

King’s Research Portal

DOI:
10.3233/FAIA241019

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Izquierdo-Badiola, S., Canal, G., Alenyà, G., Rizzo, C., & Coles, A. (2024). Planning for Human-Robot
Collaboration Scenarios with Heterogeneous Costs and Durations. In ECAI 2024 (pp. 4410 - 4417)
https://doi.org/10.3233/FAIA241019

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 06. Nov. 2024

https://doi.org/10.3233/FAIA241019
https://kclpure.kcl.ac.uk/portal/en/publications/ba8669ab-2581-4e15-9102-6c6790bd0c52
https://doi.org/10.3233/FAIA241019

Planning for Human-Robot Collaboration Scenarios with
Heterogeneous Costs and Durations

Silvia Izquierdo-Badiolaa,c,*, Gerard Canalb, Guillem Alenyàa, Carlos Rizzoc and Andrew Colesb

aInstitut de Robotica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain
bDepartment of Informatics, King’s College London, UK

cEurecat, Centre Tecnològic de Catalunya, Robotics and Automation Unit, Cerdanyola, Spain

Abstract. This paper looks at human-robot collaboration (HRC)
scenarios, in particular where the durations and costs of the actions
are heterogeneous between agents, reflecting the agents’ capabilities
as well as environmental constraints. We explore the use of temporal
PDDL planning as a means of finding over-arching task plans for
such collaborative scenarios, and apply suitable heuristics and search
algorithms to improve the extent to which plans can be found that
are sensitive to combined duration and cost metrics. An evaluation
in a kitchen scenario shows our approach is effective, finding cost-
effective task plans compared to those from existing planners, and a
hand-crafted baseline.

1 Introduction
Efficient task planning plays a crucial role in achieving effective
performance in robotics applications. One common aspect in many
robotic applications is the existence of actions that not only have a
duration but also incur a certain cost. Considering both is especially
important in multi-agent applications, and a widespread example of
such applications consists of robots acting in collaborative environ-
ments, where human–robot teamwork is leveraged to achieve com-
plex tasks. The actions involved in these domains vary in duration
and cost depending on both environmental and agent factors such
as capabilities or preferences. In such settings, the efficient produc-
tion of task plans comprising actions for both humans and robots
is crucial to maximize productivity, minimize costs, and ensure the
completion of shared goals in a timely manner.

Motivated by the need to enhance the efficiency of human–robot
collaboration (HRC), this paper presents novel methods to address
the challenge of optimizing a plan quality metric that combines
makespan (total time to complete the plan) with plan cost. While
recent PDDL planners have proven successful at optimizing either
cost or makespan, they often struggled to achieve a satisfactory bal-
ance between the two objectives. Taking either alone is not appro-
priate in HRC tasks: focusing solely on makespan may result in ex-
cessive costs; while focusing on costs could lead to unnecessarily
prolonged makespan. Therefore, the development of a PDDL planner
that can optimize a metric combining both of these is of great impor-
tance in allowing PDDL-based approaches to be used within com-
pelling robotic applications. Our proposed method fills this gap, con-
sidering additional heuristic measures that capture both makespan
and cost, and developing further a known-effective anytime search

∗ Corresponding Author. Email: sizquierdo@iri.upc.edu.

Figure 1. Example Human–Robot Collaboration Scenario where a Robot
Assists in Household Tasks.

algorithm [25]. While general in nature, our implemented planner
OPTIC-AEES embeds these within the planner OPTIC [2]. As a run-
ning example, we use a household robotics scenario where shared
goals, corresponding to tasks such as cooking or cleaning, have to be
assigned to a human and a robot, performing actions concurrently in
a kitchen, such as the one seen in Figure 1.

The remainder of this paper is structured as follows: Section 2
reviews related work, leading on to Section 3 which discusses the
problem of modeling human-robot collaboration as a planning prob-
lem. Motivated by this, Section 4 details the planner optimizations
necessary for the development of OPTIC-AEES. An evaluation in
a kitchen scenario is presented in Section 5, showing our planner
represents the new state-of-the-art for this scenario; and exploring
its performance in the context of prior work, a handcrafted baseline,
and ablations with respect to its own feature set. Finally, Section 6
concludes the paper and discusses future directions.

2 Related Work
Task Planning Background. A PDDL2.1 [16] planning problem
is defined over a collection of propositions P , and a vector of nu-
meric variables v. These are manipulated and referred to by actions.
The executability of actions is determined by their preconditions,
conjunctions of conditions. A condition is either a single proposi-
tion p ∈ P , ¬p, or a numeric constraint over v. We assume all
such constraints are linear, and hence can be represented in the form
w.v{>,≥, <,≤,=}c where w is a vector of constants and c is a
constant.

Each durative action A has three sets of preconditions: pre⊢(A),
pre↔(A), pre⊣(A). These represent the conditions that must hold at
its start, throughout its execution (‘over all’ conditions), and at its
end, respectively. Instantaneous effects can occur at the start or end
of A: eff+

⊢ (A) (eff−⊢ (A)) denote propositions added (resp. deleted)
at the start; effnum

⊢ (A) denotes numeric effects. Similarly, eff+
⊣ (A),

eff−⊣ (A) and effnum
⊣ (A) record effects at the end. We assume numeric

effects are of the form:

v{+=, -=, =}w · v + c (v ∈ v)

Finally, the action has a duration constraint: a conjunction of nu-
meric constraints applied to a special variable ?duration, denot-
ing its duration.

As a special case, instantaneous actions have duration zero, and
only one set of preconditions pre(A) and effects eff+(A), eff−(A),
and effnum(A). Otherwise, following LPGP [22], a durative action A
can be split into two instantaneous snap-actions, A⊢ and A⊣, rep-
resenting the start and end of the action respectively, and a set of
constraints (‘over all’ and duration constraints). Action A⊢ has pre-
condition pre⊢(A) and effects eff+

⊢ (A), eff−⊢ (A), effnum
⊢ (A). A⊣ is

the analogous action for the end of A.
A solution to the problem is a plan: a timestamped sequence of ac-

tions with associated durations, that transforms the initial state I into
some state s that satisfies the goal G. All pre/‘over all’ conditions
must be satisfied at the time of/during execution and actions that have
started must have finished. The quality metric of a plan is defined in
terms of the values of state variables in s, and/or the makespan of
the plan: the latest time at which an action in the plan ends. For our
purposes, we assume the metric is to minimize a positive-weighted
sum of plan makespan, and a single state variable total-cost;
such that total-cost initially takes the value 0, and all effects on
it by actions are of the form total-cost += c, c ∈ R≥0. Under
this assumption we can say that the cost of a snap-action is the value
c by which it increases total-cost (or 0 otherwise).

Our approach builds on the planner OPTIC [2], which performs
heuristic forward-search for plans, starting at the initial state, using
a Simple Temporal Problem [12] or Mixed Integer Program (MIP)
to manage the temporal constraints, and reporting solution plans of
increasing quality as they are found. OPTIC’s search is guided by a
TRPG heuristic: a Temporal variant of the Relaxed Planning Graph
heuristic [19]. The TRPG heuristic, evaluated for a state s, returns
either a relaxed plan π(s) that satisfies the goals under the condi-
tions of the relaxation (inter alia, that delete effects are ignored), or
recognizes that s is a dead-end state from which the goals cannot be
reached. A relaxed plan π(s) can be represented as a time-stamped
sequence of snap actions [⟨a0x, t0⟩..⟨anx, tn⟩]. From π(s) we can
obtain two measures:

• d(s) = |π(s)|: the ‘distance to go’ measure for s, taken to be how
many actions are needed for its relaxed plan;

• hm(s) = max((max⟨aix,ti⟩∈π(s) ti),m(s)): an admissible
heuristic makespan for s, which is the maximum of either the
makespan of the relaxed plan (the time of the latest snap-action)
or m(s) – the makespan already committed to in the actions taken
to reach s.

OPTIC guides the search according to d(s); and in problems where
the metric is to minimize makespan, and a solution of cost c has
already been found, it prunes any state s where hm(s) ≥ c.

Note that while we build on OPTIC, our work is applicable to
planners taking other approaches to managing temporal constraints

in forward planning, such as the decision epoch approach [11] used
in TFD [14] and SAPA [13]. We also note that SAPA has a range of
available relaxed planning graphs (RPGs) that, for instance, can be
built based on combined cost and makespan estimates; but it remains
an open question how to apply such RPGs to non-decision-epoch
planners such as OPTIC.

Task Planning for HRC. Work in the human-robot collaboration
has traditionally focused on making plans for humans and robots,
and improving the planning approach. For instance, Bezrucav and
Corves [4] looked into improving the cooperation of teams of hu-
mans and robots using a three-level planning approach that decom-
poses the planning process into different goals and executors, while
optimizing the plan makespan. Other approaches look into distribut-
ing the tasks between agents while monitoring the agent status to
prevent failures [20]. In these cases, the agent is modeled via differ-
ent action parameters affecting its cost, and the planner is intended
to optimize the plan duration, which means that the cost is over-
looked. Similar approaches have also included other human factors
as the costs of the planning actions. Canal et al. [6] instead model
the user in terms of preferences, which affect the cost of the ac-
tions. Alternative methods compute composite plans represented as
a union of individual plans for each of the agents [8]. In this case,
the cost is used as a metric and action durations are not consid-
ered. Where the problem to be solved is one of task allocation, rather
than planning in general, other work has looked at encoding this as
a mixed integer-linear program [21, 18]. Hierarchical Task Networks
have also been used by Alami et al. [1], where a plan for the robot
and the human is found while taking into account costs and utili-
ties, and also considering verbal communication costs [5], but ac-
tion durations are not considered. Task allocation between humans
and robots is optimized by Cheng et al. [10], where parallel rela-
tionships are found to optimize actions that may be done in parallel
with that of the human, but agent states are not considered. Similarly,
Chen et al. [9] presented a Dual Generalized Stochastic Petri Net
used to allocate assembly tasks to humans and robots while consid-
ering time and allocation costs as a Monte Carlo multi-objective opti-
mization. Beyond Human-Robot scenarios, work has considered the
multi-objective optimization problems inherent in combined task-
and motion-planning [15] but this is somewhat orthogonal to our
work which focuses on the task-planning level, with the execution
of plans subsequently handled by a plan execution framework such
as ROSPlan [7].

3 The Characteristics of HRC as a Planning
Problem

We take a human-robot collaboration problem as a motivation exam-
ple of temporal planning where optimizing a metric combining time
and cost may be crucial to the success of the task. In human-robot
collaboration problems, the objective at a task planning level is to
find a plan assigning actions to both human and robot agents in order
to achieve shared goals. We assume the metric to be minimized of a
plan p is a weighted sum g(p) = α ·m(p) + (1 − α) · c(p) where
m(p) is the makespan of p (the time taken to execute the plan), c(p)
is the total cost of the actions in p, and α ∈ [0, 1] weights the metric
towards makespan and/or cost respectively. We follow the approach
of [20] of assuming that one can find a plan for a human that either
they will follow, or for which it is assumed that human deviations
from the plan will be handled by replanning from the state reached
by the human’s deviation. The problem is represented as a domain-
independent PDDL model, incorporating any required physical agent

interactions or coordination aspects at task planning level, such as
ensuring that no two agents occupy the same space at once.

As humans and robots are highly heterogeneous, the actions avail-
able for humans may be different to those for robots; and where ac-
tions for the humans and robots are similar (e.g. achieve the same
goal or subgoal), they may differ in terms of their durations and/or
the costs incurred, as they are not only based on environmental fac-
tors but also on the agents’ preferences and unique capabilities. For
instance, some actions may require less time for the human to per-
form but have a higher associated cost due to a human’s preference
not to carry them out. For the human agent, the cost of an action
could indicate their preference to avoid performing the action, even
if it means extending the overall makespan: if an action has a cost of
x, it means that the human would rather the makespan was longer by
x · ((1−α)/α), than the action was used. This cost would represent
the inconvenience or effort required from the human’s perspective,
with ((1 − α)/α) being the ‘exchange rate’ between cost and du-
ration. On the other hand, for the robot agent, costs could have a
number of meanings. If cost reflects battery usage, then a good plan
will balance energy usage versus makespan. Or, the cost of an action
could reflect the probability of failure, and the effort to overcome it:
assigning an action a cost y would be principled if the expected time
for which plan execution would need to be interrupted to overcome
the failure is y · ((1− α)/α).

Consider an example HRC problem, where a human and a robot
need to perform cooking and cleaning tasks in a kitchen. In such a
scenario, the robot may be better suited to perform some of the tasks
(e.g. it might be forbidden from tasks that deal with heat), while the
human may have preferences on what to do (e.g. they may prefer
not to clean the floor). These capabilities and preferences may be ex-
pressed as action costs [6, 20], such that all things considered equal,
the planner will seek to avoid assigning those actions to the robot or
the user. Then, timing is also important. For instance, the human and
robot may take different amounts of time to complete actions that
achieve (sub)goals; there may be different actions taking different
durations, such as cooking something in the pan (quicker) or in the
oven (slower); and moving around the kitchen from station to station
also takes time. In such a case, the planner would have to balance
costs with the temporal consequences of the actions taken.

Hence, from a task planning point of view, we have an interesting
problem to solve (there are interestingly different ways to solve the
problem), and an interesting quality metric: for the planner to find
a good overall plan, with actions for both humans and robots, it is
crucial to consider both makespan and cost simultaneously. Simply
optimizing for the cheapest way to solve a problem may lead to plans
with inefficient makespans; while only optimizing for makespan may
lead to plans that are of unreasonably high cost.

4 Planner Optimizations for HRC

To be able to find usable solutions to our HRC problems, we need a
planner that is able to find plans that are of good quality with respect
to minimizing a weighted sum of makespan, and action costs. Plan-
ners such as OPTIC [2] and LPG-TD [17] are in principle able to do
so, but empirically we noted the quality of the plans they found to
fall behind what we knew to be theoretically possible.

Focusing on OPTIC, its performance was limited by a number
of factors. First, its makespan estimate for reaching the goals from
a given state s is based on a Temporal Relaxed Planning Graph
(TRPG). This is admissible, but highly optimistic as the relaxation
(to ignore delete effects, and relax numeric effects) supports a far

greater degree of concurrency than is realistically possible. Second,
its anytime search for plans of increasing quality uses WA* based
on distance-to-go, d(s); with the TRPG makespan estimate hm(s)
only used for pruning. Due to the optimism of the TRPG makespan
estimate, this pruning is relatively weak. Moreover, while searching
based on distance-to-go is a reasonable choice in the domains with
preferences for which OPTIC was designed (its distance-to-go re-
flects the distance to satisfy any presently unsatisfied preferences, in
addition to the hard goals – hence is strongly correlated with cost-to-
go), this translates less well to problems without preferences, where
distance-to-go is less strongly correlated with cost-to-go.

4.1 Inadmissible makespan and cost measures

Considering first how we can find a more informative makespan
measure, at the price of forgoing admissibility, we inflate the
makespan estimate from a temporal relaxed plan by considering mu-
texes between the actions chosen. We assume we have a function
mutex (a, a′) which returns true if the execution of the actions a and
a′ cannot overlap; in our case, it is defined according to the analysis
described in [3]. With this, we construct Algorithm 11, which works
repeatedly iterating through the relaxed plan, to find an inadmissible
makespan estimate dhm(s). It keeps track of which actions are cur-
rently executing (initially those in s – initialized at line 4), and the
facts that have been reached, along with the time they were achieved
(use); and uses this to delay starting actions that are mutex with one
that is currently executing or has been executed. The practical up-
shot of this in our HRC problem, where all the actions for a given
agent are pairwise mutex, is that dhm(s) would be inflated due to the
actions for each agent being applied in series rather than in parallel.

In more detail, line 23 identifies start snap-actions that should be
deferred to the next iteration through the relaxed plan (by being
added to π′). This happens if either its propositional preconditions
are not satisfied2; the subsequent propositional ‘over all’ conditions
would not be satisfied; or if it would start an action that is mutex
with one that has not yet ended. Otherwise, it can happen, but we
compute the time (t′i) this would be at, as the latest of: (i) when it
originally occurred in the relaxed plan; (ii) the time it would need
to go at to satisfy its preconditions; (iii) the time at which it would
need to go to satisfy the subsequent ‘over all’ conditions; and (iv)
ordering it after any prior actions it is mutex with (taken from done).
t′i is then used to update dhm(s), to set the time at which any new
facts are achieved (line 28) and to note action ai can end at time
t′i+durmin(ai) (line 32), where durmin(ai) is a global lower-bound
on the duration of ai.

End snap-actions are the simple case: if we are considering an end
snap-action ai⊢, and it is not currently executing (endat [ai] = ∅),
then we defer it to the next iteration by adding it to π′. Otherwise, we
apply it now: we update our makespan estimate dhm(s) to be at least
the time at which the action would end; update done to note that it
has finished; and update facts and use for any new facts it has added.
An important difference to the case for start snap-actions is we do not
check that the preconditions of ai⊣ hold. This is to avoid deadlock in
the case where starting an action a (applying a⊢) blocks starting an

1 For brevity, the algorithm does not explicitly consider instantaneous actions.
WLOG, instantaneous actions can be replaced by equivalent zero-duration
durative action, with all preconditions and effects at the start, and all other
components empty.

2 Note we do not check numeric preconditions; we degrade gracefully in the
presence of these, as t′i is at least never less than ti – the time snap-action
aix occurred in the relaxed plan.

Algorithm 1: Inflating a relaxed plan makespan estimate us-
ing action mutexes
Data: A state s, a relaxed plan π = [⟨a0x, t0⟩..⟨anx, tn⟩]
Result: An inadmissible makespan estimate dhm(s)

1 dhm(s)← the makespan of the plan to s;
2 endat ← ∅;
3 foreach action a executing in s, with minimum start time t do
4 endat [a]← endat [a] ∪ {(t+ durmin(a))};
5 facts ← the facts in s;
6 use[f]← 0 for each f ∈ facts;
7 done ← ∅;
8 while π ̸= ∅ do
9 π′ ← [];

10 foreach ⟨aix, ti⟩ ∈ π do
11 if aix is an end snap-action ai⊢ then
12 if endat [ai] = ∅ then
13 π′ ← π′ + [⟨ai, ti⟩];
14 continue;

15 remove smallest t from endat [ai];
16 t′i ← max(t, ti);
17 dhm(s)← max(dhm(s), t′i);
18 done ← done ∪ {⟨ai, t

′
i⟩};

19 foreach f ∈ (eff +(ai⊣) \ facts) do
20 facts ← facts ∪ {f};
21 use[f]← t′i;

22 else
23 if (pre(ai⊢) ̸⊆ facts)

∨ (pre(ai↔) ̸⊆ (facts ∪ eff +(ai⊢)))
∨ (∃a′s.t.endat [a′] ̸= ∅ ∧mutex (ai, a

′))
then

24 π′ ← π′ + [⟨ai, ti⟩];
25 continue;

26 t′i ← max(ti, maxf∈pre(ai⊢) use[f],
maxf∈(pre(ai↔)\eff +(ai⊢)) use[f],
max({t′ | ⟨a′, t′⟩ ∈ done∧mutex (ai, a

′)}));
27 dhm(s)← max(dhm(s), t′i);
28 foreach f ∈ (eff +(ai⊢) \ facts) do
29 facts ← facts ∪ {f};
30 use[f]← t′i;

31 t′i ← t′i + durmin(a);
32 endat [ai]← endat [ai] ∪ {t′i};

33 π ← π′;

34 return dhm(s);

action b where mutex (a, b); but where b was (directly or transitively)
necessary in the relaxed plan to achieve the end conditions of a. Not
checking the preconditions of ai⊣ releases this deadlock, by ensuring
once an action has been started, it can always be ended; so b would
be able to be applied on a subsequent iteration through the relaxed
plan.

Moving on from finding an inadmissible makespan estimate, we
can find an inadmissible cost estimate to reach the goals from a state,
by taking the sum of the costs of actions in the relaxed plan π [13].
For a state s we denote this chc(s). With this, a naïve heuristic mea-
sure nh(s) for states in our HRC tasks, whose quality metric is a

weighted sum of cost and makespan, could be defined as:

cnh(s) = wm.(dhm(s)−m(s)) + wc.chc(s)
...where m(s) is the makespan of the plan steps that reached s. This
yields a naïve f̂ value cnf (s) = g(s) + cnh(s). However, this still
has its shortcomings, not least as both dhm(s) and chc(s) are subject
to the vagaries of the relaxed plan, which is extracted via a greedy
algorithm from the temporal RPG. To address this, we turn to online
correction-learning approach of Thayer et al. [24], to learn global
‘mean one-step errors’ during search, and use these to refine this
naïve heuristic. The one-step errors on distance-to-go and our naïve
heuristic cost-to-go for the expansion of a state p are:

ϵdp = (1 + d(bc(p)))− d(p)

ϵnhp = cnf (bc(p))−cnf (p)

...where bc(p) is the best child of p. To estimate bc(p), as per [24] we
assume it is the node with minimum cnf (n) among all of p’s children,
breaking ties on cnf (n) in favor of low d(n). The mean values of
these across all expansions, ϵ̄global

d and ϵ̄global
nh , yield what we will use

as an inadmissible f value:

f̂(s) = g(s) + cnh(s) + d(s)

1− ϵ̄global
d

· ϵ̄global
nh

..with the latter term here equating to a ‘per-d’ correction added tocnf (s).

4.2 Searching for better plans

Now we have an inadmissible f̂(s), the question is what to do with
it. It would not be appropriate to use it as a hard pruning heuristic to
complement OPTIC’s ‘WA* on distance-to-go’, as it is not admissi-
ble; but it has potential for use for prioritizing the expansion of some
states over others. To do this, we turn to Anytime Explicit Estima-
tion Search (AEES) [25], which can use an inadmissible heuristic
for exactly this purpose.

AEES maintains a suboptimality bound w of the incumbent best
solution (initially, w =∞), and uses this to bias search more or less
towards expanding nodes that are close to goal states (low d(n)), or
have attractive costs (low f̂(n) or f(n)). It considers at each iter-
ation of search selecting one of the following candidate nodes for
expansion3:

bestf = argminn∈open f(n)

best f̂ = argminn∈open f̂(n)

bestd = argminn∈open∧f̂(n)≤w·f̂(best
f̂

) d(n)

Note bestd is taken from a focal list of states: those whose f̂(n)
values are within the bound w · best(f). Which of these three candi-
dates is chosen and expanded is according to the following rules:

• If f̂(bestd) ≤ w · f(bestf) choose bestd;
• Else, if f̂(best f̂) ≤ w · f(bestf) choose best f̂ ;
• Otherwise, choose bestf .

The suboptimality bound w is updated every time a new goal state
is found with g(n) below that of the incumbent best solution. Re-
calling that bestf is the node on the open list with best f value,

3 In the general case, bestd is correctly given as best d̂, but they are equivalent
when using a global one-step-error model on d.

f(bestf) gives us a lower bound on reachable solution cost, so w
is set to g(n)/f(bestf).

On initial experimentation, we noted two limitations of a straight-
forward usage of AEES. First, suppose we are yet to find a solution
plan (so w = ∞), and expand a state s0 generating two succes-
sor states s1, s2, with d(s1) = d(s2) = 1; and that this distance-
to-go measure is the best seen so far, and is perfect: both are one
step away from goal states, sg1 and sg2, respectively. Also suppose
g(sg1) > g(sg2): s2 leads to the better goal state. If s1 and s2 are
inserted in that order into the open list with the standard assump-
tion of stable insertion, s1 would be ordered before s2. Then, on
the next iteration, as w = ∞, we know bestd = s1; this would
be expanded, finding sg1; and in turn, w would be recalculated as
g(sg1)/f(bestf). If this now-reduced w value means s2 is not eli-
gible for expansion as bestd, due to its f̂(s2) value, then it may be
some search iterations before s2 is expanded, reaching sg2. To ad-
dress this, as a branch ordering heuristic, we sort the successors of
each state prior to insertion into the open list into ascending f̂ order.

Second, in prior implementations of AEES, the f̂ value of state
s is fixed at whatever f̂(s) was at the moment it was inserted into
the open list; even if its value was computed based on a global
heuristic error model whose per-d correction is subject to change.
Our initial experiments showed this biased search towards expand-
ing nodes that were added to the open list earlier in search (where
mean one-step error was smaller), at the expense of expanding bet-
ter states that were found later in search. To address this, we exploit
the fact that the correction component in f̂(n) is a function only of
d(n), and not any other features of n, to be able to efficiently re-
compute f̂(n) at each expansion. Suppose we had an open list open ,
with ins(n) < ins(n′) if n was inserted into it before n′ (captur-
ing the stable insertion property), and derive from this per-d open
lists each openi = {n ∈ open | d(n) = i}. The f̂(n) value of
each n ∈ openi, according to the current global error model, can be
written f̂(n) = cnf (n) + ct(i), where ct(i) is the correction term

i

1−ϵ̄
global
d

· ϵ̄global
nh according to the global error model.

In Algorithm 2 we show how this observation can be used to ef-
ficiently compute best f̂ according to the current global error model.
For each possible distance-to-go i, we identify the best node on
openi according to the components of f̂(n) that do not vary under
the global error model (the best cnf (n) – line 4), then add the correc-
tion term ct(i) for nodes with d(n) = i to this to compute best i

f̂
: the

candidate for best f̂ among nodes with d(n) = i. If this is a new best
best f̂ , or it is tied but was inserted first (ins(best i

f̂
) < ins(best f̂)),

it becomes the new incumbent best f̂ .
In Algorithm 3 we show how to compute bestd based on the per-d

open lists. This is somewhat more straightforward: going through the
open lists in ascending order of d(n), we build the focal list for each:
the list of states where cnf (i) + ct(i) is within the dynamic quality
threshold w · f̂(best f̂). As soon as one of the focal lists is non-empty,
we have found bestd and can return it: no later open list would find
a candidate with lower d(n).

Having found candidates for best f̂ and bestd according to these al-
gorithms, the core AEES candidate selection rule, in theory remains
unchanged; the difference is that its practical application now makes
decisions according to f̂ values based on the current global error
model, rather than fixing f̂(n) at the point of insertion.

Finally, to note, while we build on OPTIC, this development of
AEES is not tied in any way to the choice of heuristic or the vagaries
of any planner in particular. Similarly, while Algorithm 1 is planning-
specific, it relies only on a temporal relaxed plan, which is commonly

Algorithm 2: Identifying best f̂ from per-d open lists

Data: Per-d open lists [open0..openm] for d(n) ∈ [0..m]
Result: best f̂

1 best f̂ ← ⊥;
2 f̂(best f̂)←∞;
3 foreach i ∈ [0..m] do
4 best i

f̂
← argminn∈openi

cnf (n);

5 f̂(best i
f̂
)← cnf (best i

f̂
) + ct(i);

6 if (f̂(best i
f̂
) < f̂(best f̂)) ∨ (f̂(best i

f̂
) =

f̂(best f̂) ∧ ins(best i
f̂
) < ins(best f̂)) then

7 f̂(best f̂)← f̂(best i
f̂
);

8 best f̂ ← best i
f̂

;

9 return best f̂ ;

Algorithm 3: Identifying bestd from per-d open lists
Data: Per-d open lists [open0..openm] for d(n) ∈ [0..m]
Result: bestd

1 foreach i ∈ [0..m] do
2 focal = [n ∈ openi | cnf (n) + ct(i) ≤ w · f̂(best f̂)];
3 if focal is not empty then return the first n ∈ focal ;

4 return ⊥;

available in other temporal planners [13].

5 Evaluation

Having described Human–Robot Collaboration tasks at an abstract
level, and presented planning techniques for use in the planning mod-
els of such tasks – with metrics that refer to both cost and makespan
– we now describe an example HRC scenario, and use it as a basis of
an evaluation.

5.1 Evaluation HRC Tasks

For our evaluation, we use an HRC task consisting of a kitchen en-
vironment where there are a set of shared goals to achieve, each cor-
responding to having completed a kitchen task; and actions must be
executed by a human and a robot to achieve these goals. Two types of
tasks have been defined, namely cooking and cleaning, and both can
be achieved in a number of different ways, incurring different costs
and durations for the two agents involved. With respect to the avail-
able equipment, cooking can be done on the stovetop or in the oven,
while cleaning can be done with a mop or with a cloth. We focus on
the problem of task assignment as a fundamental element of collab-
orative task planning, where a number of cooking and cleaning tasks
need to be assigned and executed in parallel by collaborating agents.
These high-level tasks involve lower-level intermediate actions that
need to be planned for, defined in the planning domain and dealt with
by the planner.

The snippet in Figure 2 shows part of the scenario definition in
PDDL. The environment is specified in terms of agents (agent), ob-
jects (obj) and locations (loc). The tasks of cooking and cleaning
are represented by predicates, which can be specified as part of the
goal defined in the problem. The cooked predicate has a parameter

of type obj (object), while cleaned has a parameter of type loc (loca-
tion). The functions represent the costs and the durations of the ac-
tions, which are associated with an agent. Taking a look at the action
clean_cloth, it can be seen how (cleaned ?loc) is part of its effects,
achieving a cleaning task, and potentially completing part of the de-
fined goal. The duration of the action is agent-dependent, defined by
the (clean_cloth_dur ?agent) function, while the cost is increased by
(clean_cloth_cost ?agent). In addition to the actions achieving a goal,
other actions correspond to the intermediate steps of the plan, such as
moving from location to location. Our domain focuses on high-level
task planning, and models high-level coordination constraints such
as ensuring that no agents occupy the same location simultaneously.
We separate high-level task planning from the lower-level constraints
managed by motion planning systems. If the problem were to be ex-
tended to physical collaborative tasks, the necessary physical con-
straints would need to be integrated into our domain, which would
still be compatible with our domain-independent method. Further-
more, note that the planning domain is set at a level of abstraction
that leaves the mapping of domain actions into lower-level actions
(e.g. grasping, placing) to the robot’s executive.

Each problem file includes the instances for the agents (human and
robot), objects (e.g. food), and locations, as well as the values for
the costs and the durations. The goal, made of cooked and cleaned
propositions for specific objects and locations respectively, is also
specified in the problem. Finally, the metric to minimize is defined
as the sum of the total-cost and total-time of the plan.

For our evaluation, we generated 270 test cases for this domain,
with different action costs, action durations and numbers of goals.

(d e f i n e (domain d o m a i n _ k i t c h e n _ 2 a g e n t s)
(: r e q u i r e m e n t s : d u r a t i v e − a c t i o n s : a c t i o n − c o s t s)
(: t y p e s a g e n t l o c o b j)
(: p r e d i c a t e s

; o t h e r p r e d i c a t e s
. . .
; g o a l p r e d i c a t e s
(cooked ? o b j − o b j)
(c l e a n e d ? l o c − l o c)

)

(: f u n c t i o n s
(c l e a n _ m o p _ c o s t ? a g e n t − a g e n t)
(c l e a n _ c l o t h _ c o s t ? a g e n t − a g e n t)

(c lean_mop_dur ? a g e n t − a g e n t)
(c l e a n _ c l o t h _ d u r ? a g e n t − a g e n t)
. . .
; o t h e r f u n c t i o n s
. . .
(t o t a l − c o s t)

)

(: d u r a t i v e − a c t i o n c l e a n _ c l o t h
: p a r a m e t e r s (? a g e n t − a g e n t ? l o c − l o c)
: d u r a t i o n (= ? d u r a t i o n (c l e a n _ c l o t h _ d u r ? a g e n t))
: c o n d i t i o n (and

(a t s t a r t (a g e n t _ n o t _ b u s y ? a g e n t))
(a t s t a r t (a g e n t _ a t _ l o c ? a g e n t ? l o c))
)

: e f f e c t (and
(a t end (c l e a n e d ? l o c))
(a t s t a r t (n o t (a g e n t _ n o t _ b u s y ? a g e n t)))
(a t end (a g e n t _ n o t _ b u s y ? a g e n t))
(a t s t a r t (i n c r e a s e (t o t a l − c o s t)

(c l e a n _ c l o t h _ c o s t ? a g e n t)))
)

)
; r e s t o f a c t i o n s

Figure 2. Domain snippet for our kitchen scenario.

5.2 Planners

The planners we use in this domain are:

• OPTIC-AEES: our planner as described in Section 4, with f̂ used
as a branch-ordering heuristic, and with per-d open lists to allow
f̂(n) values to be re-computed at each expansion;

• OPTIC: the unmodified OPTIC planner [2]
• LPG-TD [17], the best performer among prior non-OPTIC plan-

ners.

Additionally, we define a baseline based on a hand-coded decom-
position of the evaluation problems into two sub-problems (one for
the human, one for the robot) where goals are greedily assigned to
one or the other, based on which is estimated to be able to achieve
the goal at lowest cost. Plans for these sub-problems are then found
independently using a designated planner, and re-combined. We of-
fer this not as a general-purpose technique for solving problems, but
as a way of seeing what can be done if the planner is not able to di-
rectly reason about how to balance overall time and cost across both
agents, but instead can reason about only one of them at once.

To support an ablation study, we additionally run:

• OPTIC-AEES-bf: OPTIC-AEES but with f rather than f̂ as a
branch-ordering heuristic

• OPTIC-AEES-bn: OPTIC-AEES but without a branch-ordering
heuristic

• OPTIC-AEES-fixed: OPTIC-AEES but with f̂(n) fixed at the
point n is added to the open list, rather than being re-computed
at each expansion.

All planners were run for 60 seconds4 on a i7-10850H CPU, as an
analogue for an online planning setting; none exceeded the allocated
16GiB of memory. The plan found for each planner was taken to
be the best found after 60 seconds. The baseline, in its favour, was
run once for each of the available planners, allowing 60 seconds for
each call to the planner (once per sub-problem), and keeping the best
result on each problem across any of these planners.

5.3 Results

Table 1 presents the summary results for the different planning con-
figurations over the 270 problems. To facilitate a headline compar-
ison, we compute a score for each planner using the scoring mea-
sure of the satisficing track of the International Planning Competi-
tion [23]: the score for planner p on task i is:

Sp
i =

C⋆
i

Cp
i

...where Cp
i is the metric value of the solution found by planner p

to task i, and C⋆
i is the best-seen metric value for a solution to task

i across all planners. The sum of these scores across all problems is
then taken as the overall score for the planner. We additionally note
how many times each planner found the (joint) best solution to one
of the problems, and also represent this value as a percentage.

The first observation to make in Table 1 is that the Baseline de-
composition approach performs poorly: it rarely finds best solutions,
and the overall quality of plans found as reflected in its IPC score is

4 Longer planning times, while out of scope, do not change the overall rel-
ative performance of the tested configurations: the bottleneck becomes the
memory limit, not the time limit.

Baseline OPTIC LPG-TD OPTIC-AEES OPTIC-AEES-bf OPTIC-AEES-bn OPTIC-AEES-fixed
IPC Score Sum 193.84 235.66 203.14 268.24 267.03 258.68 246.48

Joint-Best Count 35 108 11 249 239 188 162
Joint-Best Count (%) 13% 40% 4% 92% 89% 70% 60%

Table 1. Result comparison for different planning configurations over the 270 test cases.

0 200 400 600 800 1000 1200
Plan metric for OPTIC

0

200

400

600

800

1000

1200

Pl
an

 m
et

ric
 fo

r O
PT

IC
-A

EE
S

Figure 3. Comparison of plan metrics (sum of cost and makespan) for 270
test cases: OPTIC vs. OPTIC-AEES (inadmissible heuristic and

inadmissible-heuristic f̂ order insert.)

the lowest seen. This strongly motivates using any of the other op-
tions, i.e. a task planner that is able to manage the trade-off between
action cost and makespan for both agents, to find plans with good
overall metric values.

Moving on to these, we note OPTIC-AEES has a comfortable ad-
vantage in terms of plan quality as reflected in IPC score and the
number of times it found the best solution. Of pre-existing planners,
the strongest performer was OPTIC. Our expectation based on its
general efficacy was that LPG-TD would perform relatively better
than we have seen here. Scrutinizing its output, its local-search ap-
proach was sufficient to get it somewhat of the way towards a good
solution; but over the course of a minute, the other systematic-search
planners (OPTIC-AEES and OPTIC) were able to reduce the cost
bound down to a level such that search-space pruning based on the
admissible makespan estimate from the TRPG allowed them to ulti-
mately do better.

Figure 3 compares the plan quality for OPTIC-AEES and OPTIC

for all test cases. With the exception of a single outlier, the plans
from OPTIC-AEES were always better or equal; and the potential for
quality improvement is relatively consistent across all plan metrics.

Moving on to ablation studies, we first consider the impact of the
branch-ordering heuristic – in Table 1 OPTIC-AEES orders nodes by
f̂(n) prior to their insertion into the open list; OPTIC-AEES-bf or-
ders nodes by f(n) prior to insertion; and OPTIC-AEES-bn does not
order them at all. The first two of these configurations perform rela-
tively closely, with a slight edge for OPTIC-AEES, which is perhaps
to be expected: for instance, it is f̂(bestd) that determines whether
bestd is chosen for expansion, so if there are equal-d(n) children of
a state s, inserting them in ascending order of f̂(n) will increase the
likelihood that the lower-f̂ of the two becomes bestd, and is chosen
for expansion; rather than the higher-f̂ of the two becoming bestd,

and not being chosen for expansion. Regardless, OPTIC-AEES-bn
performs much worse, especially in terms of the number of joint-
best solutions found, so we can say ordering by a cost measure (be it
f̂(n) or f(n)) is much better than not doing.

Second, we consider the impact of OPTIC-AEES allowing f̂(n)
values to be recalculated at each expansion, as the global heuristic er-
ror model is updated; compared to OPTIC-AEES-fixed, where f̂(n)
is instead fixed at the point n is inserted into the open list. As can be
seen in Table 1, OPTIC-AEES-fixed performs dramatically worse.
This confirms that whatever bias is being ‘baked in’ to the f̂(n) val-
ues if they are fixed at the point of insertion, is detrimental to the
overall performance of an AEES-based approach. Looking at how
the global heuristic error estimates change over search, the mean one-
step-errors increased in value over the first few hundred expansions.
Hence, children inserted into the open list relatively early in search
(with higher d(n) values, towards the top of the subtree) had rela-
tively lower f̂(n) values. This led to a backlog of low f̂ states accu-
mulating in the open list, suppressing the value of f̂(best f̂), hence
dramatically reducing the size of the focal list used to find bestd – as
states with lower d(n) values were more likely found later in search,
so had higher f̂(n) values based on higher mean one-step errors.
Clearing this backlog required a greater proportion of the expansions
to be of best f̂ , rather than bestd, reducing the frequency with which
new best solutions were found.

6 Conclusions

This paper motivates modeling Human-Robot Collaboration scenar-
ios as temporal PDDL problems, with heterogeneous costs and dura-
tions for the actions of humans and robots, which compete in terms
of plan metric optimization. Such problems are challenging for off-
the-shelf temporal PDDL planners, given plan optimization unavoid-
ably needs to manage a trade-off between costs and makespan. To
this end, we further developed planning techniques for such domains,
with a novel inadmissible makespan measure (derived from relaxed
plans) used in conjunction with a novel formulation of the AEES
algorithm that facilitates recomputing nodes’ f̂ values at each ex-
pansion, in line with a global heuristic error correction model.

The results obtained show that our planner represents the new
state-of-the-art on a benchmark HRC problem, finding plans of much
better quality than both prior temporal planners. This represents a
significant step towards broadening the use of PDDL planning in
Human–Robot Collaboration and other tasks where plan quality re-
flects a genuine and necessary trade-off between costs and durations,
which we note are otherwise un-represented in the International Plan-
ning Competition series. In future work, we will explore other ways
of constructing heuristic error correction models that capture the
quirks of quality metrics that refer to makespan (where there are large
g-value plateaux if actions that are applied are able to be scheduled
alongside those already in the plan); and will model and evaluate ad-
ditional multi-agent scenarios, beyond purely HRC, to broaden the
impact of our techniques, leveraging the domain-independent nature
of PDDL planning with our developed variant of OPTIC.

Acknowledgments
This work was supported by the CHIST-ERA project COHERENT
(EPSRC EP/V062506/1). S. Izquierdo is a fellow of Eurecat’s Vi-
cente López PhD grant programme. G. Canal has been supported by
the Royal Academy of Engineering and the Office of the Chief Sci-
ence Adviser for National Security under the UK Intelligence Com-
munity Postdoctoral Research Fellowship programme.

References
[1] R. Alami, A. Clodic, V. Montreuil, E. A. Sisbot, and R. Chatila. Toward

human-aware robot task planning. In AAAI spring symposium: to boldly
go where no human-robot team has gone before, pages 39–46, 2006.

[2] J. Benton, A. J. Coles, and A. Coles. Temporal planning with prefer-
ences and time-dependent continuous costs. In Proceedings of the In-
ternational Conference on Automated Planning and Scheduling ICAPS,
2012.

[3] S. Bernardini, F. Fagnani, and D. E. Smith. Extracting mutual exclu-
sion invariants from lifted temporal planning domains. Artificial Intel-
ligence, 2018.

[4] S.-O. Bezrucav and B. Corves. Improved ai planning for cooperat-
ing teams of humans and robots. In Proceedings of the Planning and
Robotics (PlanRob) Workshop—ICAPS, 2020.

[5] G. Buisan, G. Sarthou, and R. Alami. Human aware task planning using
verbal communication feasibility and costs. In International Conference
on Social Robotics, pages 554–565. Springer, 2020.

[6] G. Canal, G. Alenyà, and C. Torras. Adapting robot task planning
to user preferences: an assistive shoe dressing example. Autonomous
Robots, 43(6):1343–1356, 8 2019. ISSN 1573-7527. doi: 10.1007/
s10514-018-9737-2.

[7] M. Cashmore, M. Fox, D. Long, D. Magazzeni, A. Carrera, N. Palom-
eras, N. Hurtos, and M. Carreras. ROSPlan: Planning in the Robot Op-
erating System. In Proceedings of the International Conference on Au-
tomated Planning and Scheduling (ICAPS), 2015.

[8] T. Chakraborti, G. Briggs, K. Talamadupula, Y. Zhang, M. Scheutz,
D. Smith, and S. Kambhampati. Planning for serendipity. In 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5300–5306. IEEE, 2015.

[9] F. Chen, K. Sekiyama, H. Sasaki, J. Huang, B. Sun, and T. Fukuda.
Assembly strategy modeling and selection for human and robot coor-
dinated cell assembly. In 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4670–4675. IEEE, 2011.

[10] Y. Cheng, L. Sun, and M. Tomizuka. Human-aware robot task planning
based on a hierarchical task model. IEEE Robotics and Automation
Letters, 6(2):1136–1143, 2021.

[11] W. Cushing, S. Kambhampati, Mausam, and D. Weld. When is temporal
planning really temporal planning? In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2007.

[12] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artifi-
cial Intelligence, 49, 1991.

[13] M. B. Do and S. Kambhampati. Sapa: Multi-objective Heuristic Metric
Temporal Planner. Journal of Artificial Intelligence Research, 20:155–
194, 2003.

[14] P. Eyerich, R. Mattmüller, and G. Röger. Using the context-enhanced
additive heuristic for temporal and numeric planning. In Proceedings
of the International Conference on Automated Planning and Scheduling
(ICAPS), 2009.

[15] M. Faroni, A. Umbrico, M. Beschi, A. Orlandini, A. Cesta, and N. Pe-
drocchi. Optimal Task and Motion Planning and Execution for Multia-
gent Systems in Dynamic Environments. IEEE Transactions on Cyber-
netics, 2023.

[16] M. Fox and D. Long. PDDL2.1: An Extension of PDDL for Express-
ing Temporal Planning Domains. Journal of Artificial Intelligence Re-
search, 20:61–124, 2003.

[17] A. Gerevini, A. Saetti, and I. Serina. An approach to temporal planning
and scheduling in domains with predicatable exogenous events. Journal
of Artificial Intelligence Research (JAIR), 2006.

[18] A. Ham and M.-J. Park. Human–robot task allocation and scheduling:
Boeing 777 case study. IEEE Robotics and Automation Letters, 2021.

[19] J. Hoffmann and B. Nebel. The FF planning system: Fast plan gen-
eration through heuristic search. Journal of Artificial Intelligence Re-
search, 14:253–302, 2001.

[20] S. Izquierdo-Badiola, G. Canal, C. Rizzo, and G. Alenyà. Improved
Task Planning through Failure Anticipation in Human-Robot Collab-
oration. In IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 7875–7880, 5 2022. doi: 10.1109/ICRA46639.2022.
9812236.

[21] M. Lippi and A. Marino. A Mixed-Integer Linear Programming Formu-
lation for Human Multi-Robot Task Allocation. In Proceedings of the
IEEE International Conference on Robot & Human Interactive Com-
munication (RO-MAN), 2021.

[22] D. Long and M. Fox. Exploiting a Graphplan Framework in Temporal
Planning. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), 2003.

[23] C. L. López, S. J. Celorrio, and Á. G. Olaya. The deterministic part of
the seventh international planning competition. Artificial Intelligence,
223:82–119, 2015.

[24] J. T. Thayer, A. Dionne, and W. Ruml. Learning inadmissible heuris-
tics during search. In Proceedings of the International Conference on
Automated Planning and Scheduling ICAPS, 2011.

[25] J. T. Thayer, J. Benton, and M. Helmert. Better parameter-free anytime
search by minimizing time between solutions. In Proceedings of the
Symposium on Combinatorial Search (SOCS), 2012.

