑

i βihi(θ ). The function w(θ ) fixes the GGE, and only few basic
requirements constrain w(θ ) for ρw to be a valid GGE (we will ask that it be positive and grow
sufficiently fast as |θ | →∞). We note that the conserved charge densities take the standard
form 〈qi〉=
∫

dθ/(2π)n(θ )hi(θ ) in terms of the occupation function

n(θ ) =
1

1+ ew(θ )
. (37)

and that, in a system of length L with periodic boundary conditions, we have 〈Qθ 〉=
L

2πn(θ ).
In our calculations, we will assume that n(θ ) has an analytic extension in a neighbourhood

of R, and that n(θ )→ 0 as |θ | →∞.
Consider the large-deviation problem for the charge Q =Q i∗ , with one-particle eigenvalue

hi∗(θ ) = h(θ ). For free fermions, F(λ) simplifies to

F(λ) = −
∫

dθ
2π
|v(θ ) cosγ− sinγ| [ f (ελ(θ ;γ))− f (w(θ ))] (38)

where v(θ ) = dE(θ )/dθ is the group velocity7. The function f (ε) is the fermionic free energy
function (the free energy density per distance and per unit rapidity θ),

f (ε) = − log(1+ e−ε), (39)

and the function ελ(θ ;γ) is the Boltzmann weight along the flow (19) in the particle basis.
Its initial condition is ε0(θ ;γ) = w(θ ), and the corresponding flow equation (which simply
follows from (19) in terms of βi) simplifies to

∂λελ(θ ;γ) = sgn(tanγ− v(θ ))h(θ ) , (40)

7The effective velocity of GHD is just the group velocity in free particle models, veff(θ ) = v(θ ).
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which is explicitly solved as

ελ(θ ;γ) = w(θ ) +λ sgn(tanγ− v(θ ))h(θ ) . (41)

As mentioned above, in order to apply the BFT to bounded twist fields associated to sym-
metry transformations, one needs to perform an analytic continuation in λ to the purely imag-
inary direction λ = −iη, η ∈ R. In free Fermion systems this is simple to do, as the above
formulae can be directly analytically continued. The resulting F(λ) possesses, in general, both
a real and an imaginary part. The real part describes the exponential decay of the two-point
correlation functions of twist fields, while the imaginary part describes oscillations. In the fol-
lowing, we will not discuss oscillations, as their full description would require a more in-depth
analysis; we will concentrate on the exponential decay, hence the real part of F(λ).

Correlation functions of twist fields are expected to be decaying at large spacetime dis-
tances. It is simple to show from (38) that indeed8, ℜF(−iη)≤ 0.

One important remark is that the only information required about the current ∆J(x , t)
whose SCGF is taken, is the one-particle eigenvalue h(θ ) of the corresponding total charge Q.
Thus, the BFT predicts that only a limited amount of information about the twist field is re-
quired in order to evaluate the exponential asymptotic of its two-point function. Note that this
is true also in the interacting case.

3 Entanglement and branch-point twist fields

In this section, we recall how entanglement entropies can be computed using a certain type of
twist fields, called branch-point twist fields, associated to permutation symmetries. We then
recall that, in free fermionic theories, these can be re-written in terms of U(1) twist fields. This
will be used in the next section in order to apply the BFT to the calculation of entanglement
entropies.

3.1 Replicas and branch-point twist fields

Within the replica method, in order to compute entanglement entropies (cf. Eqs. (1)-(2)) in
a given theory, one re-writes the quantity trραA in terms of an appropriate expectation value
in the replica model. This is the model composed of α independent, commuting copies of
the original model (α ∈ N). For a one-dimensional system in a state with density matrix ρ,
and with the subsystem A being a single interval, e.g., A = [x1, x2], it is a simple matter to
show [7, 23] that trραA is exactly identified with the two-point function of branch-point twist
fields,

trραA = 〈T
α(x1, 0)T̄α(x2, 0)〉ρ⊗α . (42)

The expectation value on the r.h.s. is computed in the density matrix ρ⊗α = ⊗αi=1ρi , where
ρi is the original density matrix, on copy i. Branch-point twist fields in the replica theory are
twist fields associated to the symmetry under replica cyclic permutations of order α (which
generate the group Zα). They take the product form (32), involving on-site copy-permutation
operators9 [23]:

Tα(x , 0) =
∏

y≥x

Py (43)

8This is because in (38) one has e−ε−iη(θ ;γ) = ru where r = e−w(θ ) > 0 and u is a pure phase, |u| = 1, and
|1+ r| ≥ |1+ ru| for any r > 0 and any pure phase u.

9Here we omit any regularisation issue that may arise in models on a continuous space, which, as mention, do
not affect exponential asymptotic behaviours.
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and T̄α(x , 0) =
�

Tα(x , 0)
�†

. Here, denoting by ai(x) observables lying on (that is, acting
nontrivially only on) copy i ∈ {1,2, . . . ,α} and position x , and identifying aα+1(x) ≡ a1(x),
the permutation unitary is defined by

Px ai(y)P
−1
x =

¨

ai+1(y) y = x

ai(y) y ̸= x .
(44)

This implies the equal-time exchange relations (see (31))

Tα(x , t)ai(y, t) =

¨

ai+1(y, t)Tα(x , t) y ≥ x

Tα(x , t)ai(y, t) y < x
(45)

and

T̄α(x , t)ai(y, t) =

¨

ai−1(y, t)T̄α(x , t) y ≥ x

T̄α(x , t)ai(y, t) y < x .
(46)

From Eq. (42), Rényi entanglement entropies can be simply obtained via Eqs. (1)-(2).
In the context of (1+1)-dimensional QFT, exchange relations of the form (45), (46) give

the most appropriate formulation for working definitions of the branch-point twist field. It is
in this context that they were first introduced [7], as a way of evaluating partition functions
on branched surfaces, taking inspiration from [6].

We note that the action of branch-point twist fields can be diagonalized by going to the
Fourier basis in the replica index (we choose anti-periodic boundary conditions in replica space,
see below),

ap(x , t) = Fi→p[ai(x , t)] :=
1
p
α

α
∑

i=1

eiπpi/αai(x , t) (47)

for p ∈ {0,1, . . . ,α− 1}. This gives

Tα(x , t)ap(y, t) =

¨

e−iπp/αap(y, t)Tα(x , t) y ≥ x

ap(y, t)Tα(x , t) y < x
(48)

and similarly for T̄α(x , t). In the next subsection we will use a similar construction, albeit in
a different basis of the replica model.

As will be explained in Sec. 4, for our purposes, the most general object we need to consider
is the two-point correlation functions

〈Tα(x1, t1)T̄
α(x2, t2)〉ρ⊗α (49)

at different spacetime points.

3.2 Enhanced symmetry in free fermions: from Zα to U(α)

Consider the special case of free fermions, see Sec. 2.5. In this case, because of the quadratic
nature of free fermion Hamiltonians, the Zα symmetry of the replicated theory turns out to be
embedded into the larger symmetry group U(α), which accounts for not only permutation of
replicas, but also rotations amongst them. Thus, the branch-point twist field is a twist field
associated to a particular symmetry transformation, part of a continuous symmetry group.
As explained in Sec. 2.4, using Noether’s theorem, this then allows one to write an explicit
extensive charge associated to the twist field [7].

The U(α) symmetry is most clearly expressed in a different basis of the replica theory than
that used above, obtained by “fermionising" the replica theory. By the basic construction of the
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replica theory, different replicas commute with each other. However, in order to extract the
symmetry U(α), one needs fermions in different copies to anti-commute. One simply defines
the replica theory by asserting that fermion fields anti-commute. This is of course natural,
but changes the action of the branch-point twist field (the exchange relations (45), (46)) by
introducing an extra minus sign, as worked out in [7]. From now on, we denote

ψi(x , t) =
1
p

2π

∫

dθ eiθ x−iE(θ )tψθ ,i (50)

the Dirac fermion on the i-the copy in this new basis; thusψi(x , t)ψ j(x ′, t ′) = −ψ j(x ′, t ′)ψi(x , t)
if i ̸= j, and the canonical anti-commutation relations hold, {ψi(x , t),ψ†

j (x
′, t)}= δi jδ(x−x ′).

We now recall the main arguments of [7] in order to obtain a useful form of the branch-
point twist field. In the new basis, the U(α) symmetry is explicitly a linear action on the
fermions, in its fundamental representation. Most importantly, in this basis, the cyclic per-
mutation ψi → ψi+1 is a particular element of U(α), which is in fact an element of a U(1)
subgroup. The Fourier transform (47) can be performed in this basis,

ψp(x , t) =
1
p
α

α
∑

i=1

eiπpi/αψi(x , t). (51)

This diagonalises that U(1) subgroup; the action of the twist field is then diagonalised. In
fact, it turns out that the anti-commuting basis is also the one that guarantees that the Fourier
transform operation keeps the S-matrix diagonal, see Appendix C. Thus both the charge asso-
ciated to the twist field, and the S-matrix, are diagonal in terms of the particles corresponding
to ψp – this is at the root of the simplification.

The fermion fields ψp(x , t) after Fourier transform are still independent free fermions
with canonical anti-commutation relations. Each Fourier sector admits an independent U(1)
symmetry, and, as shown in [7], the branch-point twist field can be written as a product of
U(1) twist fields acting nontrivially on each Fourier sector. Because of the extra minus sign in
the twist field action, it is simpler to concentrate on the case of α even (the full dependence
on α is obtained by analytic continuation), in which case the product goes over the following
values of momenta:

p ∈ Iα := {−α+ 1,−α+ 3, · · · ,α− 1} . (52)

Specifically, it is found that [7]

Tα =
∏

p∈Iα

ταp =
α/2
∏

q=−α/2+1

τα2q−1 (53)

with ταp being a U(1) twist field acting non-trivially only on ψp (as a phase),

ταp(x , t)ψq(y, t) =

¨

e−iπp/αψq(y, t)ταp(x , t) y ≥ x and p = q

ψq(y, t)ταp(x , t) y < x or p ̸= q
(54)

(cf. (48)).
The decomposition (53) allows us to factorise the branch-point twist field two-point func-

tions into products of U(1) twist field two-point functions. This however only holds if the
state can be likewise factorised. This is nontrivial: the state ρ⊗α is naturally factorised in copy
space, but not necessarily in the Fourier-copy space. It is a simple matter to verify that if ρ
satisfies Wick theorem, then ρ⊗α also factorises as a tensor product of states ρ in Fourier-copy
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space; this is because such states are completely determined by fermion two-point functions,
which stay diagonal in Fourier-copy space. Therefore, we have, in Wick-theorem states ρ,

〈Tα(0, 0)T̄α(x , t)〉ρ⊗α =
α/2
∏

q=−α/2+1

〈τα2q−1(0,0)τ̄α2q−1(x , t)〉ρ . (55)

Note how on the right-hand side, each factor is evaluated in the state ρ for the fermionψ2q−1.
In the following we are going to apply the BFT machinery to each correlation function of

the U(1) twist fields. The crucial fact that makes it simple is that, for any given p, ταp(x , t) is
the (bounded) twist field associated to the U(1)-charge

Qp =
πp
α

∫

d xψ†
p(x)ψp(x) =

πp
α

∫

dθ ψ†
θ ,pψθ ,p , (56)

with explicit expressions as exponential of half-space integrals of charge densities, as per
Eq. (28):

ταp(x , t) = exp
�

i

∫ ∞

x
d x ′ qp(x

′, t)
�

, qp(x , t) =
πp
α
ψ†

p(x , t)ψp(x , t) . (57)

Qp acts on the single-particle basis as

Qp|θ , q〉= hpδp,q|θ , q〉, with hp =
πp
α

(58)

(note that ψp(x) has Qp-charge −hp, in agreement with (54)). With Q = Qp, the twist field
ταp is identified with ταp = T−i in the notation of (34) (that is, with η= 1), acting on the sector
p. Recall that the action of the charge on the single-particle basis is all we need to know in
order to apply the BFT (cf. (38) and (40)).

4 Entanglement entropies from BFT

We arrived to a rewriting of the two-point function of the branch-point twist fields as product of
two-point functions of U(1) twist fields, Eq. (55). From there, using BFT, all such components
can be accessed via Eq. (30) specified to the twist fields ταp , which in the notation of Eq. (30)
is identified with T−i, with the r.h.s. evaluated via Eq. (38), thus exploiting the free fermionic
nature of the problem. Considering different choices of the points in spacetime where the
global fields Tα, T̄α are located, we are able to access Rényi entropies both at equilibrium and
after a quench, as we are now going to discuss.

4.1 Rényi entropies of a finite interval in a GGE (charge fluctuations in space)

We start by considering the α−Rényi entropy of a finite interval A= [0, x]within a generic GGE
ρw uniquely defined by the function w(θ ) (see Sec. 2.5). This means that we are interested in
the following two-point function

〈Tα(0,0)T̄α(x , 0)〉ρ⊗αw
. (59)

From the BFT perspective, this is obtained by focusing on the purely spatial direction, namely,
we consider an “horizontal path” by setting γ = π/2 in (38) (and we take h(θ ) = hp). Each
two-point function of U(1) twist fields in (55) reads

〈ταp(0,0)τ̄αp(x , 0)〉ρw
≍ exp
�

x Fp(−i)
	

, Fp(−i) =

∫

dθ
2π

log

�

1+ eihp−w(θ )

1+ e−w(θ )

�

. (60)
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Then we consider the product in Eq. (55), which turns into a sum in the exponent, i.e.,

〈Tα(0, 0)T̄α(x , 0)〉ρ⊗αw
≍ exp {x Fα(−i)} , with Fα(−i) =

α/2
∑

q=−α/2+1

F2q−1(−i) . (61)

We may further evaluate those sums, by considering separately the part which depends and
the part which does not depend on p (equivalently q, q′, Eq. (53)). The latter is trivial and
simply gives a contribution to Fα(−i) which is −

∫

dθ/(2π) of

2
α/2
∑

q=1

log
�

1+ e−w(θ )
�

= α log
�

1+ e−w(θ )
�

. (62)

For the remaining part, let us start by focusing on half of the sum, the terms from q = 1 to
α/2, in (61). By defining z = 2πi

α , s = w+ πi
α , we get

α/2
∑

q=1

log(1+ ezq−s) =
∞
∑

r=1

(−1)r+1

r
e−r(s−z)

�

1− erzα/2

1− erz

�

(63)

where we used the Taylor expansion log(1 + x) =
∑∞

r=1(−1)r+1 x r/r (which converges for
w > 0), and we performed the sum over q. Next, we want to perform the sum in r in the
r.h.s. of (63). To do that, we substitute the values of z and w first:

∞
∑

r=1

(−1)r+1

r
e−r(w−πi

α )

�

1− erπi

1− er 2πi
α

�

(64)

where now we should consider separately three cases:

1. r = αm for integer m: in this case r is even (as α is even), and we have

∞
∑

m=1

(−1)αm+1

αm
e−αmw+mπi
�

rπi
2πir/α

�

=
∞
∑

m=1

(−1)m+1

2m
e−αmw (65)

=
1
2

log
�

1+ e−αw
�

. (66)

2. r even but r ̸= αm for any integer m: in this case each term of the sum (64) is zero due
to the vanishing of the numerator, i.e., (1− erπi) = 0.

3. r odd: this gives
∑

r odd

2
r

e−rw

�

er πi
α

1− er 2πi
α

�

=
∑

r odd

i
r

e−rw

sin πr
α

. (67)

The sum of the terms for q = −α/2+1 to 0 in (61) give exactly the complex conjugate of this
result. Thus we get

α/2
∑

q=−α/2+1

log(1+ ezq−s) = log(1+ e−αw) . (68)

Putting everything together, Fα(−i) in (61) can be written as

Fα(−i) =

∫

dθ
2π

�

log
�

1+ e−αw(θ )
�

−α log
�

1+ e−w(θ )
��

. (69)
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Finally, it is a matter of simple algebra to show that, in terms of the occupation function n(θ )
(37), we get

Fα(−i) =

∫

dθ
2π

Hα(θ ) (70)

where we defined

Hα(θ ) =
1

1−α
log [n(θ )α + (1− n(θ ))α] . (71)

The α−Rényi entropy is finally given by

Sα(x) =
1

1−α
log〈Tα(x , 0)T̄α(0,0)〉ρ⊗αw

∼ x

∫

dθ
2π

Hα(θ ) , (72)

which coincides with the results obtained in [11, 13] (there in the more general context of
interacting integrable models).

4.2 Long-range correlations due to correlated particle pairs in homogeneous
global quenches

We now review the main concepts underlying quantum quenches, restricting to “integrable"
pair-producing initial states, and we explain how long-range correlations develop after such
quenches.

A quantum quench is an initial value problem for the many-body system where the initial
state is the ground state of a different Hamiltonian than that used for the time evolution.
Typically, one imagines a sudden change of parameter, for instance of the mass parameter. In
integrable models, certain quenches are known to be of “integrable" type [26–28]. In these
cases, the initial state can be written explicitly in terms of the scattering states (or Bethe ansatz
states) of the post-quench, evolution Hamiltonian, as a so-called “squeezed state":

|Ψ〉=
1
N

exp

�

1
2

∫

dθ Kθ ,−θψ
†
θ
ψ†
−θ

�

|0〉 (73)

for some (θ -dependent) factor Kθ ,−θ , with Nθ denoting a normalization constant, and |0〉
being the ground state of the post-quench Hamiltonian. The squeezed state is generically
a finite-density state, where the energy (of the post-quench Hamiltonian) is extensive with
the system size. See App. B.2 for a discussion of such integrable initial states in free fermion
models. We will use later the fact there is a Bogolioubov transformation of the fermionic mode
operators (a transformation between the post-quench and pre-quench fermions),

ψ(x , t)↔ ψ̃(x , t) (Bogolioubov) (74)

such that the squeezed state satisfies (is defined by)

ψ̃(x , t)|Ψ〉= 0. (75)

After a long time in a quench problem, the state locally approaches a GGE. In integrable
quenches, there is a well-known relation between the squeezed-state representation of the
initial state, and the long-time GGE (see e.g. [44]). The statement of convergence to a GGE
pertains only to local operators, or operators supported on finite intervals (that do not grow
with time):

〈Ψ|a(x , t)|Ψ〉 → 〈a(x)〉ρw
, t →∞ . (76)
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The limit in (76) is expected to be valid everywhere in space. The relation between initial
state and long-time GGE in free fermions can be worked out explicitly (see (150))

e−w(θ ) = |Kθ ,−θ |2 . (77)

Namely, we see that the map from squeezed states to GGEs is in fact one-to-one.
Because of this one-to-one correspondence, it is clear that it is sufficient to know the long-

time GGE in order to know the full behaviour of correlation functions in spacetime, as the
GGE fixes the initial state uniquely (naturally under the condition that it be a pair-producing
squeezed state). However, this relation can be relatively complex. Indeed, the statement of
generalised thermalisation – that a GGE is reached – is true, generically, only on finite regions
of space (see App. B.3). As is typically the case out of equilibrium, on large regions, say regions
that grow linearly with the time after the quench, the state might not correctly be described
by a GGE; and this may even be true for all times! Instead, the state may admit long-range
spatial correlations, for instance correlations that have a large weight on distances that grow
linearly with the time. These are not present in GGEs; recall that, as discussed above, GGEs
typically have correlations that decay quickly enough in space (see App. B.1). Thus, even at
long times, there may remain effects of the initial state that are not described by a GGE.

In the case of a squeezed state, such long-range correlations indeed exist, as we show in
App. B.3 (and also in App. B.5 for “single-mode densities and currents", introduced below in
Sec. 4.4). Their interpretation is that they are due to production of correlated pairs of opposite-
momentum particles by the quench protocol. These particle pairs carry correlations to large
distances as they separate. We evaluate explicitly these long-range correlations for conserved
densities and currents in App. B.3 (and App. B.5). For instance, we find, for the charge den-
sity q(x , t) =ψ†(x , t)ψ(x , t), that 〈Ψ|q(x , t)q(x ′, t)|Ψ〉 − 〈Ψ|q(x , t)|Ψ〉〈Ψ|q(x ′, t)|Ψ〉 exhibits
strong, ballistic-scale correlations, in accordance with the picture according to which particle
pairs are emitted at all velocities admitted by the dispersion relation.

In order to evaluate the Rényi entanglement entropy, as is clear from the calculation for
GGEs in Sec. 4.1, we must evaluate the large-deviation theory for fluctuations of charges on
large regions of space, and / or, as we will see below, fluctuations of current on large intervals
of time. The BFT allows us to do that. However, as mentioned, the BFT requires no long-range
correlations along the path ℓ in (12), as the flow equation (cf. (19)) assumes that the state
along the path is a GGE. Long-range correlations may break the assumption that scaled cumu-
lants are evaluated within a GGE – the effects of long-range correlations on the 2nd cumulants
is illustrated in App. B.3. Below, we take them into account by choosing appropriately the path
ℓ in order to avoid such correlations! Thus, the knowledge of where such correlations exist, and
the knowledge of the long-time GGE, is sufficient.

The fact that there exists a path ℓ that avoids long-range correlations explains why, in
pair-production states, the full behaviour of the Rényi entropies can be written in a simple
and universal way in terms of the long-time GGE. The same is not true when considering non-
integrable quenches, namely quenches from more complicated states where groups of more
than two correlated particles are emitted. Without the constraint of pair-production, the one-
to-one correspondence between the state and the GGE is lost, and long-range correlations
carry additional information not present in the GGE. Then, from our approach, we see that a
universal description in terms of the long-time GGE is lost because such an “avoiding path”
does not exist in general anymore.

4.3 Rényi entropies of half system after a quench (current fluctuations in time)

We now turn to the calculation of the α−Rényi entropy of a semi-infinite interval A= [0,∞)
after a global homogeneous quantum quench, at long times t →∞. This is obtained from the
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•  :  (for time-dependence) 

• Correlations and breaking of LDT : further info  

• BFT  (“vertical” path) :  

• Rényi entropy of semi-infinite system after a quench: 

        

A = [0, ∞] ⟨Tα(0,t)⟩ ≃ ⟨Tα(0,t)T̄α(0,0)⟩
Ψin⟩ = ∏

θ>0

1
Zθ

eWθψ†
θ ψ†−θ ∅⟩

⟨Tα(0,t)T̄α(0,0)⟩ ≍ exp {t Fα(1)}

Sα(t) = t∫ dθ
2π

|v(θ) |Hα(θ)

 : HALF SYSTEM AFTER A QUANTUM QUENCHSα(t)

t

x

Tα(0,t)

0

t

x

Tα(0,t)

0 T̄α(0,0)
−vθ vθ −vθ vθ

[Alba,Calabrese,2017]

Figure 1: Evolution of Rényi entropies of half system A = [0,∞] within BFT. Left:
Initial integration path. Because of initially entangled pairs, points along this path
at time t will be correlated, which prevents us from applying BFT directly. Right:
Deformed integration path. Along this new path one can show that point are not
correlated anymore. Moreover the only term contributing to the growth in time of
entanglement is the vertical path from (0, t) to (0,0).

branch-point twist field one-point function

〈Ψα|Tα(0, t)|Ψα〉 (78)

in the state |Ψα〉= |Ψ〉⊗α =
∏α

i=1 |Ψi〉, the α-copy replica of (73),

|Ψα〉=
α
∏

i=1

1
N

exp

�

1
2

∫

dθ Kθ ,−θψ
†
θ ,iψ

†
−θ ,i

�

|0, i〉 . (79)

As expressed in (76), one-point functions of local observables converge to averages within
GGEs. However, as we discussed, twist-fields are “semi-local" observables; from the point (0, t)
emanates a branch cut, which is sensitive to the state where it passes. The branch cut can be
taken on the horizontal half-line {(x , t) : x ∈ [0,∞)} going from (0, t) to (∞, t), as done
in the explicit construction of the field in Sec. 3. As explained in Sec. 4.2, and analysed in
App. B.3, along this half-line, there exist long-range correlations due to coherent particle pairs
emitted by the initial state. This prevents us from applying the BFT along this path (see Fig.1
(left)).

Using path independence of twist fields correlation functions, we can deform the path,
between its initial and final points, in a way to avoid such correlations. Specifically, we choose
the piece-wise linear path joining the points (0, t)→ (0,0)→ (∞, 0). This is shown in Fig. 1
(right). We note that as the final point is at spatial infinity, it can be displaced to time 0 – this
in fact implements the correct physics of the entanglement entropy due to the single boundary
at x = 0. Then, we may represent the one-point function as

〈Ψα|Tα(0, t)|Ψα〉 ≍ 〈Ψα|Tα(0, t)T̄α(0, 0)Tα(0+, 0)|Ψα〉 (80)

where the factors Tα(0, t)T̄α(0, 0) represent the segment of path (0, t)→ (0,0), and the factor
Tα(0+, 0), the segment (0, 0) → (∞, 0). This is valid as an asymptotic relation for large t,
where the UV singularity due to the proximity of the fields T̄α(0,0) and Tα(0+, 0) (which
occurs because of renormalisation effects) is neglected.

We simplify the expression (80) in two steps.
First, we note that the segment of path (0,0)→ (∞, 0) does not provide any contribution

to the result. This is because we may re-write the branch-point twist field Tα(0+, 0) as is
done in Sec. 3, but in the basis of the before-quench canonical free fermions of the replica theory,
ψ̃i(x , 0), Eq. (74). The exchange relations (45) (here at t = 0) hold for any field ai(x , 0),
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and in particular hold for ai(x , 0) = ψ̃i(x , 0). Therefore, by the same arguments, we obtain a
decomposition as in (53),

Tα =
∏

p∈Iα

τ̃αp (81)

but for different U(1) twist fields

τ̃αp(x , 0) = exp
�

i

∫ ∞

x
d x ′ q̃p(x

′, 0)
�

, q̃p(x , 0) =
πp
α
ψ̃†

p(x , 0)ψ̃p(x , 0) (82)

instead of (57). By (75), we have ψ̃i(x , 0)|Ψ j〉= 0 for all i, j, so it is clear that

q̃p(x , 0)|Ψα〉= 0 , (83)

therefore
τ̃αp(x , 0)|Ψα〉= |Ψα〉 . (84)

Hence
〈Ψα|Tα(0, t)|Ψα〉 ≍ 〈Ψα|Tα(0, t)T̄α(0,0)|Ψα〉 . (85)

Second, we note that along the path (0, t)→ (0, 0), generic observables do not have long-
range correlations coming from pair productions: correlations of generic observables approach
those within the final GGE fast enough, in such a way that corrections due to the quench give
only sublinear corrections to cumulants of time-integrated fermion bilinears (such as conserved
densities and currents). This is because particle pairs always create correlations between points
at separate spatial coordinates: it is not possible to create two co-propagating fermions, with
the same momentum (here they would be with vanishing momentum, as the total momentum
has to be zero). This fact is discussed in App. B.3; the discussion there is for a single copy, but
it extends immediately to the α-copy state |Ψα〉. Therefore, rewriting the branch-point twist
fields in terms of U(1) ταp with branches in the time direction, using (53), and expanding in
cumulants of U(1) currents, we see that on the segment (0, t)→ (0, 0), for the purpose of the
BFT, the state is correctly described by a GGE10.

An important consequence of these arguments is that we may evaluate the twist field one-
point function after a quench, as an equal-space, different-time two-point function within the GGE
representing the final state, Eq. (77):

〈Ψα|Tα(0, t)|Ψα〉 ≍ 〈Tα(0, t)T̄α(0, 0)〉ρ⊗αw
. (86)

This is valid at long times, and omits small-time effects that occur before generalised thermal-
isation (which do not affect the asymptotic regime we look at).

In order to apply BFT to the r.h.s. of (86) a last observation is needed. As the GGE is a
Wick-theorem state, we can use (55), thus we are interested in the separate two-point functions
of U(1) twist fields ταp with branches in the time direction. It turns out that, as emphasised
in Sec. 2.3, the currents jp(0, t ′), t ′ ∈ [0, t] in GGEs have time-correlations that decay fast
enough so as to give only linearly growing cumulants: this is what allows the application of
the BFT (see App. B.1 for a full discussion). We note that this is not true in general of other
observables: in GGEs, generic fermion bilinears have cumulants that grow faster than linearly
with time. But we are intersted in the currents only.

We are now in position to apply standard BFT. This amounts to repeating the same calcula-
tion as above in Sec. 4.1, but now in the purely temporal direction. We use the general formula

10We remark that for bosonic system, this argument would break, as pairs of particles with equal, zero momenta
are emitted with a finite density. However, it turns out that this correction due to the quench would not affect the
cumulants of time-integrated currents, as such pairs, being of zero momentum, do not carry any current.
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(38) for the “vertical” path connecting initial and final point by choosing γ = 0, and similarly
get (note that the path is in opposite direction as that of formula (38), and thus we must take
h(θ ) = −hp)

〈ταp(0, t)τ̄αp(0,0)〉ρw
≍ exp
�

t Fp(−i)
	

, Fp(−i) =

∫

dθ
2π
|v(θ )| log

�

1+ eihp sgn(θ )−w(θ )

1+ e−w(θ )

�

(87)

where we used sgn(v(θ )) = sgn(θ ). Again, after performing the product all two-points func-
tions of U(1) twist fields, we get

〈Tα(0, t)T̄α(0, 0)〉ρ⊗αw
≍ exp {t Fα(−i)} , Fα(−i) =

∫

dθ
2π
|v(θ )| log

�

1+ e−αw(θ )
�

1+ e−w(θ )
�α

�

. (88)

Using Hα(θ ) as defined in (71), the α−Rényi entropy reads

Sα(t) =
1

1−α
log〈Tα(0, t)T̄α(0, 0)〉ρ⊗αw

∼ t

∫

dθ
2π
|v(θ )|Hα(θ ) . (89)

This is the result obtained both from exact calculation in [15] and within the quasi-particle
picture in [19,20].

4.4 Single-mode and pair-mode twist fields

We have discussed in Sec. 2.5 the conserved quantities Qθ =ψ
†
θ
ψθ , forming a “scattering" or

continuous basis for the extensive conserved quantities of the free fermion model. In Sec. 3.2,
we discussed the replica model with α copies, and the U(1) charges Qp, which are just the
integration Qp = hp

∫

dθ Qθ ,p (with hp =
πp
α ) over all momenta θ of the continuous basis

Qθ ,p = ψ
†
θ ,pψθ ,p in the Fourier-copy p. There, we have also discussed the twist fields ταp

associated to these charges, which turned out to be useful in the computation of the Rényi
entanglement entropies in Subsections 4.1 and 4.3. A natural extension of these constructions
is to the twist fields associated to each conserved quantity Qθ ,p. As we will see, these are
indeed useful in evaluating the behaviour of Rényi entanglement entropies for intervals that
grow linearly with time.

In order to simplify the notation, we consider a single copy of the fermion, and the scat-
tering basis Qθ ; the discussion immediately adapts to the Fourier-copy p.

In the study of the ballistic behaviours of many-body systems, and in particular in the
BFT, it is essential that the conserved charge Q considered be extensive – scale linearly with
the volume (typically one requires 〈Q2〉c ∝ L [37, 45]). The charges Qθ are not extensive.
However, as they form a continuous basis, integrals on small θ -intervals are extensive; thus it
is better to define, for ε > 0 as small as desired,

Qθ =

∫ θ+ε/2

θ−ε/2
dθ ′ψ†

θ ′
ψθ ′ . (90)

These act as
Qθ |θ ′〉= Θ(ε/2− |θ ′ − θ |) |θ ′〉 (91)

hence have one-particle eigenvalues

hθ (θ
′) = Θ(ε/2− |θ ′ − θ |). (92)
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We show in App. B.4 that such Qθ are indeed extensive in GGEs, and we evaluate explicitly
their associated densities and currents qθ (x , t) and jθ (x , t),

Qθ =

∫

d x qθ (x , t), ∂tqθ (x , t) + ∂x jθ (x , t) = 0 . (93)

From this, one can immediately construct the associated twist field

τθ (x , t) = exp
�

i

∫ ∞

x
d x ′ qθ (x

′, t)
�

(94)

and, for its correlation functions, apply the corresponding BFT based on the one-particle eigen-
value (92).

In fact, we are interested in studying the squeezed state (73). It is clear that this state
factorises into momentum intervals as follows:

|Ψ〉=
∏

θ∈(N+ 1
2 )ε

|Ψ|θ |〉 (95)

where

|Ψ|θ |〉=
1

N|θ |
exp

�

∫ θ+ε/2

θ−ε/2
dθ ′Kθ ,−θψ

†
θ
ψ†
−θ

�

|0|θ |〉 (96)

and we write the ground state in a naturally factorised way as |0〉=
∏

θ∈(N+ 1
2 )ε
|0|θ |〉. Likewise,

we will consider the pair-mode charges Q|θ | =Qθ +Q−θ and the associated densities

q|θ |(x , t) = qθ (x , t) + q−θ (x , t) . (97)

Both act trivially (as zero) on |Ψ|θ ′|〉 if θ ′ ̸= θ (θ ,θ ′ ∈ (N + 1
2)ε). From these, we get the

pair-mode twist fields

τ|θ |(x , t) = exp
�

i

∫ ∞

x
d x ′ q|θ |(x

′, t)
�

, (98)

which acts trivially (as the identity) on |Ψ|θ ′|〉 if θ ′ ̸= θ .
These are still U(1) twist fields, for the sub-U(1) symmetry acting on the tensor factor of

modes within [θ − ε/2,θ + ε/2]. Note in particular that the global U(1) twist field τ(x , t)
associated to the total charge Q =

∫

dθ ψ†
θ
ψθ =
∫

d xψ†(x)ψ(x) can be factorised as

τ(x , t) =
∏

θ∈(N+ 1
2 )ε

τ|θ |(x , t) (99)

and that, by factorisation of its action on the state, we have

〈Ψ|τ(x , t)τ(x ′, t ′) |Ψ〉=
∏

θ∈(N+ 1
2 )ε

〈Ψ|θ ||τ|θ |(x , t)τ|θ |(x
′, t ′) |Ψ|θ |〉 . (100)

Clearly, as the pair-mode twist fields act trivially on other tensor factors in the state, we may
also write, more simply,

〈Ψ|τ(x , t)τ(x ′, t ′) |Ψ〉=
∏

θ∈(N+ 1
2 )ε

〈Ψ|τ|θ |(x , t)τ|θ |(x
′, t ′) |Ψ〉 . (101)
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4.5 Rényi entropies of an interval after a quench (fluctuations of single-mode
densities and currents)

We finally extend the result for the entanglement growth after a quench to a finite, but ballis-
tically growing interval A= [0, x], with x = ξt. To this aim, we should consider the following
two-point correlation function in a squeezed state Eq. (73) (or Eq. (79) in the replicated the-
ory):

〈Ψα|Tα(0, t)T̄α(x , t)|Ψα〉, x = ξt, t →∞. (102)

The idea is the same as that used in Sec. 4.3, that we need to deform the integration path in
such a way that, everywhere along the path, all points remain uncorrelated (on large scales),
thus enabling us to apply BFT. The choice of the path will now depend on the values of ξ, and
in fact, we will need re-write the two-point function as a product of two-point functions of
pair-mode twists fields, and to choose different paths for each such two-point function.

It will simplify the discussion to already re-write the two-point function in terms of U(1)
twist field. As the squeezed state is a Wick-theorem state, we can directly use (55):

〈Ψα|Tα(0, t)T̄α(x , t)|Ψα〉=
α/2
∏

q=−α/2+1

〈Ψ2q−1|τα2q−1(0, t)τ̄α2q−1(x , t)|Ψ2q−1〉 (103)

where |Ψp〉 is the squeezed state |Ψ〉 for the fermions ψp(x),ψ†
p(x) on Fourier-copy space p.

We start by considering the two asymptotic regimes:

• At short times (more precisely in the limit ξ→∞ of the scaled, long-time asymptotic
behaviour), entangled particle pairs coming out from the initial state will correlate points
within the original integration path. To apply BFT, then, we deform the straight path
(0, t)→ (x , t) to the piece-wise straight path (0, t)→ (0, 0)→ (x , 0)→ (x , t), made of
three segments (see Fig. 2 (left)). By the same arguments as in Sec. 4.3, the space-like
segment will not contribute to the entanglement growth, and the time-like segments will
give separated, identical contributions given by the long-time GGE. We are thus left with
the contribution of the two, separate time-like segments. The fact that the segments do
not correlate with each other is thanks to the assumption that the GGE satisfies n(θ )→ 0
as |θ | →∞ (that is, the density of pairs produced at large momenta tends to zero), as
is discussed in App. B.3.

• At long enough times (either the limit ξ → 0 of the scaled, long-time asymptotic be-
haviour, or the long-time limit followed by the long-distance scaling), the particles gen-
erated from the initial state do not correlate points within the path (0, t)→ (x , t): cu-
mulants scaled by the distance x do not receive contributions from such particle pairs.
Corrections terms to the GGE values of cumulants can only come from pairs of particles
at infinitesimally small momenta, and, it turns out, such corrections become zero when
the total number of correlated pairs on the interval [0, x] tend to zero. As there is at most
a finite density of pairs produced per unit momenta, there remain no pairs on infinitesi-
mally small momentum intervals11. Thus the asymptotic behaviour is that obtained from
the long-time GGE. This is discussed in App. B.3. Particle pairs of finite momenta would,
of course, correlate points between the path segments (0, t)→ (0,0) and (x , 0)→ (x , t)
(also discussed in App. B.3), thus we must avoid the piece-wise straight path. Therefore
the correct way to use BFT is by using the original path (see Fig. 2 (right).

11In fact, as we are looking at fermionic models, the density tends to zero at zero momenta, but this is not
required in this argument.
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Figure 2: Evolution of Rényi entropies of finite subsystem A= [0, x] within BFT. The
integration path that we need to chose (continuous dark-gray line) in order for BFT to
apply is different at short (left) and long (right) times. The choice depends on which
points in spacetime get correlated because of initially entangled pairs produced by
the initial state.

So we arrive to the following asymptotic results for x , t →∞:

〈Ψα|Tα(0, t)T̄α(x , t|Ψα〉 ≍

¨

〈Tα(0, t)T̄α(0,0)〉ρw
〈Tα(x , 0)T̄α(x , t)〉ρw

t ≪ x

〈Tα(0, t)T̄α(x , t)〉ρw
t ≫ x

=

¨
�

�〈Tα(0, t)T̄α(0,0)〉ρw

�

�

2
t ≪ x

〈Tα(0, t)T̄α(x , t)〉ρw
t ≫ x

(104)

where we used 〈Tα(0, t)T̄α(0, 0)〉∗ρw
= 〈Tα(0,0)T̄α(0, t)〉ρw

= 〈Tα(x , 0)T̄α(x , t)〉ρw
(by the

fact that T (x , t)† = T̄ (x , t)). This leads to

Sα(x , t) =
1

1−α
log〈Tα(0, t)T̄α(x , t)〉 ∼



















2t

∫

dθ
2π
|v(θ )|Hα(θ ) t ≪ x

x

∫

dθ
2π

Hα(θ ) t ≫ x .

(105)

Namely, at short times (but much larger than microscopic times), the growth is described by
the path in the purely temporal direction (89), and at long times, the system goes, uniformly
as a function of the velocity x/t → 0, to the equilibrium GGE and there the result is the one
of the purely spatial path (72).

These are, however, only asymptotic results in ξ, within the scaled regime x , t∝ ℓ. It turns
out that we can access all values of ξ = x/t within this regime, by using similar arguments,
but now for the single-mode twist fields introduced in Sec. 4.4 (in fact, we need the pair-mode
twist fields). Effectively, using these, we will be able to take into account that the meaning of
“short” and “long” time depend directly on the speed of the travelling particles v(θ ) = E′(θ ).

We start with the decomposition of global U(1) twist fields into pair-mode twist fields (99),
which we write in the replica model for each Fourier-copy p, and with single-particle charge
eigenvalue hp =

πp
α instead of 1 in (99) (as done in (57))

ταp(x , t) =
∏

θ∈(N+ 1
2 )ε

τα|θ |,p(x , t) (106)

where

τα|θ |,p(x , t) = exp
�

i

∫ ∞

x
d x ′ q|θ |,p(x

′, t)
�

(107)
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and q|θ |,p(x , t) has the form (173) times hp. Thus, by factorisation of two-point functions
(101), we re-write (103) as

〈Ψα|Tα(0, t)T̄α(x , t)|Ψα〉=
∏

θ∈(N+ 1
2 )ε

α/2
∏

q=−α/2+1

〈Ψ2q−1|τα|θ |,2q−1(0, t)τ̄α|θ |,2q−1(x , t)|Ψ2q−1〉 .

(108)
Having made this re-writing, the analysis now follows that of the ξ→∞ and ξ→ 0 limits

made above: there is an exact parallel for each individual two-point function

〈Ψp|τα|θ |,p(0, 0)τ̄α|θ |,p(x , t)|Ψp〉 (p = 2q− 1),

with the only difference that it is not necessary to take the asymptotic limit in ξ. For each θ
(and each p), the factor |Ψ|θ |,p〉 of the full state |Ψp〉, on which τα|θ |,q act non-trivially, correlates
points (x , t), (x ′, t ′) only for

|x − x ′|
|t + t ′|

∈ [v(θ − ε/2), v(θ + ε/2)]

(recall that θ ∈ (N+ 1
2)ε). The analysis of single-mode correlations is made in App. B.4.

Therefore, for ξ > 2v(θ + ε/2) correlations occur on the horizontal path (0, t) → (x , t),
but no correlations occur on (0, t)→ (0,0)→ (x , 0)→ (x , t) (note that, again, the segment
of path (0,0) → (x , 0) does not contribute). Thus we must choose the latter path (Fig. 2
(left)). On the contrary, ξ < 2v(θ − ε/2), correlation occur between the segment of paths
(0, t) → (0,0) and (x , 0) → (x , t), but not on the horizontal path (0, t) → (x , t). Thus we
must choose the latter (Fig. 2 (right)). In making these right choices, the correlation functions
of pair-mode twist fields tend to their values in the long-time GGE,

〈Ψp|τα|θ |,p(0,0)τ̄α|θ |,p(x , t)|Ψp〉 (109)

≍

¨

〈τα|θ |,p(0, t)τ̄α|θ |,p(0, 0)τα|θ |,p(x , 0)τ̄α|θ |,p(x , t)〉ρw
ξ > 2v(θ + ε/2)

〈τα|θ |,p(0,0)τ̄α|θ |,p(x , 0)〉ρw
ξ < 2v(θ − ε/2) .

Note how in the first line, it is a four-point function that appears.
Now again, in order to apply the BFT, we need to consider the correlations between twist

fields within GGE. We already argued in Sec. 4.3 (with supporting calculations in App. B.3)
that no strong correlation occurs between local operators at equal times and different points
in space, thus on the second line of (109) we may apply the BFT. We also argued that no
strong correlation occurs between current operators at equal space and different times, and
in fact this also holds for single mode currents. However, in order to simplify the first line of
(109), we need to address correlations between currents on the path segments (0, t)→ (0, 0)
and (x , 0)→ (x , t). In general, local observables have strong correlations at different space-
time points, due to hydrodynamic modes propagating in space-time. As we do not make any
strong assumption about the dispersion relation, all hydrodynamic velocities occur, hence cor-
relations occur between generic local observables on these separate path segments. How-
ever, single-mode currents only produce hydrodynamic modes at the corresponding velocities;
supporting calculations are found in App. B.5. Thus, as long as ξ > v(θ + ε/2), no cor-
relation occurs between these paths for the single mode currents j±θ ,p. As v(θ ) > 0, then
ξ > 2v(θ + ε/2)⇒ ξ > v(θ + ε/2), hence on the first line simplifies and we have

〈Ψp|τα|θ |,p(0,0)τ̄α|θ |,p(x , t)|Ψp〉 ≍







�

�

�〈τα|θ |,p(0, t)τ̄α|θ |,p(0,0)〉ρw

�

�

�

2
ξ > 2v(θ + ε/2)

〈τα|θ |,p(0,0)τ̄α|θ |,p(x , 0)〉ρw
ξ < 2v(θ − ε/2)

(110)
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where the BFT can be applied for all two-point functions.
For the two-point functions with spatial separation 〈τα|θ ′|,p(0,0)τ̄α|θ ′|,p(x , 0)〉ρw

, we can use
the analysis of (60) made in Sec. 4.1, where we only have to replace, on the right-hand side of
(60) inside the θ -integral, the constant one-particle eigenvalue hp by the piece-wise constant
function

hp

�

Θ(ε/2− |θ − θ ′|) +Θ(ε/2− |θ + θ ′|)
�

.

Thus the same analysis goes through, but with the integral restricted to

θ ∈ Iθ ′,ε := [θ ′ − ε/2,θ ′ + ε/2]∪ [−θ ′ − ε/2,−θ ′ + ε/2].

Likewise for the two-point functions with temporal separation 〈τα|θ ′|,p(0, t)τ̄α|θ ′|,p(0,0)〉ρw
, with

the analysis of Sec. 4.3. Putting the results together, we obtain

1
1−α

log
�

α/2
∏

q=−α/2+1

〈Ψ2q−1|τα|θ |,2q−1(0, t)τ̄α|θ |,2q−1(x , t)|Ψ2q−1〉
�

∼
∫

Iθ ,ε

dθ ′

2π
min(x , 2t|v(θ ′)|)Hα(θ

′)

(111)

which is valid for x/t < 2v(θ − ε/2) or x/t > 2v(θ + ε/2).
For the case of x/t within this excluded region, we do not have explicit results, but the

scaled cumulants still are finite (as one can see by doing a calculation similar to App. B.3, for
instance). Thus, the result may be deemed valid as well within this excluded region, up to an
error of order ε.

Taking the product over θ ’s as per (108),

1
1−α

log〈Ψα|Tα(0, t)T̄α(x , t)|Ψα〉 ≍
∫

dθ
2π

min(x , 2t|v(θ )|)Hα(θ ) +O(ε) (112)

and as this holds for all ε > 0, we can take the limit ε→ 0 and we obtain

Sα(x , t) =
1

1−α
log〈Tα(0, t)T̄α(x , t)〉 ∼

∫

dθ
2π

min(x , 2t|v(θ )|)Hα(θ ) . (113)

This is in full agreement with the quasiparticle picture [19,20].
Finally, we note that the relation (3) between this formula for Rényi entanglement entropy

growth, and the static and dynamic fluctuations, is directly obtained from the above discussion,
by identifying

JN<(t) =

∫ t

0

d t ′
∑

θ∈(N+ 1
2 )ε

2v(θ )<x/t

j|θ |(0, t ′) (114)

and

N>(x) =

∫ x

0

d x ′
∑

θ∈(N+ 1
2 )ε

2v(θ )>x/t

q|θ |(x
′, 0) (115)

using the explicit expressions of pair-mode densities and currents (176) in App. B.4, and taking
the limit ε→ 0.
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5 Discussion and conclusion

In this paper we have studied the Rényi entanglement entropy in GGEs and after quenches from
integrable (pair-production) states in free fermion theories. Although this has been relatively
well studied in the literature, most results were based on specific ways of writing the Rényi
entanglement entropy using the free fermion structure (e.g. in terms of determinants), and
on the idea of entanglement due to engangled pairs produced by the quench [19,20]. A first-
principle derivation that generalises beyond free fermions was still largely missing, while it is
known that the simple quasi-particle picture fails for α-Rényi entanglement entropies (with
α ̸= 1) in interacting models [22].

We have proposed a new approach based on twist-field correlation functions and hydro-
dynamic fluctuations. This uses the hydrodynamic theory for free fermions, which is a special
case of generalised hydrodynamics (GHD), and the ballistic fluctuation theory (BFT), which re-
lates the exponential decay of twist-field correlation functions to hydrodynamic large-deviation
theory. Crucially, in order to have a full understanding of the quench dynamics, we have intro-
duced a new concept: that of single-mode twist fields. These are twist fields associated to the
quasi-local charge counting the number of fermions within a small interval of momentum; or
more generally twist fields “acting" on the quasi-locality sector of observables supported on a
small momentum interval. The approach is potentially more general and more fundamental,
as hydrodynamics, the BFT and single-mode twist fields – twist fields associated to individual
hydrodynamic modes – are applicable much beyond free fermions. Perhaps most interest-
ingly, it reveals the new physics of thermodynamic and hydrodynamic fluctuations behind the
behaviour of the Rényi entanglement entropies.

Three important concepts are brought forward:

• Entanglement is deeply connected to fluctuations, and the large-scale behaviour of en-
tanglement, both static and dynamic, is controlled by large-deviation and hydrodynamic
principles.

• Hydrodynamic modes and projections onto such modes are more accurate and general
notions which replace the idea of particle-pair productions used to understand entan-
glement dynamics in integrable systems.

• The fact that the entanglement growth in quenches from “integrable” states can be writ-
ten as a simple and universal function of the generalised Gibbs ensemble (GGE) reached
at long times comes from the particularly simple structure of the long-range correlations
that such states present.

To elaborate on these concepts: first we have confirmed that the Rényi entanglement en-
tropy in GGEs is controlled by thermodynamic fluctuations, and related to (a simple analytic
continuation of) a difference of thermodynamic free energies. This is in agreement with the
observations, made earlier [29–31], that the large-deviation theory for charge fluctuations
is closely related to the entanglement entropy. Here, this relation appears naturally from
completely general concepts: branch-point twist fields and the BFT. Using these, in fact, the
conclusion is pushed further: we show that the growth of Rényi entanglement entropy after
a quench is controlled by hydrodynamic current fluctuations, and related to a dynamical free
energy associated to the large-deviation theory for charge transport, as fully encoded in Eq. (3)
in the introduction (we mention that some qualitative arguments in this direction were already
present in [46]). The relation between Rényi entanglement entropy and charge fluctuations
is a general aspect of quadratic theories (not only free fermions, as our approach could also
be generalized to free bosons), as in such theories, the branch-point twist field can be written
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as a product of U(1) twist fields, which are then associated, by the BFT, to the large-deviation
theory of U(1) charge fluctuations.

Second, the methods we have developed show that the notion of quasi-particle used in
integrable systems to explain the behaviour of entanglement, should in fact be replaced by that
of hydrodynamic mode. Indeed, the BFT, which describes the exponential behaviour of twist
field correlation functions, is purely based on the Euler hydrodynamic data of the microscopic
model. In free fermion models, and in integrable models, it turns out that hydrodynamic
modes are in one-to-one correspondence with quasi-particles (see e.g. the review [47]); and
in particular, the single-mode twist fields we have introduced, are twist fields associated with
such hydrodynamic modes. But beyond these situations, hydrodynamic modes are the more
general objects at play in the large-scale dynamics of many-body systems.

Third, our calculations explain why it is possible to specify the growth and saturation of
entanglement after quenches from pair-production states in a simple way in terms of the long-
time GGE. This is not based on the conventional physical picture of entanglement produced by
entangled pairs of particles. But rather, it is based on the study of long-range correlations that
such pairs give rise to after quenches. It has not been appreciated until now that quenches give
rise to long-range spatial correlations , of the type found recently in non-equilibrium, long-
wavelength states [35,38]. These long-range correlations are generically seen by observables
supported on regions of space that are large enough; specifically, with a ballistic scaling of the
region’s length x with respect to the time t since the quench. Thus, for such observables, the
state is not a GGE. This is important, as twist fields are semi-local with respect to the fermions,
thus the semi-locality branch is affected by such correlations.

The fact that the long-time GGE can be used to describe not only the saturation of the
Rényi entanglement entropies but also their growth in a simple way, is because of the particu-
lar structure of long-range correlations in integrable pair-production quenches. Indeed, in such
quenches, for every choice of x/t, one can always choose a path in space-time which avoids
all long-range correlations. This follows from a simple geometric analysis of trajectories in
space-time. Intuitively, long-range correlations occur between positions in space-time where
pairs of correlated particles lie, a picture that we fully support by simple calculations of cor-
relation functions of conserved densities and currents and their asymptotic behaviours. Once
the path avoids long-range correlation, it only perceives the long-time GGE.

Note that it is obvious that the entanglement growth can be described purely in terms
of the final GGE (with no further information from the initial state needed), because of the
one-to-one correspondence between initial squeezed state (pair-production state) and GGEs,
see Eq. (77) (so no more information about the initial state is present at all). The structure
of long-range correlations however allow a simple description, in terms of fluctuations within
the long-time GGE. In general, the one-to-one correspondence is lost in quenches from more
complicated states, and the universality of the entanglement growth is also lost [32,33].

Importantly, we find that the branch-point twist field can be decomposed into tensor fac-
tors – the single-mode twist fields – that act on each small momentum interval. Each small
momentum interval is associated with a family of quasi-local operators, with respect to which
branch-point twist fields can be defined12. Each such twist field is only semi-local with respect
to the fermions pertaining to the single momentum interval, and, pairing intervals of opposite
momenta, allowed us to separate the two-point function of branch-point twist field (used to
evaluate the Rényi entanglement entropy) into a product of contributions on different mo-
mentum intervals. For each factor, the semi-locality branch can be chosen in order to avoid
long-range correlations corresponding to the pair it perceives. We provided extensive calcula-

12In our calculation, we used the explicit free-fermion basis to first write the branch-point twist fields in terms
of U(1) twist fields by the standard arguments of [7], which we then factorised into single-mode twist fields. But
the concept remains valid without the mapping to U(1) twist fields.
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tions of correlation functions of single-mode densities and currents that support this physical
picture.

From these considerations we fully reproduced the long space-time dynamics of the Rényi
entanglement entropy that had been obtained by pair-entanglement argument.

Many extensions of our work are possible. Most importantly, we believe the derivation we
have provided, and many of the conclusions, can be extended to interacting integrable models,
and potentially to interacting non-integrable models.

In interacting integrable models, it would be interesting to reproduce, and provide a better
understanding of, the recent result [22]. This was obtained using crossing symmetry of rela-
tivistic quantum field theory, in order to relate Rényi entanglement entropy growth in time to
the linear scaling of Rényi entanglement entropy in space, much like one can evaluate currents
by crossing from conserved densities [43]. However, as we have argued, the more general un-
derstanding of time-extensive behaviours is via hydrodynamic modes. Thus, it is likely that
hydrodynamic ideas will provide a more first-principle derivation.

Technically, in interacting models, it is not possible to factorise the branch-point twist fields,
in such a simple way as in [7], into U(1) twist fields, a trick that we have used here. We
believe this difficulty can be surmounted as follows. First, it is still possible to diagonalise the
twist field action, at the price of making the resulting S-matrix non-diagonal, see App. C. The
branch-point twist field is then associated with a symmetry that has diagonal action on the
new asymptotic particles, and hydrodynamic modes can be constructed from these particles
(by constructing the corresponding nested thermodynamic Bethe ansatz). Having twist fields
associated to charges that are diagonal in the particle basis, the results of the BFT for generic
intergable models can in principle be applied.

It is also immediate that single-mode twist fields exist as well in interacting integrable
models, which would be interesting to study, independently form their applications to entan-
glement.

Another avenue is to use the ballistic macroscopic fluctuation (BMFT) theory developed
recently [35]. This is a more general construction which does not involve a flow on GGEs
(by constrast to the BFT). This would allow us to apply the principles introduced here – the
relation between hydrodynamic fluctuations and entanglement entropy using twist fields –
beyond homogeneous quantum quenches, and beyond the simple particle-pair quenches, as
the BMFT is applicable to inhomogeneous situations and for generic long-rance correlation
structures. In particular, it would be interesting to account for the long-range correlations not
by choosing paths that avoid them, but by evaluating directly their influence on the fluctua-
tions. This would be important, as initial states that are inhomogeneous generically produce
long-range correlations [35, 38] that are not necessarily of particle-pair type. This could also
access quenches where multiple-particle processes are involved [32,33].

Beyond integrability, perhaps the main results are those based on a notion of “surface
tension" underlying entanglement entropy in chaotic systems [48]. It would be interesting to
apply our methods, based on hydrodynamics, to such situations.

A natural further extension is to introduce the effects of diffusion, in particular using the
exact results in integrable models [49], and potentially the effects of dispersion [50].

Finally, there is no reason to restrict ourselves to entanglement entropy, or to quantum
systems. The methods we have introduced here are immediately applicable, for instance, to
the large-deviation theory of U(1) densities and currents after quenches in interacting models,
both at and away from integrability, and both for quantum and classical systems. This would
be a very interesting direction to investigate.
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A Remarks on notions of locality and twist fields

There is a lot more that one can say about the twist fields we introduced in Sec. 2.4, as well
as the notions of locality we briefly discussed. Here we collect a number of remarks in order
to provide a brief and rough guide to this wide subject.

A.1 Unbounded observables and topological charges

As is made clear from the height field definition of twist fields, a twist field may exist as soon
as there is an observable, say ϕ(x , t), that is “unbounded": that takes values in a non-compact
space which are not bounded by the dynamics. When this happens, the field can grow from a
value it has at x , t to another well separated value at x ′, t ′. If this growth is linear, then from
this we can construct a twist field as done in Sec. 2.4, with a large-deviation theory described
by the BFT. This usually happens when there is a non-compact symmetry13, such as the Z sym-
metry group of the sine-Gordon model if the sine-Gordon field is taken inR, or theR symmetry
group of the real free massless Boson. In such cases, ϕ(∞)−ϕ(−∞) is a “topological charge",
it is an extensive conserved quantity with density q(x , t) = ∂xϕ(x , t). The vertex operators
e−iηϕ(x ,t) are the associated twist fields, and the extensive charge ϕ(∞)−ϕ(−∞) should be
considered as part of the space of extensive charges Q i used to construct GGEs. It will appear
after appropriate quenches via (generalised) thermalisation.

A.2 Descendant twist fields and semilocality sectors

The exchange relations (31) are a good way of characterising twist fields. However, they
characterise not a single field, but a family of fields. Indeed, clearly, the identification (34) is
not the unique choice satisfying (31). For instance,

T (x , t) = a(x , t)T−iη(x , t)

will also work, for any local observable a(x , t). The choice (34) may be seen as a “highest-
weight" twist field, and the above are usually referred to as “descendant twist fields" (these
notions make full sense, for instance, in quantum or conformal field theory, using the concept
of dimension). All such descendants are in the same “semilocality sector" T defined by the
exchange relation (31). One application of the BFT to descendant twist fields is explained
in [41] in the context of the XX quantum chain.

A.3 Non-abelian semilocality

Given two “local enough" symmetry transformations σ and σ′, that is a(x , t) 7→ σa(x , t) and
a(x , t) 7→ σ′a(x , t), we can define two semilocality sectors Tσ and Tσ′ . In general, if the

13This is essentially a “gauge symmetry": non-compactness is the main aspect of gauge invariance that makes is
different from oridnary symmetries.
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transformations do not commute, one has that if T ′ ∈ Tσ′ , then σT ′ ∈ Tσ◦σ′◦σ−1 . Further, if
T ∈ Tσ and T ′ ∈ Tσ′ , then the exchange relation takes the form

T ′(x , t)T (y, t) =

�

T (y, t) (σ−1T ′)(x , t) (y ≪ x)
(σ′T )(y, t) T ′(x , t) (y ≫ x). (116)

A.4 Twist fields in the literature

It is difficult to give a full account of the literature on twist fields. As a guidance we men-
tion that twist fields and their semilocality have been discussed extensively in various con-
texts, including: phase transitions in classical and quantum statistical models [51–53] (see
the review [54]); vertex operators, Yangians, parafermions and orbifolds in conformal and
integrable quantum field theory [55–59]; tau-functions and Painlevé equations [60–67]; and
entanglement entropy in quantum field theory and in quantum spin chains [7, 23, 68, 69].
Twist fields have also been considered in higher dimensions [70]. In most works, the focus is
on ultra-local “internal" symmetries, that strictly factorise in space, usually part of a symmetry
group such as Zn, U(1), SU(n), permutations, etc. Note that for ultra-local symmetries, large
inequalities≪,≫ can be replaced by ordinary inequalities<, > in (31) for finite distances be-
tween the supports of the observables involved. This is the usual way of writing the exchange
relations. More recently, twist fields associated to spacetime boost transformations in QFT,
that are not ultra-local, have been considered [71]; this is an example where the hamiltonian
density is not preserved by the transformation, h̃(x , t) ̸= h(x , t).

A.5 Concepts of locality in the literature

The concept of “locality" has been discussed widely in the literature, under a variety of defini-
tions. In relativistic QFT, local fields are those that commute at space-like distances with the
energy-momentum tensor. It is important to remark that under this general definition, local
fields include twist fields associated to internal symmetries. This definition can in fact be used
in any quantum model, be it a field theory, spin chain or model of interacting particles. In
fact, one defines “locality sectors" containing families of local fields that commute with each
other at space-like distances; and a distinguished locality sector is that containing the energy
density. These considerations are at the basis of orbifold conformal field theory [55].

In spin chains, the most naïve concept is that of operators supported on finitely many
sites. In the C∗ algebra formulation, this is completed with respect to the operator norm [36];
importantly, the property of operators commuting in the limit of large separations is preserved
by this completion. Part of these C∗ algebra elements are the “quasi-local operators" that have
been introduced in order to describe generalised thermalisation in integrable models [45].
These are elements of the C∗ algebra for which one can still define a finite support, but only
up to corrections of exponentially decaying norm.

But much like in QFT, twist fields, which are semilocal with respect to generic observables
but may be local with respect to some family of observables including the energy density, can
also be adjoined to the C∗ algebra, as is natural to do for instance in the context of Jordan-
Wigner transformations [72]. Then, either from the C∗ algebra, or from some potentially
smaller algebra of observables deemed local (for instance with appropriate decay of correla-
tion functions, and which, again, may include twist fields), other completions are possible, and
sometimes more physically relevant. For instance, the Gelfand-Naimark-Segal Hilbert space
with respect to a given state, and its space of bounded operators, both are usually larger than
the C∗ algebra. Another Hilbert space completion is that based on susceptibilities [37]. This
gives the concept of “extensive" quantities, a generalisation of quantities written as sums over
space of local operators (or “local densities"). These form a Hilbert space, a priori without
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any algebraic structure. In particular, it has been shown [37] that extensive conserved quanti-
ties are in bijection with “pseudolocal charges", roughly defined by their extensivity property
〈Q2〉c ∝ L in a system of length L [45]. Extensive conserved charges form a complete set
which has been rigorously shown to fully describe the linearised Euler hydrodynamics [40],
and they may be used to more formally and precisely construct GGEs (addressing convergence
issues) [37].

Despite all these studies, the full relation between extensive conserved quantities, twist
fields, local symmetry transformations and GGEs is still not fully unexplored.

B Correlations after a quench from an initial state with pair struc-
ture

In this appendix we provide supporting argument for the choice of the integration path for
evaluating the SCGF made in the main text. We recall that the choice of path is dictated by
two main ideas:

• The production of pairs of quasi-particles by the initial state by the after-quench dynam-
ics gives rise to long-range correlations: points reached by a pair of quasi-particles with
opposite momenta are correlated. These quasi-particles have the interpretation of fluid
modes, and such long-range hydrodynamic correlations are akin to those seen in the
Ballistic Macroscopic Fluctuation Theory (BMFT) [35,38].

• BFT [24] is applicable only when multi-point correlation functions of the densities and
currents, the integrand in (12), cluster fast enough along the chosen contour. Otherwise,
depending on the structure of such correlations, the SCGF and the cumulants may be
divergent under ballistic scaling, or the BFT result may receive additional contributions
from these correlations which have to be taken into account. The more general BMFT
[35] in principle provides the corrections. However, it is simpler to directly apply the
BFT by choosing contours that avoid such correlations, leading to the paths shown in
Fig. 2.

Below, we explicitly show the presence/absence of such long-range correlations along the
different paths considered in the main text.

We use the notations a(x , t) and b(x , t) for free fermionic fields with the usual normalisa-
tion, e.g.

{b†(x), b(y)}= δ(x − y), {b†
θ
, bα}= δ(θ −α), b(x , t) =

∫

dθ
p

2π
eixθ bθ (t) (117)

where bθ (t) = e−iE(θ )t bθ . The global U(1) charge is

Q =

∫

dθ b†
θ

bθ . (118)

Note that in the main text a variety of canonical free fermion fields were defined: the orig-
inal fields ψ(x , t), the replicated ones parametrised by a copy index ψi(x , t), and the fields
obtained from these by diagonalising in copy space, ψp(x , t). These all are canonical free
fermion fields (independent from each other for different copy number i, or for different di-
agonalised copy number p). The calculations below therefore apply to any such choice of
fields.

As we discuss quenches, in this appendix we use two consecutive letters for the canonical
free fermion fields: a(x , t) (for the pre-quench fermion) and b(x , t) (for the post-quench
fermion).
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B.1 Global U(1) densities and currents and decay of correlations in GGEs

First, recall the definition of the generalised current as a line integral (12)

∆J(γ) =

∫

ℓ

( j(x , t)d t − q(x , t)d x) (119)

where j(x , t) and q(x , t) are the current and the density associated the U(1) conserved charge
Q in (118). We recall also that the above integral only depends upon the end points of the
path ℓ due to the conservation law relating current and density, ∂tq(x , t) + ∂x j(x , t) = 0. In
free models with global U(1) symmetry the fermionic Hamiltonian is of the form

H =

∫

dθ E(θ )b†
θ

bθ (120)

where E(θ ) is the dispersion relation (recall that E(θ ) = E(−θ ) is a strictly convex function).
The local charge density is given by

q(x , t) = b†(x , t)b(x , t) (121)

and it can be easily verified by using the fermionic algebra that Q =
∫

d x q(x , t) is conserved,
[Q, H] = 0. Let us find the associated local current.

By the conservation law we have (we suppress the time dependence as all fields are the
same time t)

∂x j(x) = −∂tq(x) = i [qx , H] = i

∫

dθ E(θ )
�

b†(x)b(x), b†
θ

bθ
�

= i

∫

dθ
dk
p

2π

dk′
p

2π
E(θ )e−ix(k−k′)
�

b†
k bk′ , b†

θ
bθ
�

= i

∫

dθ
dk
2π

E(θ )
�

e−ix(k−θ )b†
k bθ − e−ix(θ−k)b†

θ
bk

�

= i

∫

dθ
dk
2π

eix(k−θ ) (E(k)− E(θ )) b†
θ

bk. (122)

Integrating with respect to x we find

j(x , t) =
1

2π

∫

dθdk eix(k−θ )
�

E(k)− E(θ )
k− θ

�

b†
θ
(t)bk(t) (123)

where the x-independent integration constant is chosen in such a way that the result is a local
observable14. This is the known expression for the current in the case of a quadratic dispersion
relation in the continuum. Actually, restricting the integration over momenta in [−π,π] and
taking E(k) = cos(k) one reproduces also the current on the lattice; but here we keep θ , k ∈ R
for simplicity.

We now show that in a GGE, the connected correlation functions of densities decay fast
enough in space, and the correlation functions of currents decay fast enough in time, in such
a way that scaled cumulants are finite, thus making the BFT applicable. The former in fact is
valid for all local observables, while the latter only hold for the currents.

14This in fact fixes the result up to an overall term proportional to the identity operator 1; indeed there are no
x-independent homogeneous local operators, whose space-time translations are generated by the momentum and
Hamiltonian, other than 1.
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For simplicity, here and in the following subsections, we will concentrate solely on two-
point correlation functions – although all higher-point functions (and their respective cumu-
lants) should in principle be investigated similarly.

Let 〈·〉 be a GGE. Let us assume that the occupation function n(θ ) characterising the GGE
is analytic in a neighbourhod of R. Using

〈b†
θ

bθ ′〉= δ(θ − θ ′)n(θ ) (124)

we have, on the one hand,

〈b†(x)b(0)〉=
∫

dθ
2π

e−ixθn(θ ) . (125)

For x > 0 (resp. x < 0), contour deformation can be performed as θ 7→ θ−iγ (resp. θ 7→ θ+iγ)
for γ > 0 small enough, and we see that the resulting integral decays exponentially as |x | →∞.
This implies exponential decay of all two-point connected correlation functions of local ob-
servables formed out of sums of products of b(x), b†(x) and their derivatives, including U(1)
densities. It also implies linear scaling of cumulants; for instance this would mean

∫ X

0

d x

∫ X

0

d x ′ 〈b†(x)b(x ′)〉

=

∫ X

0

d x

∫ X

0

d x ′
∫

dθ
2π

e−i(x−x ′)θn(θ )

∼
∫ X

0

d x

∫ X

0

d x ′e−γ|x−x ′| ∼ X (126)

where in the last line we have shifted θ 7→ θ − i sign(x − x ′)γ and used sign(x)x = |x |. This
is the correct ballistic growth of the cumulant.

On the other hand, we find

〈b†(0, t)b(0,0)〉=
∫

dθ
2π

eitE(θ )n(θ ). (127)

This has a stationary phase at θ∗ such that E′(θ∗) = 0; this point is unique by our assumption
of strict convexity (and θ∗ = 0 by symmetry, although we don’t make use of this fact in this
calculation), so a saddle point analysis gives

〈b†(0, t)b(0,0)〉 ∼
p

i eitE(θ∗) n(θ∗)p
2πt

. (128)

Therefore, correlation functions of generic local observables o(x , t), o′(x , t) formed out of
bilinears of creation and annihilation operators have algebraic decay

〈o(0, t)o′(0,0)〉c = O
�1

t

�

(t →∞). (129)

For such decay, cumulants of total time integrals do not grow linearly,

〈
∫ T

0

d t o(0, t)

∫ T

0

d t ′ o′(0, t ′)〉
c

≫ T (T →∞) (130)

thus breaking the large-deviation principle at the basis of the BFT. However, an important
remark is that this generic behaviour of fermion bilinears does not hold in the case of currents,
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o(x , t) = o′(x , t) = j(x , t). Indeed, using (123) with x = 0, we see that we must set θ = k = θ∗
for the long-time limit of the current two-point function. From

E(k)− E(θ )
k− θ

= E′(k) +O(k− θ ) (131)

we realise that E(k)−E(θ )
k−θ

�

�

k=θ=θ∗
= 0. Therefore, the current two-point function decays faster

than 1/t; in fact it decays as

〈 j(0, t) j(0, 0)〉c = O
� 1

t3

�

(t →∞). (132)

This guarantees the correct scaling of cumulants

〈
∫ T

0

d t j(0, t)

∫ T

0

d t ′ j(0, t ′)〉c = O(T ) (T →∞) (133)

and thus the validity of the BFT.
A similar argument shows that the current perpendicular to the path ℓ – the integrand in

(119) – has a similar property along the path, thus guaranteeing that the clustering require-
ment (21) holds.

B.2 Quench protocol and initial state

In order to describe the quench protocol considered in the main text (for which we obtain
predictions on the dynamics of the entanglement entropy) we define the pre-quench and the
post-quench fermionic Hamiltonians respectively as

H0 =

∫

dθ E0(θ )a
†
θ

aθ (134)

H =

∫

dθ E(θ )b†
θ

bθ (135)

where again the fermions satisfy {aθ , a†
θ ′
} = δ(θ − θ ′), {bθ , b†

θ ′
} = δ(θ − θ ′). According to

the protocol, the system is initialized in the ground state of H0 and then let evolve with H.
This corresponds to changing the whole dispersion relation (not only a parameter as in typical
quenches in the literature), see e.g. [44,73].

The two set of fermions are related by a Bogolioubov-type transformation in the following
way

�

aθ
a†
−θ

�

=

�

fθ gθ
g∗−θ f ∗−θ

��

bθ
b†
−θ

�

. (136)

Imposing the validity of anticommutation relations one gets the following constraints on the
functions fθ , gθ

fθ g−θ + f−θ gθ = 0 (137a)

| fθ |2 + |gθ |2 = 1. (137b)

Note that the first of these is identically satisfied choosing fθ = f−θ and gθ = −g−θ or vicev-
ersa. In our analysis we will keep these functions general.

The initial state |Ψ〉 is defined as
aθ |Ψ〉= 0 (138)
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which, for instance, could be a filled Fermi sea so that operators aθ are to be interpreted as
creating excitations on top of these. It can be easily shown that in terms of post-quenches
quantities this is described by the following squeezed state

|Ψ〉=
1
N

exp

�

1
2

∫

dθ Kθ ,−θ b†
θ

b†
−θ

�

|0〉 (139)

where |0〉 is the ground state of the post-quench Hamiltonian satisfying bθ |0〉 = 0 (this
state has the nice property of being gaussian so that Wick’s theorem applies). The function
Kθ ,θ ′ = −Kθ ′,θ can be related directly to the functions fθ and gθ appearing in (136) using the
fact that |Ψ〉 is annihilated by aθ . In terms of post-quench operators, this condition reads

( fθ bθ + gθ b†
θ
)exp

�

1
2

∫

dθ ′Kθ ′,−θ ′ b
†
θ ′

b†
−θ ′

�

|0〉= 0. (140)

Using the BCH formula eABe−A = e[A,◦]B we obtain

exp

�

−
1
2

∫

dθ ′Kθ ′,−θ ′ b
†
θ ′

b†
−θ ′

�

bθ exp

�

1
2

∫

dθ ′Kθ ′,−θ ′ b
†
θ ′

b†
−θ ′

�

= bθ +
1
2
Kθ ,−θ b†

−θ −
1
2
K−θ ,θ b†

−θ

= bθ +Kθ ,−θ b†
−θ (141)

which used in (140) in combination with bθ |0〉= 0 gives

[ fθ (bθ +Kθ ,−θ b†
−θ ) + gθ b†

−θ ] |0〉= 0 (142)

so that the condition is
Kθ ,−θ = −

gθ
fθ

. (143)

Note in particular that we must have, by the anti-symmetry Kθ ,−θ = −K−θ ,θ ,

g0 = 0. (144)

Finally, we may evaluate the predicted long-time GGE for the quench simply by evaluating
the post-quench conserved quantities in the pre-quench vacuum state |Ψ〉. Inverting (136),
we write

bθ =
f ∗−θ aθ − gθ a†

−θ

fθ f ∗−θ − gθ g∗−θ
. (145)

For this computation, it will be convenient to look at the values of the extensive conserved
quantities; hence we take a finite system of length L. This is warranted, as the quench
is homogeneous. The above description of the quench stays valid with the discretisation
θ ∈ Z2π/L, and with the usual canonical anti-commutation relations with regularisation
δ(θ − θ ′)→ δθ ,θ ′

L
2π . We consider b†

θ
bθ , and obtain, after some algebra using Eqs. (137),

b†
θ

bθ = a†
θ

aθ | f−θ |2 + a−θ a†
−θ |gθ |

2 . (146)

Using 〈Ψ|a†
θ

aθ |Ψ〉= 0 and 〈Ψ|a−θ a†
−θ |Ψ〉=

L
2π , we get

〈Ψ|b†
θ

bθ |Ψ〉=
L

2π
|gθ |2. (147)
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But also, in a GGE with density matrix ρw, see Sec. 2.5, we have 〈b†
θ

bθ 〉 =
L

2πn(θ ), thus we
identify

n(θ ) = |gθ |2. (148)

Again using Eqs. (137), we obtain

1
| fθ |2

=
1
|gθ |2

|g−θ |2

1− |g−θ |2
(149)

and therefore, from (37) and (148),

|Kθ ,−θ |2 = |K−θ ,θ |2 =
|g−θ |2

| f−θ |2
=
|gθ |2

1− |gθ |2
= e−w(θ ). (150)

Note that in our analysis of GGEs, we assume that n(θ ), thus |g(θ )|2, has an analytic
extension to a neighbourhood of R. This analyticity property is not true of the function w(θ ),
which must have a singularity (e.g. logarithmic) at θ = 0 because of Eq. (144). We also assume
that n(θ )→ 0 as |θ | → 0, and thus this must also be true for g(θ ).

Below we report for completeness all the relevant elementary correlation functions of
fermionic operators after the quench, and their symmetries. Those will be used in the fol-
lowing subsections, where evaluating current and density correlations, which are bilinears in
the fermions (so application of Wick theorem requires only the knowledge of those). In real
space we define

Gb† b
x y (t, s) = 〈Ψ| b†(x , t)b(y, s) |Ψ〉

Gb† b†

x y (t, s) = 〈Ψ| b†(x , t)b†(y, s) |Ψ〉 . (151)

and similarly for their hermitian conjugates. Going to momentum space, these take the form

Gb† b
θθ ′ (t, s) = 〈Ψ| b†

θ
(t)bθ ′(s) |Ψ〉= eiE(θ )(t−s)|gθ |2δ(θ − θ ′) (152)

Gb† b†

θθ ′ (t, s) = 〈Ψ| b†
θ
(t)b†

θ ′
(s) |Ψ〉= −eiE(θ )(t+s) fθ g∗θδ(θ + θ

′) (153)

Gbb
θθ ′(t, s) = 〈Ψ| bθ (t)bθ ′(s) |Ψ〉= −e−iE(θ )(t+s)gθ f ∗θ δ(θ + θ

′) (154)

Gbb†

θθ ′ (t, s) = 〈Ψ| bθ (t)b
†
θ ′
(s) |Ψ〉= e−iE(θ )(t−s)| fθ |2δ(θ − θ ′) (155)

where in particular |g(θ )|2 = n(θ ) = 1− | f (θ )|2. Note the following symmetries

Gb† b
θθ ′ (t, s) = δ(θ − θ ′)eiE(θ )(t−s) − Gbb†

θ ′θ (s, t) (156)

(Gb† b
x y (t, s))∗ = Gb† b

y x (s, t) (157)

Gb† b
x y (t, s) =

∫

dθ
2π

e−iθ (x−y)+iE(θ )(t−s) − Gbb†

y x (s, t) (158)

so that at equal times

Gb† b
x y (t, t) = δx y − Gbb†

y x (t, t) = δx y − (Gbb†

x y (t, t))∗ (159)

and also
(Gb† b†

θθ ′ (t, s))∗ = Gbb
θ ′θ (s, t), (Gb† b†

x y (t, s))∗ = Gbb
y x(s, t). (160)
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B.3 Approach to the GGE

In the previous Sec. we have evaluated the GGE ρw corresponding to the initial state |Ψ〉 simply
by evaluating the averages of the mode occupation. Here we analyse a bit more in detail how
the GGE is approached in time.

We first note that

〈Ψ| b†
θ

bθ ′ |Ψ〉= 〈b
†
θ

bθ ′〉ρw
= δ(θ − θ ′)n(θ ). (161)

Thus, by Wick’s theorem, the only difference between averages in |Ψ〉 and in 〈·〉ρw
come from

the contraction
〈Ψ| bθ bθ ′ |Ψ〉 (162)

and its complex conjugate. Thus we evaluate 〈Ψ| b(x , t)b(x ′, t ′) |Ψ〉 in three main situations
that are important for our analysis: t = t ′, x ̸= x ′ (for the cumulants of space-integrated
conserved densities), and x = x ′, t ̸= t ′ (for the cumulants of time-integrated currents) and
x ̸= x ′, t ̸= t ′ (for analysing the correlation between the spatially separated time-integrated
currents).

In the first case, we have, using (145),(137), and the definition in (151)

Gbb
x x ′(t, t) = −
∫

dθ
2π

ei(x−x ′)θ−2itE(θ ) f ∗−θ g−θ . (163)

Consider t →∞ with x , x ′ fixed. Then there is a stationary phase at θ∗ : E′(θ∗) = 0, with
a resulting integral ∝ 1p

t
. Thus, this decays as t → ∞: for every two-point functions on

intervals that stay finite, the GGE is approached. We notice that as g−θ∗ = 0 (Eq. (144)), for
fermion two-point functions, the approach is proportional to 1/t3/2 instead of 1/

p
t; and for

multilinears of fermions, the approach is faster.
But we are interested in the scaling x , x ′, t ∝ ℓ → ∞, (x − x ′)/t = ξ, for which the

exponential has a stationary phase at θ∗ = θ∗(ξ) : E′(θ∗) = ξ/2, with a resulting integral
∝ 1/
p
ℓ. In charge-neutral fermion bilinears, such as those involved in densities and currents,

two such contractions will be multiplied with each other. Thus we have, for instance,

〈Ψ|q(x , t)q(x ′, t) |Ψ〉c = 〈q(x , t)q(x ′, t)〉cρw
+ C(ξ) (tℓ)−1 +O(ℓ−2), (164)

thus the correction is O(1/ℓ). Then, for the cumulant we have

〈Ψ|
∫ ℓX

0

d x q(x ,ℓt)

∫ ℓX

0

d x ′ q(x ′,ℓt) |Ψ〉c = ℓ2 〈Ψ|
∫ X

0

d x q(ℓx ,ℓt)

∫ X

0

d x ′ q(ℓx ′,ℓt) |Ψ〉c

∼ 〈
∫ ℓX

0

d x q(x ,ℓt)

∫ ℓX

0

d x ′ q(x ′,ℓt)〉cρw
+O(ℓ)

where the correction O(ℓ) is ℓ
∫ X/t
−X/t dξ (X − 2ξt)C(ξ). Therefore, the correction due to the

quench changes the linearly scaling part of the cumulant, hence modifies the scaled cumulant
from its GGE value (recall that the scaled cumulant is obtained by dividing by ℓX , and taking
the large ℓ limit). Here it would be possible to evaluate explicitly this modification, however
it is not necessary for our calculation. The modification due to the quench comes from pair
productions – this will be made much clearer when we study the single-mode densities and
currents below.

In fact, there is one limit where it is useful to evaluate this correction term: the limit
X/t → 0 of ℓX -scaled spatially-integrated densities as above. The result for the correction is
explicitly

lim
X/t→0

t
X

∫ X/t

−X/t
dξ
�X

t
− 2ξ
�

C(ξ) = 0 (165)

39



SciPost Physics Submission

as C(ξ) is bounded. Thus, in this limit we recover the GGE result. This is in agrement with
taking first the long-time limit of the finite-interval cumulant, then the limit of the scaled
cumulant on a long interval (this means that the limit X/t → 0 is in fact uniform in t).

In the second case, where we can set x = x ′ = 0, we find, with E′(θ∗) = 0 and a saddle
point analysis (again remeber the definitions in (151)),

Gbb
00 (t, t ′) = −
∫

dθ
2π

ei(t+t ′)E(θ ) f ∗−θ g−θ ∼

p
i ei(t+t ′)E(θ∗) f ∗−θ∗ g−θ∗
p

2π(t + t ′)
. (166)

As E(θ ) is symmetric, this is θ∗ = 0, and then, by Eq. (144), the result vanishes. Therefore,

Gbb
00 (t, t ′) = O
� 1
(t + t ′)3/2
�

. (167)

Hence, the corrections to cumulants of charge-neutral bilinears involve

∫ T

1

d t

∫ T

1

d t ′
1

(t + t ′)2
= O
�

1
T3

�

≪ T (T →∞) (168)

(where the lower boundary does not matter for the large-T analysis). This correction is sub-
linear, therefore the quench does not affect cumulants of equal-position time-integrated quan-
tities: for these, the GGE is reached quickly enough. The lack of modification due to the
quench comes from the lack of pairs of particles produced at equal (zero) momenta, due to
the fermionic statistics.

We remark that if there were particles created at zero momenta (for instance, for bosonic
systems), then, still by a calculation similar to that of Eqs. (131)-(133), the correction due to
the quench would vanish for cumulants of total currents, which are in any case the objects of
interest. Therefore, the fact that pairs of particles of zero momenta are not produced, is not
an essential aspects of our calculation.

Finally, we may also analyse time-integrated currents at two different points in a similar
way as above, finding:

〈Ψ|
∫ ℓT

0

d t j(ℓx , t)

∫ ℓT

0

d t ′ j(ℓx ′, t ′) |Ψ〉c ∼ 〈
∫ ℓT

0

d t j(ℓx , t)

∫ ℓT

0

d t ′ j(ℓx ′, t ′)〉cρw
+O(ℓ) .

This case is necessary for the discussion in Sec. 4.5. With ξ= (x− x ′)/(t+ t ′), the saddle point
leading to the O(ℓ) correction is at θ∗ : E′(θ∗) = ξ. Thus, the correction due to the quench
again changes the linearly scaling part of the two-point cumulant. Here, the limit ξ→∞ is
interesting, and easy to evaluate: as ξ→∞, the saddle point will be at θ∗→∞, and we only
have to use the fact that gθ → 0 as |θ | →∞. Therefore, the correction vanishes as ξ→∞,
and we may use the GGE result, where scaled cumulants of time-integrated currents become
sums of cumulants at x and at x ′ in the GGE (which take the same values by translation
invariance).

B.4 Single-mode density and currents and decay of correlations in GGEs

In the main text, when studying the dynamics of the entanglement of an interval after a quench
(Sec. 4.5), we are interested in the single-mode twist fields. This requires constructing densi-
ties and currents not only for the global U(1) charge as done above, but also for the individual
conserved quantities b†

θ
bθ . These conserved quantities are not extensive – they are not inte-

grals of local or quasi-local observables – however, as reviewed in [47] in the more general
context of integrable models, they form a scattering basis for such extensive quantities. Thus,
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integrations over small θ -intervals give extensive conserved quantities. These are the single-
mode conserved quantities that we now investigate.

As we are working directly in the thermodynamic limit and, in the continuum of space, the
momenta fill the real axis [−∞,∞]. Let us write this as a union of disjoint intervals centered
at equispaced "target" momenta: ∪∞i=−∞Aθi

where Aθ = [θ−ε/2,θ+ε/2) and θi = (i+1/2)ε.
We can write the total charge as

Q =

∫

d x b†(x)b(x) =

∫

dθ b†
θ

bθ =
∞
∑

i=−∞
Qθi

, Qθ =

∫

Aθ

dθ ′b†
θ ′

bθ ′ . (169)

Clearly each “regularised" (by ε) single-mode charge Qθ is conserved, [Qθ , H] = 0. It is also
extensive: in a GGE in a finite volume L, we have 〈Q2

θ
〉c∝ L:

〈Q2
θ 〉

c =

∫ θ+ε/2

θ−ε/2
dθ ′dθ ′′δ(θ ′ − θ ′′)2n(θ ′)(1− n(θ ′)) =

L
2π

∫ θ+ε/2

θ−ε/2
dθ ′n(θ ′)(1− n(θ ′)) .

(170)
As mentioned, if we want to write a density in real space for each b†

θ
bθ , we will get some-

thing non local. However, Qθ ’s have quasi-local densities. We seek a function fθ (x , y) such
that

∫

d xd y b†(x)b(y) fθ (x − y) =Qθ . (171)

Going to Fourier space, one can show that (see (117))

fθ (z) =
sin(εz2 )

πz
eiθz . (172)

The corresponding regularised single-mode density, parametrised by the momentum, and one
choice of the density (the only hermitian and PT symmetric one), is given by

qθ (x , t) =

∫

dz b†(x + z/2, t)b(x − z/2, t) fθ (z). (173)

In terms of Fourier modes, this takes the form

qθ (x , t) =

∫

dkdk′

2π
eix(k′−k)ϑ

�

ε

2
−
�

�

�

k+ k′

2
− θ
�

�

�

�

b†
k(t)bk′(t). (174)

As [Qθ , H] = 0, the density qθ (x , t) has an associated current satisfying a continuity equation
and by a calculation analogous to (123) one finds

jθ (x , t) =

∫

dkdk′

2π
eix(k′−k)
�

E(k′)− E(k)
k′ − k

�

ϑ

�

ε

2
−
�

�

�

k+ k′

2
− θ
�

�

�

�

b†
k(t)bk′(t) (175)

where ϑ(x) is the Heaviside theta function. This is basically the same as (123) with a restriction
on the q integration around the target mode θ .

For convenience, in fact we will consider the momentum-pair densities and currents

q|θ |(x , t) = qθ (x , t) + q−θ (x , t), j|θ |(x , t) = jθ (x , t) + j−θ (x , t) (176)

associated to a pair of opposite momenta; these are the ones used in the twist field decompo-
sition (101).

We now analyse the behavior of two-point functions on GGEs following the same lines of
B.1. This is because, again, the original BFT was defined for expectation values on GGEs and,
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eventually, we would like to replace with those the expectations on the initial state before the
quench. Later, we will study more carefully the approach to the GGE. In a GGE (characterized
by Boltzmann factor w(k)), the only surviving elementary correlator is

〈b†
k(t)bk′(s)〉= eiE(k)(t−s)δ(k− k′)n(k) (177)

with n(k) = (1+ ew(k))−1.
We now consider the connected correlation functions of densities and currents along the

paths of interest and study under which condition they decay fast enough in such GGE. The
two paths of interest are the horizontal path (0, t) → (x , t), and the piecewise linear path
(0, t) → (0,0) → (x , 0) → (x , t) (cf. Fig. 2 in the main text). For the first case, we need to
evaluate density-density correlations at equal time and different spatial points. In the second
case, instead, we need to evaluate current-current correlations both between the two different
vertical segments and within the segments themselves (using the same arguments of Sec. 4.3,
one can show that the contribution of the horizontal segment vanishes, so we do not need
to look at density-currents correlations as well). The calculation is slightly different than in
the case of B.1 because we have to deal with pair-mode densities and currents. The global
quantities are determined directly by the correlators 〈b†(x , t)b(y, s)〉, while here we have to
analyse directly the density-density or current-current correlations.

Let us start by considering the connected density-density correlation function on the hori-
zontal path. We focus on single-mode quantities, the pair-mode ones being just linear combi-
nation of those, i.e.,

〈q|θ |(x , t)q|θ |(0, t)〉c = 〈qθ (x , t)qθ (0, t)〉c + 〈qθ (x , t)q−θ (0, t)〉c

+ 〈q−θ (x , t)qθ (0, t)〉c + 〈q−θ (x , t)q−θ (0, t)〉c (178)

Below, in the current subsection, all expectations 〈·〉 are on the GGE. Let η= ±1, we have

〈qθ (x , t)qηθ (x
′, t)〉c

=

∫

dkdk′

2π
dqdq′

2π
eix(k′−k)ϑ

�

ε

2
−
�

�

�

k+ k′

2
− θ
�

�

�

�

× eix ′(q′−q)ϑ

�

ε

2
−
�

�

�

�

q+ q′

2
−ηθ
�

�

�

�

�

〈b†
k(t)bk′(t)b

†
q(t)bq′(t)〉

c

=

∫

dkdk′

2π
dqdq′

2π
eix(k′−k)ϑ

�

ε

2
−
�

�

�

k+ k′

2
− θ
�

�

�

�

× eix ′(q′−q)ϑ

�

ε

2
−
�

�

�

q+ q′

2
−ηθ
�

�

�

�

〈b†
k(t)bq′(t)〉 〈bk′(t)b

†
q(t)〉

=

∫

dkdk′

2π
ei(x−x ′)(k′−k)ϑ

�

ε

2
−
�

�

�

k+ k′

2
− θ
�

�

�

�

ϑ

�

ε

2
−
�

�

�

k+ k′

2
−ηθ
�

�

�

�

(1− n(k′))n(k) .

(179)

Note that all four correlators needed can be deduced from the this upon exploiting θ 7→ −θ
transformation. Apart from the overall step function which constrains one of the integrals,
with the assumptiong on n(k) that we have (it is analytic on a neighbourhood of the real line,
and decays rapidly enough as |k| →∞), we can change variables to k± = k′ ± k and perform
the k− integral in the complex plane by letting k− 7→ k− − iγ sign(x − x ′) (and γ > 0) and
we see that the decay is exponential making cumulants scale as in (126). Therefore, BFT is
applicable.

For the current-current correlator, we look at two generic points in space and time. How-
ever, by making use of time-translational invariance of the GGE, we can set one time to zero.
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Analogous manipulations give (we focus on x > 0)

〈 jθ (x , t) jηθ (0,0)〉c =
∫

dkdk′

2π
eix(k′−k)+it(E(k)−E(k′))ϑ

�

ε

2
−
�

�

�

k+ k′

2
−ηθ
�

�

�

�

× ϑ
�

ε

2
−
�

�

�

k+ k′

2
− θ
�

�

�

��

E(k′)− E(k)
k′ − k

�2

(1− n(k′))n(k) (180)

and we see that that in the ballistic scaling limit, with ζ = x/t fixed, the exponential has a
saddle point at ∂kE(k∗) = ∂k′E(k′∗) = ζ so that for ζ ̸= 0,+∞ (recall eq. (131) and the one
below)

〈 jθ (x , t) jηθ (0, s)〉c ∼
e−i(t−s)E(k∗(ζ))

2π(t − s)
(∂kE(k∗(ζ)))

2ϑ
�ε

2
−
�

�

�k∗(ζ)− θ
�

�

�

�

ϑ
�ε

2
−
�

�

�k∗(ζ)−ηθ
�

�

�

�

× (1− n(k∗(ζ)))n(k∗(ζ)) . (181)

Let us take the case η = 1 : the two step functions square to one and the condition for
it to vanish is k∗(ζ) ≥ ε/2 + θ or k∗(ζ) ≤ −ε/2 + θ . Using ζ = ∂kE(k∗(ζ)) = v(k∗(ζ)) and
the monotonicity of the velocity, we can invert the above relation, leading to a vanishing step
functions whenever

ζ≥ v(θ + ε/2) = v(θ ) +O(ε) or ζ≤ v(θ − ε/2) = v(θ )−O(ε) (182)

For η= −1 we obtain the same condition because we are considering ζ≥ 0. This means that,
under the condition (182), the leading term of correlation (181) (coming from the saddle
point) vanishes.

Correlations between the two vertical segments, on the contrary, arise only in a tiny cone
(of order ε) around the velocity v(θ ). When those are present, the second cumulant resulting
from (181) grows as O(T log T ) at large time T (to be contrasted with (133)).

Note that if we consider the special case t = s ( ζ= +∞), then (181) has no saddle point
and therefore its decay is exponentially fast.

In the above calculation we assumed x ̸= 0 (ζ ̸= 0), which corresponds at looking at
correlations between the two different aforementioned vertical paths (see again Fig. 2, main
text). In order to study the decay of current-current correlations along any of such vertical
paths, instead, we need to set equal space (and different times). Again, using translational
invariance we just set x = 0 in (180). In this case we can repeat the argument in (131) and
below to show

〈 j|θ |(0, t) j|θ |(0, 0)〉c = O
� 1

t3

�

(t →∞) (183)

with the corresponding cumulant scaling linearly in time.
Finally, we recall again that the horizontal segment of the path (0, t)→ (0,0)→ (x , 0)→ (x , t)

does not contribute to the cumulants. This observation, together with (183), and when the
condition (182) is satisfied, allows to conclude that within a GGE: (i) the SCGF associated
to the two-point function of the pair-mode twist fields can be correctly evaluated along this
path (i.e., BFT is applicable); (ii) the total SCGF factorises into those associated to the two
vertical cuts, namely it is the sum of the two corresponding SCGFs (again we refer to Remark
3.3 in [24]), and, in fact, in the main text, we make use of such factorization.

B.5 Approach to the GGE

Finally in this subsection, following B.3, we study in more detail the approach in time to the
corresponding GGE values of the same single-mode densities and currents correlations con-
sidered in B.4. In particular we want to understand how cumulants in the GGE’s are modified
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at large time when taking into account correlations coming from the initial state |ψ〉 (cf. Eq.
(139)). Below, we denote by 〈·〉 expectation values on such initial state, while 〈·〉ρw

the ones
on the GGE atteined at infinite time.

We start with the single-mode connected density-density (again the corresponding pair-
mode correlator is obtained via (178)). In momentum space we have (we focus on x > 0)

〈qθ (x , t)qηθ (0, t)〉c =
∫

dkdk′

2π
dqdq′

2π
ei x(k′−k)ϑ

�

ε

2
−
�

�

�

�

k+ k′

2
− θ
�

�

�

�

�

ϑ

�

ε

2
−
�

�

�

�

q+ q′

2
−ηθ
�

�

�

�

�

× 〈b†
k(t)bk′(t)b

†
q(t)bq′(t)〉

c

=

∫

dkdk′

2π
dqdq′

2π
ei x(k′−k)ϑ

�

ε

2
−
�

�

�

�

k+ k′

2
− θ
�

�

�

�

�

ϑ

�

ε

2
−
�

�

�

�

q+ q′

2
−ηθ
�

�

�

�

�

×
�

〈b†
k(t)bq′(t)〉 〈bk′(t)b

†
q(t)〉 − 〈b

†
k(t)b

†
q(t)〉 〈bk′(t)bq′(t)〉

�

(184)

where η = ±1. The first piece is nothing but the GGE contribution and, as discussed in B.4
(see Eq. (179) and below) is always well-behaved in the ballistic regime.

The other part gives
∫

dkdk′

(2π)2
ei x(k′−k)+2iE(k)t−2iE(k′)tϑ

�

ε

2
−
�

�

�

�

k+ k′

2
− θ
�

�

�

�

�

ϑ

�

ε

2
−
�

�

�

�

k+ k′

2
−ηθ
�

�

�

�

�

(1− n(k))n(k′)

(185)

In the ballistic limit, with ζ = x/t fixed, we can use again saddle point analysis, similarly
to calculations in B.4. Now, however, the saddle points is given by 2v(k′) − ζ = 0 and
2v(k) = ζ (note the factor 2 of difference wrt the saddle point of the integral (180)), namely
k∗(ζ) = k′∗(ζ) = v−1(ζ/2). After application of saddle-point method, the ϑ function is evalu-
ated at these points. For η = 1, using ϑ2 = ϑ, the result of the saddle point of (185) vanishes

unless
�

�

�

k∗(ζ)+k′∗(ζ)
2 − θ
�

�

�≤ ε
2 or, equivalently, |v−1(ζ/2)− θ | ≤ ε/2 that it precisely

v(θ − ε/2)≤ ζ/2≤ v(θ + ε/2) . (186)

Having assumed x>0, for η= −1 we recover the very same condition.
This is exactly the expected condition for two particles of opposite momentum ±θ , initially

forming an entangled pair, not to hit both the segment [0, x] at time t (as be easily understood
geometrically from Fig. 2 of the main text). Note that, for ζ fixed (and due to the above
mentioned factor 2), this condition is more severe then Eq. (182), so it also guarantees a fast
enough decay of same correlation within the GGE.

When condition (186) does not hold, from the saddle point contribution, we get that the
integral (185) decays as t−1, giving a slow approach to the GGE. This, in fact, modifies the
behaviour of the second cumulant because it gives a correction to the GGE value which is not
subleading (it is actually faster than linear in time). Outside the range (186) the correction to
the GGE decays fast enough, so that the associated cumulant is not modified at leading order.

Let us briefly comment the situation in the case of correlation functions of the single-mode
current even though the main idea exactly follows the density-density case. The relevant
quantity in this case is

〈 jθ (x , t) jηθ (0, s)〉c =
∫

dkdk′

2π
dqdq′

2π
ei x(k′−k)ϑ

�

ε

2
−
�

�

�

�

k+ k′

2
− θ
�

�

�

�

�

ϑ

�

ε

2
−
�

�

�

�

q+ q′

2
−ηθ
�

�

�

�

�

×
�

E(k′)− E(k)
k′ − k

�2
�

〈b†
k(t)bq′(s)〉 〈bk′(t)b

†
q(s)〉 − 〈b

†
k(t)b

†
q(s)〉 〈bk′(t)bq′(s)〉

�

.

(187)
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This time we cannot use time-translation invariance as done before when computing the expec-
tation on a GGE. The first part in the above expression is again the GGE contribution alayzed
in (181), while the second comes from quasi-particle pairs and gives rise to saddle points in
the ballistic regime. It can be checked that the condition for the saddle point contribution not
to vanish is exactly the same as for the density, Eq.(186). Therefore, only when the condition
(186) does not hold, the contribution of the second term in (187) is subleading wrt to the GGE
one, and the associated cumulant is not shifted with respect to the leading GGE value.

Therefore, depending on the value of θ (apart for θ in a region of order ε, which is to trace
back to our regularization of the observables) either the correlations of single-mode densities
or those of single-mode currents show a fast approach to their GGE value, thus imposing the
right path to choose when using BFT.

C S matrix in the α−copy theory

Consider S(θ ,θ ′) to be the S matrix in the single-copy theory (we consider the diagonal case
for simplicity, but everything below can be generalized to non-diagonal S matrices), i.e.

|θ ,θ ′〉= S(θ ,θ ′)|θ ′,θ 〉 (188)

(namely, it is the factor we get by exchanging θ ,θ ′ in the two-particle state), then one can
define in the α−copies theory

S(α)(θ , i;θ ′, i′) = δii′
mod(α)S(θ ,θ ′)± (1−δii′

mod(α)) (189)

acting on the state |θ , i;θ ′, i′〉, where we introduced explicitly the dependence on the copy-
index. Importantly, the ± sign in (189) depends on the commutation relations of the fields
among the copies.

Note that Eq. (189) is the S-matrix associated toα independent copies, which only describes
the symmetry of the α-copies theory (i.e., it does not take into account the constraints of the
fields in different copies implemented by the twist fields exchange relations (cf. (45)-(46))).
However this is enough for our purposes.

By going to Fourier space in the replica index Fi→p, we have

|θ , p;θ ′, p′〉=
∑

p,p′
S(α)(θ ,θ ′; p, p′; k, k′)|θ ′, k′;θ , k〉 (190)

with (by simple algebra)

S(α)(θ ,θ ′; p, p′; k, k′) = δmod(α)(k+ k′− p− p′)
�

S(θ ,θ ′)± 1
�

∓δmod(α)(p− k)δmod(α)(p
′− k′) .
(191)

This can be written explicitly as a 2α× 2α matrix S(α)(θ ,θ ′)m,n for α ∈ N, with row and
column indices m =

�

p, p′
	

and n =
�

k, k′
	

respectively. For example, for α = 2, it takes the
form

S(2)(θ ,θ ′) =







S(θ ,θ ′) 0 0 S(θ ,θ ′)± 1
0 S(θ ,θ ′) S(θ ,θ ′)± 1 0
0 S(θ ,θ ′)± 1 S(θ ,θ ′) 0

S(θ ,θ ′)± 1 0 0 S(θ ,θ ′)






(192)

Note that one can check that, as expected, this S matrix satisfy the Yang-Baxter equations for
general S(θ ,θ ′).

Now, for the specific case of free fermions, consider Eq. (50) in the main text. In the first
basis, the fields ψi commutes among different copies: in this case above we will choose the
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+ sign in S(α) (cfr. Eq. (189)). However, after the SU(α) trasformation to the ψ j basis, the
fields in different copies also anticommute, and this amout to choosing the sign − in (189).
Since for free fermions we have S(θ ,θ ′) = −1, then we see that in the ψ j basis, S(α) becomes
diagonal (cfr. Eq. (192)).
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