Fibrocytes mediate intimal hyperplasia post-vascular injury and are regulated by two tissue factor-dependent mechanisms.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Thrombosis and Haemostasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JTH-2012-01051.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Original Article - Vascular Biology</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Chen, Daxin; King's College London, Dept. of Innate Immunity Ma, Liang; King's College London, Dept. of Innate Immunity Tham, El Li; King's College London, Dept. of Innate Immunity Maresh, Sharnee; King's College London, Dept. of Innate Immunity Lechler, Robert; King's College London, Dept. of Immune Regulation McVey, John; King's College London, Dept. of Innate Immunity Dorling, Anthony; King's College London, Dept. of Innate Immunity</td>
</tr>
<tr>
<td>Please select Five Mandatory Key Words from the Medical Subject Headings List Medical Subject Headings List:</td>
<td>Blood Coagulation, Neointima, Thromboplastin, Vascular System Injuries</td>
</tr>
</tbody>
</table>
Fibrocytes mediate intimal hyperplasia post-vascular injury and are regulated by two tissue factor-dependent mechanisms.

Chen: intimal hyperplasia, TF& fibrocytes.

D. Chen,
L. Ma,
E-L Tham,
S. Maresh,
R. I. Lechler,
J. H. McVey,
A. Dorling.

Medical Research Council (MRC) Centre for Transplantation, King’s College London,
King’s Health Partners, Guy’s Hospital, Great Maze Pond, London UK SE1 9RT

Corresponding Author: Prof. Anthony Dorling, MRC Centre for Transplantation,
King’s College London, Guy’s Hospital, London, UK SE1 9RT
Tel +44 (0)20 7188 5880 Fax +44 (0)20 7188 5660
Email; anthony.dorling@kcl.ac.uk
Abstract

Background: CD34⁺ α-smooth muscle actin (SMA)⁺ cells mediate intimal hyperplasia (IH) after mechanical endoluminal injury. We previously found that IH is tissue factor (TF) dependent. The precise phenotype of the CD34⁺ cells mediating IH is unknown and the mechanisms of TF are also unknown.

Objective: To define the phenotype of cells mediating IH and compare the effects of inhibiting (TF) on different subsets of CD34⁺ cells

Methods: Endoluminal injury was induced in C57BL/6 and two strains of mice expressing a human tissue factor pathway inhibitor (hTFPI) fusion protein on different subsets of CD34⁺ cells. Confocal microscopy, immunocytofluorescence and real-time PCR were used to determine phenotype.

Results: Neointimal cells in C57BL/6 mice were defined as a subset of fibrocytes (CD34⁺CD45⁺collagen-1⁺) expressing SMA, CD31, TIE-2, CXCR4 and CXCL12. Similar cells circulated post-injury and were also found in mice expressing hTFPI on CD34⁺CD31⁺ cells, though in these mice, hTFPI inhibited CD31⁺ fibrocyte hyperplasia, so no IH developed. Mice with hTFPI on all CD34⁺ α-SMA⁺ cells repaired arteries back to a pre-injured state. No CD31⁺ fibrocytes were found in these mice unless an anti-hTFPI antibody was administered. Similar findings in protease activated receptor (PAR)-1-deficient mice suggested hTFPI prevented thrombin signalling through PAR-1. In vitro, thrombin increased the number of CD31⁺ fibrocytes.

Conclusions: Inhibition of TF on CD31⁺ fibrocytes inhibits IH whereas inhibition on all CD34⁺ α-SMA⁺ cells (or PAR-1 deficiency) inhibits the appearance of CD31⁺ fibrocytes and promotes repair. These data enhance our understanding of IH and suggest novel ways to promote regenerative repair.
Key words: Blood Coagulation, Neointima, Thromboplastin, Vascular System Injuries.
Introduction

Inflammatory or mechanical injury to blood vessels is followed by a complex response comprising vascular remodeling and intimal hyperplasia (IH) resulting in reduced blood flow and ischaemia of downstream tissues. This type of response is an important cause of blood vessel narrowing in patients with coronary or cerebrovascular disease. Study of IH in murine models [1, 2] has implicated the involvement of coagulation proteins, particularly thrombin, which is generated by a serine protease cascade after exposure of blood to cells expressing tissue factor (TF).

Cells expressing TF are found in the adventitia of blood vessels, where they initiate haemostasis if a vessel is injured. However during an inflammatory response, TF is also expressed by other cell types including leukocytes. In addition to fibrin clot formation, the serine protease cascade generates molecules, including thrombin, that are capable of signalling through protease activated receptors (PAR), of which there are four types, designated PAR 1-4. Thrombin signals through PARs 1,3 and 4 [3]. PAR signalling plays an important role during inflammation [4], and has been shown to influence development of blood vessels including tumour-infiltrating blood vessels [5].

The precise cellular mechanisms through which TF, thrombin and PAR act in vivo during IH have hitherto not been characterised. One hypothesis is that they influence smooth muscle cells found in the media of vessels, promoting inflammation, proliferation and migration into the intima. However, significant numbers of intimal α-smooth muscle actin (SMA)⁺ cells are actually bone marrow (BM)-derived [6, 7] and recent data indicates these are predominantly CD45⁺ myeloid leukocytes, lacking markers of 'true' SMC [8].
We have previously confirmed this and also shown that these neointimal \(\alpha-SMA^+ \) cells in C57BL/6 mice (wild-type – WT) have a distinctive phenotype, co-expressing CD45, CD34 and multiple markers classically associated with endothelial cells, including P-selectin, Flk-1, CD31, TIE-2 and E-selectin [9-11], implying a similarity to hemangiocytes or vascular leukocytes, both of which are myeloid lineages involved in angiogenesis, as reviewed recently [12]. Importantly, the cells we described were TF positive.

To demonstrate the importance of TF on these cells, we showed that transgenic mice expressing a membrane-tethered human tissue factor pathway inhibitor (hTFPI) fusion protein ("\(\alpha-TFPI-Tg \)" mice) or a hirudin fusion protein on \(\alpha-SMA^+ \) cells failed to develop neointimal thickening [9]. Although these mice expressed the fusion protein on all medial smooth muscle cells throughout the vasculature, the post-injury phenotype was dependent on expression by bone marrow-derived cells and could be induced in WT mice by transfer of CD34\(^+\) cells purified from the circulation of injured Tg mice. After showing that manipulation of CD34\(^+\) cells to prevent PAR-1 signalling induced a similar phenotype, we proposed that IH was due entirely to the actions of thrombin (acting through PAR-1), on mobilised CD34\(^+\) \(\alpha-SMA^+ \) cells [10].

Most recently, after allogeneic aortic transplantation, we showed that compared to WT animals, \(\alpha-TFPI-Tg \) mice had very different subtypes of circulating CD34\(^+\) cells, particularly CD34\(^+\)\(\alpha-SMA^+ \) cells. These were predominantly CD45-negative in the Tg mice, whereas in WT they were CD45\(^+\) myeloid cells with the phenotype described above [11]. The impact of the hTFPI fusion protein on mobilisation or differentiation of CD34\(^+\) subsets was difficult to explain, but our findings were suggested by others to reveal a novel link between bone marrow and blood vessel [13].
In this new work we reverted to a wire-induced endoluminal injury model to explore the mechanisms behind the differences between WT and transgenic animals, and now define the CD34⁺ α–SMA⁺ cells involved in IH and demonstrate two distinct TF-dependent mechanisms acting to regulate both the numbers circulating after injury, and their proliferation after recruitment.
Materials and Methods

An expanded Methods section is available in the Online Data Supplement

Animals and experimental models. WT mice (Harlan Olac Ltd Bicester, UK), heterozygous CD31-TFPI-Tg [14], α-TFPI-Tg [9], homozygous PAR-1\(^{-/}\) (derived from strain B6.129S4-F2rtm1Ajc/J) and PAR-4\(^{-/}\) mice (derived from strain B6.129S4-F2rtm1.1Cgh) [15], were bred and maintained at King’s College London. All genetically modified animals have been maintained for more than 10 generations on a WT background. All procedures were approved by the UK Home Office. CD31-TFPI-Tg mice have been previously described in detail [14, 16, 17]. These express the hTFPI fusion protein in all CD31\(^{+}\) cells including vascular endothelium, platelets and monocytes. However, inclusion of a P-selectin sequence within the cytoplasmic tail means that it is expressed intracellularly in all these cells at rest [18, 19]. We have previously studied these mice in models of LPS endotoxaemia and antibody-mediated rejection, but never in this vascular injury model.

Wire-induced endoluminal carotid artery injury: This was performed as previously described [9, 10]. Briefly, a 100\(\mu\)m diameter wire was introduced and withdrawn three times into the common carotid via the external carotid artery before the external carotid artery was tied off. After confirming restoration of normal blood flow through the common carotid, the skin was closed and animals were allowed to recover.

Morphometric analysis and immunohistology. Sections were prepared and examined as previously described [9, 10]. For analysis of intimal and medial areas, at least three random sections were examined from each of six wire-injured arteries. For immunofluorescence (IF) analysis, consecutive sections were examined either by
For Peer Review

a Leica DM-IRBE confocal microscope (Leica, Wetzlar, Germany) and images processed using Leica-TCS-NT software or an IF microscope (Olympus BX51) and analysed with Micro-Manager 1.3 together with Image J software (BioArts, Maryland, USA). For the antibodies used, see the online data supplement.

CD34\(^+\) experiments. Purified CD34\(^+\) cells were isolated using magnetic beads (Miltentyi Biotech, Surrey UK) as previously described [9, 10] and had an average purity of 95%. Flow cytometric analysis was performed on a BD Biosciences LSR Fortessa and data analysed using FlowJo software. For immunocytofluorescence (ICF), at least 300 cells were counted at ×200 magnification from at least 3 random fields from 3 different wells. For functional experiments, CD34\(^+\) cells were purified from mice 2-4 days after injury and incubated in vitro with up to 50 nM thrombin (Enzyme Research Laboratories) in Iscove modified Dulbecco medium (Sigma-Aldrich) supplemented with 2% fetal bovine serum (StemCell Technology, Grenoble, France) for 0, 1 or 5 days. A single mouse can provide up to 3 \(10^6\) CD34\(^+\) cells. For adoptive transfer experiments, 1\(\times\)10\(^6\) CD34\(^+\) cells were injected via a tail vein on the day of injury. For RT-PCR analysis, RNA was extracted using the RNAqueous-4PCR kit (Ambion), cDNA made using the SuperScript VILO cDNA Synthesis Kit (Invitrogen), and RT-PCR was performed using Express qPCR SuperMix (Invitrogen) and using TaqMan Gene Expression Assays (Applied Biosystems) on a C100 Thermocycler with a CFX-96 Real-Time PCR Detection Optical Reaction Module (Bio Rad).
Statistical analysis. Data are presented as means ±SEM. Significance of the difference between 2 groups was determined by unpaired Student t or log rank test. Values of $P<0.05$ were considered statistically significant.
Results

Neointimal α-SMA$^+$ cells after endoluminal injury are CD34$^+$, CD45$^+$, collagen-1$^+$ fibrocytes expressing CD31.

Wire injury causes loss of endothelium and medial damage, followed by acute inflammation that peaks on day 1, clears by day 7 and is followed by progressive IH [9, 10, 20]. Confocal microscopy of injured WT vessels revealed progressive reappearance of CD31$^+$ cells at the site of injury, which were CD34$^+$, CD45$^+$ and collagen-1$^+$, a constellation of markers consistent with them being fibrocytes. Co-expression of α-SMA is sufficient to label them ‘myofibrocytes’ (i.e. fibrocytes expressing α-SMA) [21, 22], using terminology in common use, though of course these cells are not from a smooth muscle lineage. The CD31$^+$ myofibrocytes also co-expressed TF, E-selectin and fibronectin (Fig. 1A&B).

In the blood, approximately 50% of circulating CD34$^+$ cells were CD45$^+$ and collagen-1$^+$ (Suppl. Table 1) at the time of peak mobilization (2-3 days post-injury [10]). Double staining of purified CD34$^+$ cells with CD45 and collagen-1 confirmed all collagen-1$^+$ cells were CD45$^+$ consistent with them being fibrocytes (data not shown). 8% of the CD34$^+$ cells were α-SMA$^+$ and of these (Table 1), most were CD90$^+$, CXCL12$^+$ and CXCR4$^+$ and expressed CD45, Ly6-C, CD11b, CD115, F4/80, collagen-1 and fibronectin, consistent with most having a myofibrocyte phenotype. Most also expressed TIE-2 and approximately 30% co-expressed CD31 and Flk-1 consistent with the phenotype of the neointimal cells. Thus, CD45$^+$ collagen-1$^+$ α-SMA$^+$ CD31$^+$ myofibrocytes accounted for approximately 3% of circulating CD34$^+$ cells 3 days post-injury (Table 2). The circulating CD34$^+$ α-SMA$^+$ CD45$^+$ myeloid cells previously described after allogeneic aortic transplantation [11] were also collagen-1$^+$ (Suppl Table 2).
Response to injury in a strain of Tg mice expressing hTFPI on CD31+ fibrocytes alone.

Analysis of hTFPI fusion protein expression by circulating leukocytes in CD31-TFPI-Tg mice 3 days post-wire-induced injury revealed cell surface expression on 1-2% of CD34+ all of which were CD45+ (Fig. 2A&B). No expression was seen on the surface of CD34-negative cells.

Conventional immunocytofluorescence analysis showed hTFPI in 53 (±4)% of CD34+ cells that were CD31+ (Fig. 2C), but repeat analysis with anti-hTFPI mAb applied before permeabilisation showed that cell membrane hTFPI was expressed by only 5% of the CD31+ CD34+ cells (Fig. 2D), all of which were α-SMA+ (illustrated in Fig. 2E) and of these, 84 (±16)% were collagen-1+ and 53 (±17)% fibronectin+. Therefore, cell surface hTFPI in these mice was found exclusively on CD31+ myofibrocytes and was confined intracellularly in all other circulating cells, consistent with intracellular secretory granule localisation in these cells as previously defined [18, 19].

Examination of circulating CD34+ cells and specifically the α-SMA+ CD34+ subset in these mice revealed few significant differences compared to WT (Suppl Table 1, Table 1), except that CD31-TFPI-Tg mice had fewer E-selectin+, and fewer F4/80+ α-SMA+ double positive cells. Nevertheless, they had similar proportions of fibrocytes, myofibrocytes and CD31+ myofibrocytes as WT mice (Table 2). Administration of an anti-hTFPI antibody had no significant influence on the proportions of most of these subsets of CD34+ cells (Table 1,2, suppl table 1), though did increase the proportion of CD34+ α-SMA+ cells expressing angiopoietin-2.

CD31+ myofibrocytes expressing hTFPI were recruited to the intima after wire-induced injury (Fig. 1C&D). But in contrast to WT mice, these mice did not develop
progressive IH at day 28 and the neointima consisted of a single cell layer of
myofibrocytes (Fig. 1D). The lack of IH was due to the hTFPI, as administration of an
inhibitory anti-hTFPI Ab caused hyperplasia (Fig 2F). Adoptive transfer of CD34+
cells from these mice to injured WT confirmed that Tg CD34+ cells inhibited the
development of IH (Fig. 2G). When performed in the reverse direction, WT CD34+
cells caused Tg mice to develop IH, though the lesions were not as profound as
those seen in WT animals (Fig 2G).

**CD34+ cells in α-TFPI-Tg mice, a strain in which endoluminal injury is followed
by regenerative repair.**

We did further experiments in a different strain of mice (α-TFPI-Tg mice), which
responds to vascular injury by regenerating endothelium without IH [9-11]. As
expected in these mice, newly recruited CD31+ cells were CD34+ but negative for
α–SMA, CD45, TF, E-selectin and collagen-1 (Fig. 3A&B). This phenotype was
hTFPI-dependent, as an inhibitory anti-hTFPI antibody given at the time of injury led
to recruitment of CD31+ myofibrocytes (Fig 3C&D). To study recruitment of α-SMA+
cells, α–TFPI-Tg CD34+ cells were adoptively transferred into injured WT mice, as
previously reported [9]. Transferred CD34+α-SMA+ cells expressing hTFPI were
visible by day 3 (Fig. 3E&F). In these analyses, for methodological reasons, vWF
rather than CD31 was used as the marker for endothelial antigens; vWF+ cells were
first visible between days 5-7, luminal to areas of hTFPI-expression and distinct from
areas of CD45+ staining. By day 28 a new endothelium was visible sitting on a layer
of hTFPI+ cells.

Single stain immunocytofluorescence analysis of the circulating CD34+ cells in these
mice suggested that the proportion of fibrocytes (CD34+ CD45+ collagen-1+) was
similar as in WT (Suppl. Table 3). However double staining revealed significant
differences in the phenotype of CD34\(^+\) \(\alpha\)-SMA\(^+\) cells, (Table 3), the majority of which
expressed NG2 and CD140b, consistent with a pericyte lineage and there were few
collagen-1\(^+\) cells and no CD31\(^+\) cells (Table 2). All these differences were hTFPI-
dependent (Fig 3G, Table 3).

Flow cytometry showed that cell surface hTFPI was expressed by 3-5\% of CD34\(^+\)
(but not CD34\(^-\)) cells (Fig. 4 A&B). By conventional immunocytofluorescence, it was
found in all \(\alpha\)-SMA\(^+\) cells, including CD45\(^+\) and CD45\(^-\) subsets (Fig 4C-H). Repeat
analysis with anti-hTFPI mAb applied before permeabilisation showed that only 60\%
had cell membrane hTFPI, none of which co-expressed CD45, collagen-1 or
fibronectin, but all were NG2\(^+\) (Fig 4) and 55\% were CD140b\(^+\). Thus, cell surface
hTFPI fusion protein was expressed exclusively by the population of CD34\(^+\)CD45\(^-\)
negative \(\alpha\)-SMA\(^+\) cells but was confined intracellularly in the small number of
myofibrocytes present.

Based on the assumption that only cell-surface hTFPI has biological function, all this
data suggests that the profound changes in the subsets of CD34\(^+\)\(\alpha\)-SMA\(^-\)cells
circulating after injury, along with the repair phenotype, is due to expression of the
hTFPI fusion protein by CD34\(^+\)NG2\(^+\) cells.

Real-time PCR analysis of collagen-1 expression.

Real time PCR analysis of CD34\(^-\) and CD34\(^+\) fractions from blood mononuclear cells
of all three strains of mice confirmed that collagen-1 was expressed only by CD34\(^+\)
cells (Fig 4I). Moreover, there was a close correlation between collagen-1 expression
(normalised to TBP) by CD34\(^+\)\(\alpha\)-SMA\(^+\) cells and the proportion of CD34\(^+\)\(\alpha\)-SMA\(^+\)
cells expressing collagen-1 by immunocytofluorescence (Fig. 4I&J).
Importance of PAR-1 for the presence of the myofibrocytes expressing CD31.

A PAR-1 antagonist administered on the day of injury significantly reduced the CD31$^+$ myofibrocytes in WT mice (Fig. 4K) and PAR-1$^{-/-}$ animals had none of these cells detectable after injury, in contrast to PAR-4$^{-/-}$ mice (Fig. 4K). Instead, CD34$^+$ α−SMA$^+$ cells in PAR-1$^{-/-}$ mice were mostly CD45- and collagen-1-negative (Suppl. Table 4). Additionally, in vitro incubation of CD34$^+$ cells with thrombin [10] promoted the outgrowth of CD31$^+$ α−SMA$^+$ cells from PAR-4$^{-/-}$ but not PAR-1$^{-/-}$ mice (Fig. 4L&M and Table 8). All this indicates that PAR-1 is required for CD31$^+$ myofibrocytes to appear in the circulation.

CD31$^+$ myofibrocytes also outgrew from thrombin-incubated α−TFPI-Tg CD34$^+$ cells (Fig. 4N-P, Suppl. Table 5), but not when hTFPI$^+$ cells were depleted, or when α−SMA$^+$ cells were absent naturally, as when taken from sham-injured mice. These data indicate that thrombin-mediated outgrowth of CD31$^+$ myofibrocytes in vitro involves a direct effect of thrombin on an hTFPI-expressing CD34$^+$α−SMA$^+$ cell.
Discussion

Although the clinical relevance of the wire-induced injury model is debated, it is a well-characterised model of endothelial and medial damage in which the response to injury has been studied in detail, with strengths and weaknesses when it comes to interpreting how data relates to human pathology. Our novel contributions in this paper are to define as fibrocytes the α-SMA$^+$ cells accumulating in neointimal hyperplasia and define two TFG-dependent mechanisms regulating their behaviour.

The term ‘fibrocyte’ is old, but cells with a phenotype now called fibrocytes (myeloid cells expressing CD34 and collagen-1) were first described in a mouse wound-healing model [23]. Subsequently, α-SMA expression in cells outgrown from human mononuclear cells (called ‘myofibrocytes’) has been defined, particularly after incubation with TGF-β1 [24]. The role of fibrocytes in inflammation is still not clear, though they have been linked to chronic inflammatory diseases in humans [22]. In experimental models, myofibrocytes have been associated with IH in sheep [25] and rats [26]. The function of fibrocytes expressing CD31 [21] have not been defined.

Compared to previous descriptions, the phenotype of the myofibrocytes described here is atypical and is reminiscent of TIE-2 expressing monocytes or vascular leukocytes [12]. Although consistent with the remarkable plasticity shown by these lineages, this is the first description of this particular constellation of markers on myeloid cells. Consistent with the data indicating the importance of CXCL12/CXCR4 interactions for the development of IH [27], the CD31$^+$ myofibrocytes in this model appeared capable of responding to, and perhaps maintaining CXCL12 chemokine gradients.

The cells accumulating in the neointima of WT mice accounted for $\leq 0.05\%$ of cells found in peripheral blood, a frequency that made characterisation of the cells by flow
cytometry impractical. The immunocytofluorescence technique we employed is time consuming, labour intensive and does not allow comparison of expression levels. However, it is highly suited to analysis of small numbers of cells, reliably assesses protein expression and is easy to interpret. Our interpretation of the immunocytofluorescence data was corroborated by RT-PCR data from all three strains.

With reference to the aims of this study, an important insight into the importance of TF came from CD31-TFPI-Tg mice, which did not develop IH. When CD34⁺ cells from these mice were adoptively transferred into WT mice, there was significant inhibition of IH, to the extent seen in Tg mice. Having confirmed again in experiments reported here that adoptively transferred CD34⁺ cells are recruited to the site of injury and considering that cell-membrane expressed hTFPI fusion protein was found only on CD31⁺ myofibrocytes, we propose that the primary action of hTFPI in these mice was to prevent CD31⁺ myofibrocytes, from undergoing hyperplasia at the site of injury. This would be compatible with the immunohistological analysis of vessels in CD31-TFPI-Tg mice, which showed a single layer of luminal CD31⁺ myofibrocytes for up to 28 days post-injury. If correct, the clear implication is that hyperplasia of recruited myofibrocytes is TF-dependent. Our assumption that only cell-surface hTFPI had biological activity is logical. However, we cannot exclude a role for the intracellular hTFPI present in other circulating cells, nor exclude the possibility that TFPI expressed by endothelial cells played a role in the phenotype of these mice, particularly since CD31-TFPI-Tg mice administered WT CD34⁺ cells developed IH that was less severe than WT mice.

In contrast to the situation in CD31-TFPI-Tg mice, expression of hTFPI under an α-SMA promoter had a profound influence on the sub-types of CD34⁺α-SMA⁺ cells
circulating after injury, suppressing the number of myofibrocytes \((CD34^+ \alpha\text{-SMA}^+\text{collagen}-1^+)\), particularly those expressing CD31. Instead, CD34^+ CD45-negative NG2^+ \alpha\text{-SMA}^+ cells emerged in the circulation and in these mice, appeared to be the only cells with the hTFPI fusion protein on their cell surface. Our data do not directly address the mechanism by which hTFPI expression in \alpha\text{-SMA}^+ cells causes these cells to appear in \alpha\text{-TFPI-Tg} mice. However, the data presented here strongly suggest that inhibition of thrombin generation and subsequent signaling through PAR-1 on CD34^+ cells is sufficient to explain the absence of CD31^+ myofibrocytes. We are currently investigating whether hTFPI-dependent changes in expression of factors such as angiopoietins by CD34^+ cells (some of which are illustrated in tables 1 and 3), are important.

In this work, we have not directly assessed whether medial smooth muscle cells (which are obviously \alpha\text{-SMA}^+ hTFPI^+ in \alpha\text{-TFPI-Tg} mice) are involved in vessel repair. However, we have previously shown that the phenotype of \alpha\text{-TFPI-Tg} mice is dependent on fusion protein expression by bone marrow-derived cells [9], suggesting no role for medial smooth muscles cells. In addition, adoptive cell transfer experiments indicated that CD34^+ cells from these mice, injected into WT mice were recruited to the vessel wall and that transfer of Tg CD34^+ cells was sufficient to induce regeneration of a quiescent endothelium. We therefore conclude that re-endothelialisation at the site of injury in \alpha\text{-TFPI-Tg} mice occurs because of the presence of the CD34^+ CD45-negative NG2^+ \alpha\text{-SMA}^+ cells in the circulation.

NG2 and \alpha\text{-SMA} are expressed by pericytes. Whilst classical pericytes (defined by their location within the vascular basement membrane) are CD34^-, CD34^+ cells with a pericyte-like phenotype have been defined [28]. Other accepted phenotypic markers include CD140b, desmin and CD13 [29], though there is heterogeneity of expression.
of these between different vascular beds and at different stages of maturity, so the
cells in α-TFPI-Tg mice could be from a pericyte lineage.
There is some evidence linking pericytes to fibrosis. Humphreys et al, working in a
renal model, suggested that pericytes were myofibrocyte / blast precursors [30],
consistent with more recent data indicating pro-inflammatory myofibroblasts in skin or
skeletal muscle wounds derive from ADAM12+ pericytes [31]. Our data from α-TFPI-
Tg mice are compatible with these, because thrombin-dependent outgrowth of CD31+
myofibrocytes from α-TFPI-Tg mice was dependent on the presence of the hTFPI+
population, and we found cell membrane expressed hTFPI only on NG2+ cells.
However, the data are also compatible with a more complex relationship between the
two cell types, involving thrombin-dependent production of pericyte-derived factors
that promote myofibrocyte development.
In summary, we have identified a previously undefined population of CD31+
myofibrocytes in the circulation post-vascular injury, shown that these are the cells
recruited to the neointima, implicated TF on these cells as the major stimulus driving
their hyperplasia and identified an equilibrium between circulating pericytes and
myofibrocytes, maintained by TF and thrombin. These findings help explain the
mechanistic link between TF/thrombin and the cellular response to endoluminal
injury, redefine our understanding of vascular remodelling in these mouse models
and may have significant implications for understanding human IH and promoting
regenerative repair.
Acknowledgements

This work was funded by the Medical Research Council UK (Award G0801965). We acknowledge additional financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust. We also acknowledge support from the MRC Centre for Transplantation.
References

inflammation but do not differentiate into smooth muscle cell lineages. *Circulation.* 2010; **122**: 2048-57.

Table 1: Double stain immunocytofluorescence analysis of CD34⁻α-SMA⁻ cells

<table>
<thead>
<tr>
<th></th>
<th>CD34⁻α-SMA⁻ cells – Isolated day 3 post-injury</th>
<th>CD31-TFPI-Tg</th>
<th>p value</th>
<th>CD31-TFPI-Tg + anti-hTFPI</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>% (±SEM) of CD34⁻α-SMA⁻ cells expressing these ligands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD90</td>
<td>100 (±0)</td>
<td>100</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Collagen-1</td>
<td>91.9 (±4)</td>
<td>74.6 (±9.5)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>65.8 (±6)</td>
<td>58.6 (±6)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Flk-1</td>
<td>42.6 (±10)</td>
<td>30.7 (±8.3)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>CD31</td>
<td>35.8 (±8.7)</td>
<td>32.4 (±8.8)</td>
<td>NS</td>
<td>37.4 (±10.4)</td>
<td>NS</td>
</tr>
<tr>
<td>CD45</td>
<td>54.4 (±18)</td>
<td>51.2 (±12)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>F4/80</td>
<td>57 (±1.8)</td>
<td>32.6 (±3.9)</td>
<td>0.005</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Ly6-C</td>
<td>57.4 (±6.3)</td>
<td>55.7 (±11)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>CD11b</td>
<td>68.3 (±9.3)</td>
<td>53.7 (±2)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>CD115</td>
<td>56.7 (±14)</td>
<td>46.7 (±6.7)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>TIE-2</td>
<td>59.1 (±14)</td>
<td>66.2 (±16)</td>
<td>NS</td>
<td>72.3 (±6.4)</td>
<td>NS</td>
</tr>
<tr>
<td>CD140b</td>
<td>0</td>
<td>3.7 (±3.7)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>NG2</td>
<td>0</td>
<td>7.7 (±4.4)</td>
<td>NS</td>
<td>ND</td>
<td>-</td>
</tr>
<tr>
<td>Angiopoietin-1</td>
<td>47.9 (±2.1)</td>
<td>42.1 (±4.8)</td>
<td>NS</td>
<td>61.4 (±7.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Angiopoietin-2</td>
<td>37.9 (±2.8)</td>
<td>32.2 (±6.1)</td>
<td>NS</td>
<td>70.9 (±6.8)</td>
<td>0.01</td>
</tr>
<tr>
<td>CXCL12</td>
<td>97.4 (±2.6)</td>
<td>69.6 (±16.1)</td>
<td>NS</td>
<td>79.6 (±4.6)</td>
<td>NS</td>
</tr>
<tr>
<td>CXCR4</td>
<td>93.3 (±6.7)</td>
<td>61.5 (±14.3)</td>
<td>NS</td>
<td>78.3 (±6)</td>
<td>NS</td>
</tr>
</tbody>
</table>

† CD31-TFPI-Tg + anti-hTFPI vs. CD31-TFPI-Tg

ND not done

Table shows proportion of CD34⁻α-SMA⁻ cells expressing the indicated molecules, expressed as % (±SEM) of total CD34⁻ cells
Table 2 – Summary of fibrocyte subtypes (by immunocytofluorescence) in circulation of the three strains of mice

<table>
<thead>
<tr>
<th>Strain</th>
<th>Subtypes of fibrocytes in circulation 2-3 days post-injury (% of CD34⁺ cells)</th>
<th>Phenotype (Day 28)</th>
<th>Administration of anti-hTFPI antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CD34⁺ collagen-1⁺</td>
<td>CD34⁺ collagen-1⁺ α-SMA⁺</td>
<td>CD34⁺ collagen-1⁺ α-SMA⁺, CD31⁺</td>
</tr>
<tr>
<td>WT</td>
<td>46%</td>
<td>7%</td>
<td>3%</td>
</tr>
<tr>
<td>CD31⁻ TFPI⁻ Tg</td>
<td>44%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>α-TFPI⁻ Tg</td>
<td>35%</td>
<td>0.01%</td>
<td>0%</td>
</tr>
</tbody>
</table>

IH intimal hyperplasia; EC Endothelial cells;

Table shows proportion of CD34⁺ cells expressing the indicated molecules, expressed as % (±SEM) of total CD34⁺ cells
Table 3: Double stain immunocytofluorescence analysis of CD34\(^+\) α-SMA\(^+\) cells in α-TFPI-Tg mice

<table>
<thead>
<tr>
<th>CD34(^+)α-SMA(^+) cells – Day 3</th>
<th>% (±SEM) of CD34(^+)α-SMA(^+) cells expressing these ligands</th>
<th>p value vs WT</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-TFPI-Tg (vs CD31-TFPI-Tg)*</td>
<td>α-TFPI-Tg + anti-hTFPI</td>
<td></td>
</tr>
<tr>
<td>CD90</td>
<td>100</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Collagen-1</td>
<td>3.7 (±3.7)</td>
<td>0.00009 (0.002)</td>
<td>85.7 (±1.4)</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>2.8 (±2)</td>
<td>0.009 (0.001)</td>
<td>58.1 (±8.3)</td>
</tr>
<tr>
<td>Flk-1</td>
<td>0</td>
<td>0.01 (0.02)</td>
<td>ND</td>
</tr>
<tr>
<td>CD31</td>
<td>0</td>
<td>0.01 (0.02)</td>
<td>50 (±12.4)</td>
</tr>
<tr>
<td>CD45</td>
<td>12.2 (±6.2)</td>
<td>0.02 (0.03)</td>
<td>41.3 (±4)</td>
</tr>
<tr>
<td>F4/80</td>
<td>10.2 (±6.5)</td>
<td>0.002 (0.04)</td>
<td>50.3 (±11)</td>
</tr>
<tr>
<td>Ly6-C</td>
<td>16.9 (±2.6)</td>
<td>0.004 (0.0005)</td>
<td>53.1 (±1.6)</td>
</tr>
<tr>
<td>CD11b</td>
<td>21.7 (±6)</td>
<td>0.01 (0.007)</td>
<td>53 (±10)</td>
</tr>
<tr>
<td>CD115</td>
<td>9.3 (±4.7)</td>
<td>0.03 (0.01)</td>
<td>45 (±6.4)</td>
</tr>
<tr>
<td>TIE-2</td>
<td>31.5 (±11)</td>
<td>NS (NS)</td>
<td>69.9 (±6.3)</td>
</tr>
<tr>
<td>CD140b</td>
<td>35.4 (±7.5)</td>
<td>0.009 (0.02)</td>
<td>4.8 (±4.8)</td>
</tr>
<tr>
<td>NG2</td>
<td>66.2 (±4.4)</td>
<td>0.0001 (0.0007)</td>
<td>10 (±6.5)</td>
</tr>
<tr>
<td>Angiopoietin-1</td>
<td>96.3 (±3.7)</td>
<td>0.0003 (0.009)</td>
<td>48.7 (±1.3)</td>
</tr>
<tr>
<td>Angiopoietin-2</td>
<td>4.2 (±4)</td>
<td>0.003 (0.02)</td>
<td>50.9 (±15.2)</td>
</tr>
<tr>
<td>CXCL12</td>
<td>9.5 (±5.9)</td>
<td>0.0002 (0.02)</td>
<td>62.5 (±12.5)</td>
</tr>
<tr>
<td>CXCR4</td>
<td>16.1 (±12.2)</td>
<td>0.005 (NS)</td>
<td>71.9 (±1.7)</td>
</tr>
</tbody>
</table>

* see data in table 1

† α-TFPI-Tg + anti-hTFPI vs. α-TFPI-Tg

Table shows proportion of CD34\(^+\) α-SMA\(^+\) cells expressing the indicated molecules, expressed as % (±SEM) of total CD34\(^+\) cells
Figure Legends

Figure 1- Recruitment to intima of WT and CD31-Tg.

3-colour confocal overlay images of consecutive frozen sections from post-injury carotid arteries. Day 0 = 20 hours post-injury. All sections stained with DAPI (blue): (red); anti-α-SMA,-CD31, -TF or -E-selectin as indicated and (green); anti-CD31, -34, -45,-collagen-1, hTFPI or fibronectin as indicated. Yellow indicates co-localisation.

A; WT C; CD31-TFPI-Tg. B & D; show enlarged images from the boxed areas in A & C. Images from a single artery representative of n=6 animals from each strain. Experiment performed twice.

Figure 2 – Phenotype of CD31-TFPI-Tg mice

A&B: Flow cytometry of: A; whole blood mononuclear cells, gated on CD34 and CD45 expression; B; purified CD34⁺ cells. Open profile hTFPI, closed profile isotype control. Flow cytometry repeated x3.

C-E: 3-colour immunocytofluorescence of fixed/permeabilised purified CD34⁺ cells stained with DAPI (blue) and hTFPI (green) with (red) either CD31 (C&D) or α-SMA (E). In all, the right panel = overlay image. In D&E, the anti-hTFPI was applied before fixation.

F: Three colour IF of vessels from CD31-TFPI-Tg mice day 28 post-injury. Stained with DAPI (blue), anti-α-SMA (red) & anti-CD31 (green). Yellow = co-localisation. Mice received anti-hTFPI Ab on day of injury. Scale bars 100µm.

G: Morphometric analysis of injured vessels from experiments using CD31-TFPI-Tg mice. Graphs show neointimal area + SEM (left) and neointima:media ratios + SEM (right) of vessels 28 days post-injury. Animals given 7.5 x10⁵ CD34⁺ cells on the day
of injury. Data derived from three random sections from each of 5 different vessels. Derived from 2 independent experiments.

Figure 3 - Recruitment of cells to intima of α-TFPI-Tg arteries

A&B: 3-colour confocal overlay images of consecutive frozen sections from carotid arteries from α-TFPI-Tg mice. Day 0 = 20 hours post-injury. A: all sections stained with DAPI (blue) and (red); anti-α-SMA, -CD31, -TF or -E-selectin as indicated and (green); anti-CD31, -CD34, -CD45 or -collagen-1 as indicated. B shows enlarged images from the boxed area in A. Yellow indicates co-localisation. White arrows in images in B indicate the same CD31⁺ cells. Images from a single artery representative of n=6 animals. Experiment performed twice.

C&D Three colour immunohistological analysis of consecutive frozen sections from day 28 carotid arteries from α-TFPI-Tg mice that received isotype control (C) or anti-hTFPI Ab (D) on day of injury. All sections stained with DAPI (blue) and anti-α-SMA (red) and either (green) anti-TF (left panel), anti-CD31 (middle panel) or anti-E-selectin (right panel) as indicated. Yellow indicates co-localisation.

E&F: 2-colour immunohistological analysis from WT mice 7 days post-injury, each given 7.5 x10⁵ CD34⁺ cells from α-TFPI-Tg mice on day of injury. Sections with (red); anti-α-SMA, -vWF, -CD45 or –CD34 as indicated and (green); anti-hTFPI; F shows enlarged images from the boxed areas in E. White arrows in E indicate the same area of lumen in consecutive sections. Images from a single artery representative of n=6 animals. Experiment performed twice.
G: Three colour immunocytofluorescence images of CD34⁺ cells from α-TFPI-Tg mice, 2 days posy-injury. All mice received anti-hTFPI antibody on day of injury. Right panel = overlay images. Arrows show double-positive cells.

Figure 4: Phenotype of CD34⁺ cells from α-TFPI-Tg

A: Flow cytometry of whole blood mononuclear cells from α-TFPI-Tg mice, showing hTFPI fusion protein by subsets of cells analysed by CD34 expression.

B: Flow cytometry of purified CD34⁺ cells. Open profile; hTFPI. Closed profile; isotype control. Flow cytometry repeated x3

C-H: Representative three colour immunocytofluorescence images from α-TFPI-Tg mice. Blue = DAPI. Left panel (red) stained with anti-α-SMA, -CD31 or -hTFPI as indicated; Middle panel (green) stained with anti-CD31, hTFPI, -CD45, or -NG2 or collagen-1 as indicated. Right panel = overlay images. Arrows show double-positive cells.

I: Real time RT-PCR analysis of collagen-1 expression in CD34-negative (blue bars) and CD34⁺ fractions (red). Collagen-1 expression is normalised to housekeeping TBP RNA.

J: Relationship between % of the CD34⁺α-SMA⁺ cells expressing collagen-1 by immunocytofluorescence (abscissa) and RT-PCR results in I.

K: Analysis of phenotype of WT or PAR⁻/⁻ CD34⁺ cells 3 days post injury, determined by immunocytofluorescence. White = total α-SMA⁺ cells, Black = α-SMA⁺CD31⁺ cells; Grey = total CD31⁺ cells.

L-P: CD34⁺ cells were incubated in medium with thrombin for 1 or 5 (default) days. White bars = α-SMA⁺CD31⁻ cells, Black = α-SMA⁺CD31⁺; Grey = α-SMA⁻CD31⁺ cells. In O, the CD34⁺ were depleted of hTFPI⁺ cells prior to incubation. Data derived
from counting at least 100 stained cells from each of 5 different animals. Experiments performed twice.
Figure 1

A, B, C, D

Day 0, Day 5, Day 7, Day 14

e-SMA/Cd31, CD31/Cd34, Cd34/Cd45, Cd45/Cd31

190x279mm (300 x 300 DPI)
Figure 2

A

B

C

D

E

F

G

190x279mm (300 x 300 DPI)
Figure 3
Fibrocytes mediate intimal hyperplasia post-vascular injury and are regulated by two tissue factor-dependent mechanisms.

Chen: intimal hyperplasia, TF & fibrocytes.

D. Chen,
L. Ma,
E-L Tham,
S. Maresh,
R. I. Lechler,
J. H. McVey,
A. Dorling.

Medical Research Council (MRC) Centre for Transplantation, King’s College London, King’s Health Partners, Guy’s Hospital, Great Maze Pond, London UK SE1 9RT

Corresponding Author: Prof. Anthony Dorling, MRC Centre for Transplantation, King’s College London, Guy’s Hospital, London, UK SE1 9RT

Tel +44 (0)20 7188 5880 Fax +44 (0)20 7188 5660
Email; anthony.dorling@kcl.ac.uk
Detailed Materials and Methods

Animals and experimental models. C56BL/6 (WT) mice (Harlan Olac Ltd Bicester, UK), heterozygous CD31-TFPI-Tg [1], α-TFPI-Tg [2], homozygous PAR-1\(^{+}\) (derived from strain B6.129S4-F2rtm1Ajc/J) and PAR-4\(^{+}\) mice (derived from strain B6.129S4-F2rl3tm1.1Cgh) [3], were bred and maintained at King’s College London. All genetically modified animals have been maintained for more than 10 generations on a WT background. All procedures were approved by the UK Home Office.

Wire-induced endoluminal carotid artery injury: This was performed as previously described [2, 4]. Briefly, a 100\(\mu\)m diameter wire was introduced and withdrawn three times into the common carotid via the external carotid artery before the external carotid artery was tied off. After confirming restoration of normal blood flow through the common carotid, the skin was closed and animals were allowed to recover from anaesthesia. Some mice received anti-human TFPI (Enzyme Research Laboratories, Swansea, UK) or Isotype control (both 80 ng/g in 50 \(\mu\)l saline) by tail vein immediately after injury. Others received 10\(\mu\)g/kg Mercaptopropionyl-Phe-Cha-Arg-Lys-Pro-Asn-Asp-Lys-NH\(_2\) (PAR-1 antagonist), 200 ng of Angiopoietin-2 (R&D Systems, Oxon, UK) or 0.1% bovine serum albumin (vehicle – Sigma, Dorset UK) in 50 \(\mu\)l saline by tail vein injection once a day for 2 days.

Morphometric analysis and immunohistology. Arterial sections were prepared and examined as previously described [2, 4]. Briefly, vessels were isolated and embedded in OCT (VWR International, Dorset, UK) by freezing with dry ice, sectioned at 4-5\(\mu\)m thickness and fixed in methanol at –20\(^\circ\)C. For
analysis of intimal and medial areas, sections were stained using the Accustain™ Elastin Stain kit (Sigma) and examined using LUCIA Imaging Software (Lucia Software, Exeter, UK) associated with a Leitz microscope (Leitz, Wetzlar, Germany) equipped with a Nikon digital camera DXM 1200F (Nikon Corporation, Japan) and objectives EF x10/0.25 and EF x25/0.50. At least three random sections were examined from each of six wire-injured arteries. For immunofluorescence (IF) analysis, consecutive sections were double-stained with appropriate combinations of mouse anti-human α-SMA conjugated with Cy3 (Sigma-Aldrich, MO, USA), human TFPI (American Dignostica, CT, USA); rabbit anti-mouse CD31 (Reprokine, NY USA), CD45, E-selectin, α-SMA, fibronectin, collagen 1 (Abcam, Cambridge, UK), TF [5] human von Willebrand Factor (vWF) (Dako, Cambridge, UK); Goat anti-NG2 (Abcam) or rat anti-mouse CD34, CD31 (BD Biosciences, Oxford, UK) and CD45 (Abcam). The following anti-IgG FITC-conjugated antibodies were used: sheep anti-mouse, goat anti-rat, goat anti-rabbit and rabbit anti-goat (Sigma). All stained sections were mounted in Vectashield with DAPI (Vector Laboratories Inc, CA USA). Sections were directly captured and examined by a Leica DMIRBE confocal microscope (Leica, Wetzlar, Germany) equipped with Leica digital camera AG and a confocal laser scanning system with excitation lines at 405, 488, 543, and 560 nm at magnifications 10x/0.40CS and 20x/0.70IMM (Leica, Planapo, Wetzlar, Germany). Images were processed using Leica-TCS-NT software associated with the Leica confocal microscope. Other sections were captured by IF microscope (Olympus BX51) and analysed with Micro-Manager 1.3 together with Image J software (BioArts, Maryland, USA). All IF was performed at 22° C. For estimations of
cell density, average counts were derived from examination of at least six random sections from each artery.

CD34⁺ **experiments.** Murine peripheral blood was collected into 1mM EDTA or 3.2% sodium citrate and diluted with 2% FCS-PBS. Pelleted cells were re-suspended in ACK buffer and left at room temperature for 25 minutes, before washing to remove platelets.

For flow cytometric analysis, cells were incubated with anti-mouse CD16/CD32 FcR block (eBioscience, Hatfield UK) before staining with combinations of LIVE/DEAD(R) Fixable Aqua Dead Cell Stain (Invitrogen, Paisley, UK), rat anti-mouse CD34 PE (BD Biosciences), CD45 eFluor® 450 (eBioscience) and mouse anti-human TFPI followed by APC-conjugated rat anti-mouse IgG1 (BD Bioscience). Appropriate isotype controls were used to establish gating strategy. Samples were run on a BD Biosciences LSR Fortessa and data analysed using FlowJo software.

Purified CD34⁺ cells were isolated using magnetic beads (Miltentyi Biotech, Surrey UK) as previously described [2, 4] and had an average purity of 95%.

For immunocytofluorescence (ICF), cells were fixed with cold methanol for 10 minutes on polylysine-coated slides (VWR International, Leuven, Belgium) before staining with combinations of mouse anti-human α-SMA conjugated with Cy3 (Sigma-Aldrich); rat anti-mouse Flk-1, Ly6-C, CD11b or CD115 (eBioscience), CD140b (Biolegend, Cambridge, UK), CD31 (BD Biosciences), CD45, F4/80, CD90, α-SMA (Abcam); mouse anti-human TFPI (American Diagnostia); Goat anti-PAR-1 (Santa Cruz Biotechnology, CA, USA), NG2 (Abcam); rabbit anti– mouse TF [5], PAR-4 (AutogenBioclear, Wiltshire,
United Kingdom), E-selectin, Angiopoietin-1, Angiopoietin-2, TIE-2, fibronectin or collagen-1 (Abcam). Second layer staining was with a goat anti-rat IgG-FITC, goat anti-rabbit IgG-FITC or rabbit anti-goat IgG-FITC (all from Sigma-Aldrich). Some cells were triple-stained with mouse anti-human α-SMA conjugated with Cy3, rabbit anti-CD31 (Reprokine) and rat anti-mouse CD45 (Abcam) followed by FITC-conjugated anti-rabbit IgG and AMCA-conjugated donkey anti-rat IgG (Millipore, MA, USA). To determine cell surface expression of the hTFPI fusion protein, CD34+ cells were directly stained with rabbit anti-human TFPI (American Dignostica) before fixation with cold methanol. TRITC-conjugated goat anti-rabbit IgG (Sigma) was used as secondary. Labelled cells were captured at the laser lines 405, 488 and 543 nm on an IF microscope equipped with objectives UPLANFL 20X/NA0.50 AND 40X/NA 0.75 (Olympus BX51) and a charge-coupled device (CCD) camera (Q Imaging, Surrey, BC Canada) and analyzed as above. To determine subpopulation densities, a total of 300 cells were counted at ×200 magnification from at least 3 random fields from 3 different wells.

For functional experiments, CD34+ cells were purified from mice 2-4 days after injury and incubated in vitro with up to 50 nM thrombin (Enzyme Research Laboratories) in Iscove modified Dulbecco medium (Sigma-Aldrich) supplemented with 2% fetal bovine serum (StemCell Technology, Grenoble, France) for 0, 1 or 5 days. For adoptive transfer experiments, 1×10^7 CD34+ cells were injected via a tail vein.

For analysis by RT-PCR, cells were stored in RNAalater (Ambion) at -20°C until use. RNA was separated from these cells using the RNAqueous-4PCR kit (Ambion), according to manufacturer’s protocol and RNA concentration
and quality was determined using a Nanophotometer (Implen). cDNA was made from the extracted RNA using the SuperScript VILO cDNA Synthesis Kit (Invitrogen). cDNA synthesis was run on a S100 Thermal Cycler (Bio Rad). cDNA is then stored in -20°C until use. RT-PCR was performed using Express qPCR SuperMix (with premixed ROX) (Invitrogen) and using TaqMan Gene Expression Assays (Applied Biosystems) for Collagen 1, Assay ID: Mm00801666_g1 (Applied Biosystems) and TBP, Assay ID: Assay ID: Mm00435546_m1(Applied Biosystems). All RT-PCR were run on a C100 Thermocycler with a CFX-96 Real-Time PCR Detection Optical Reaction Module (Bio Rad).

Statistical analysis. Data are presented as means ±SEM. Significance of the difference between 2 groups was determined by unpaired Student t or log rank test. Values of $P<0.05$ were considered statistically significant.
References

3 Connolly AJ, Ishihara H, Kahn ML, Farese RV, Jr., Coughlin SR. Role of the thrombin receptor in development and evidence for a second receptor. *Nature*. 1996; **381**: 516G9. 10.1038/381516a0.

Suppl. Table 1: Single stain immunocytofluorescence analysis of CD34+ cells

<table>
<thead>
<tr>
<th></th>
<th>CD34+ cells – Isolated day 3 post-injury</th>
<th>p value</th>
<th>CD31-TFPI-Tg + anti-hTFPI</th>
<th>p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>CD31-TFPI-Tg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TF</td>
<td>67.7 (±6.4)</td>
<td>51 (±6.8)</td>
<td>NS</td>
<td>69 (±11.6)</td>
</tr>
<tr>
<td>CD45</td>
<td>48 (±3.5)</td>
<td>42 (±5.5)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>F4/80</td>
<td>34.3 (±3.9)</td>
<td>32.3 (±7.9)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>Ly6-C</td>
<td>33 (±3.2)</td>
<td>33.7 (±4.2)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>CD11b</td>
<td>34.7 (±5.8)</td>
<td>33.3 (±6.7)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>CD115</td>
<td>34 (±5)</td>
<td>33.7 (±4.3)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>Collagen 1</td>
<td>45.7 (±5)</td>
<td>43.7 (±5)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>CD90</td>
<td>29 (±4.6)</td>
<td>31 (±3.5)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>CD140b</td>
<td>33 (±7)</td>
<td>26.7 (±6)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>α-SMA</td>
<td>8 (±1.7)</td>
<td>8 (±1.2)</td>
<td>NS</td>
<td>8 (±1.3)</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>7.3 (±1.2)</td>
<td>5.7 (±0.7)</td>
<td>NS</td>
<td>ND</td>
</tr>
<tr>
<td>FLK-1</td>
<td>87.7 (±6)</td>
<td>88.7 (±6)</td>
<td>NS</td>
<td>68 (±3.6)</td>
</tr>
<tr>
<td>CD31</td>
<td>54.3 (±4.6)</td>
<td>52.6 (±3.6)</td>
<td>NS</td>
<td>54.2 (±2.9)</td>
</tr>
<tr>
<td>E-sel</td>
<td>44 (±5)</td>
<td>20.3 (±5.2)</td>
<td>0.03</td>
<td>39.3 (±7.1)</td>
</tr>
<tr>
<td>TIE-2</td>
<td>66.3 (±8.7)</td>
<td>60 (±2.5)</td>
<td>NS</td>
<td>67.3 (±7.9)</td>
</tr>
<tr>
<td>NG2</td>
<td>0.3 (±0.3)</td>
<td>1.3 (±0.7)</td>
<td>NS</td>
<td>ND</td>
</tr>
</tbody>
</table>

† CD31-TFPI-Tg + anti-hTFPI vs. CD31-TFPI-Tg

Table shows proportion of CD34+ cells expressing the indicated molecules, expressed as % (±SEM) of total CD34+ cells
Suppl Table 2 – Circulating CD34⁺ cells post-allogeneic transplantation

<table>
<thead>
<tr>
<th>CD34⁺α-SMA⁺cells – Isolated day 7 post-transplantation</th>
<th>% (±SEM) of CD34⁺α-SMA⁺cells expressing these ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
</tr>
<tr>
<td>Collagen-1</td>
<td>86.4 (±6.9)</td>
</tr>
<tr>
<td>NG2</td>
<td>0</td>
</tr>
</tbody>
</table>

Table shows proportion of CD34⁺ α-SMA⁺ cells expressing the indicated molecules, expressed as % (±SEM) of total CD34⁺ cells

Suppl. Table 3: Single stain immunocytofluorescence analysis of CD34⁺ cells

<table>
<thead>
<tr>
<th>CD34⁺ cells – Isolated day 3 post-injury</th>
<th>% (±SEM) of CD34⁺ cells expressing these ligands</th>
<th>α-TFPI-Tg p value vs. WT</th>
<th>α-TFPI-Tg +anti-hTFPI p value†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>α-TFPI-Tg</td>
<td>p value (vs. CD31-TFPI-Tg)</td>
</tr>
<tr>
<td>TF</td>
<td>42 (±8.3)</td>
<td>NS (NS)</td>
<td>74.7 (±7.9)</td>
</tr>
<tr>
<td>CD45</td>
<td>38 (±4.4)</td>
<td>NS (NS)</td>
<td>50 (±6.4)</td>
</tr>
<tr>
<td>F4/80</td>
<td>30.3 (±5.6)</td>
<td>NS (NS)</td>
<td>38.7 (±3.3)</td>
</tr>
<tr>
<td>Ly6-C</td>
<td>31 (±2.5)</td>
<td>NS (NS)</td>
<td>40 (±7)</td>
</tr>
<tr>
<td>CD11b</td>
<td>31.7 (±5)</td>
<td>NS (NS)</td>
<td>40.7 (±5.2)</td>
</tr>
<tr>
<td>CD115</td>
<td>31.7 (±5)</td>
<td>NS (NS)</td>
<td>38.3 (±4.7)</td>
</tr>
<tr>
<td>Collagen-1</td>
<td>32.3 (±5.5)</td>
<td>NS (NS)</td>
<td>44 (±7.5)</td>
</tr>
<tr>
<td>CD90</td>
<td>29 (±3.2)</td>
<td>NS (NS)</td>
<td>29.7 (±1.5)</td>
</tr>
<tr>
<td>CD140b</td>
<td>25 (±4.4)</td>
<td>NS (NS)</td>
<td>26 (±4)</td>
</tr>
</tbody>
</table>
For Peer Review

Table shows proportion of CD34⁺ cells expressing the indicated molecules, expressed as % (±SEM) of total CD34⁺ cells.

* see data in Suppl. table 1

† α-TFPI-Tg + anti-hTFPI vs. α-TFPI-Tg

Suppl. Table 4: Double stain ICF analysis of CD34⁺ cells

<table>
<thead>
<tr>
<th></th>
<th>CD34⁺α-SMA⁺ cells – Isolated day 3 post-injury</th>
<th>% (±SEM) of CD34⁺α-SMA⁺ cells expressing these ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(±SEM)</td>
</tr>
<tr>
<td></td>
<td>PAR-1 KO</td>
<td>p value vs. WT (vs. α-Tg)*</td>
</tr>
<tr>
<td>Collagen 1</td>
<td>3.7 (±3.7)</td>
<td>0.0001 (NS)</td>
</tr>
<tr>
<td>Fibronectin</td>
<td>4.2 (±4.2)</td>
<td>0.001 (NS)</td>
</tr>
<tr>
<td>CD140b</td>
<td>20.3 (±1)</td>
<td>0.0004 (NS)</td>
</tr>
<tr>
<td>NG2</td>
<td>67.1 (±6.8)</td>
<td>0.0006 (NS)</td>
</tr>
</tbody>
</table>

* see data in Table 3 main article

Table shows proportion of CD34⁺ α-SMA⁺ cells expressing the indicated molecules, expressed as % (±SEM) of total CD34⁺ cells.
Suppl. Table 5: Double stain ICF analysis of CD34\(^+\)α-SMA\(^+\) cells after incubation with thrombin

<table>
<thead>
<tr>
<th>Mouse strain / Cell phenotype</th>
<th>CD34(^+) cells after thrombin incubation</th>
<th>% (±SEM) of total CD34(^+) cells expressing these ligands</th>
<th>p value</th>
<th>Day 5</th>
<th>p value (vs. day 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR-1(^-)</td>
<td>0.3 (0.3)</td>
<td>ND*</td>
<td>1.3 (±0.3)</td>
<td>- (NS)</td>
<td></td>
</tr>
<tr>
<td>PAR-4(^-)</td>
<td>3.7 (±1.2)</td>
<td>ND</td>
<td>42.7 (±5.8)</td>
<td>- (0.02)</td>
<td></td>
</tr>
<tr>
<td>α-TFPI-Tg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total α-SMA(^+)</td>
<td>8.4 (±1.1)</td>
<td>13.3 (±1)</td>
<td>0.003</td>
<td>57.3 (±3.6)</td>
<td>1x10(^{-14}) (3x10(^{-15}))</td>
</tr>
<tr>
<td>Total CD45(^+)</td>
<td>38.4 (±1.9)</td>
<td>58.4 (±2.1)</td>
<td>3.3x10(^{-6})</td>
<td>85.4 (±2)</td>
<td>2x10(^{-5}) (3x10(^{-15}))</td>
</tr>
<tr>
<td>CD45(^+) α-SMA(^+)</td>
<td>1 (±0.6)</td>
<td>ND</td>
<td>-</td>
<td>37.33 (±4.8)</td>
<td>- (0.002)</td>
</tr>
<tr>
<td>Flk-1(^+) α-SMA(^+)</td>
<td>0</td>
<td>4.7 (±1.7)</td>
<td>0.05</td>
<td>51.3 (±10.8)</td>
<td>0.01 (0.009)</td>
</tr>
<tr>
<td>CD31(^+) α-SMA(^+)</td>
<td>0</td>
<td>3.3 (±1.2)</td>
<td>0.05</td>
<td>49.3 (±10.5)</td>
<td>0.01 (0.009)</td>
</tr>
<tr>
<td>hTFPI(^+) α-SMA(^+)</td>
<td>8.3 (±3)</td>
<td>12 (±3.2)</td>
<td>NS</td>
<td>60 (±15)</td>
<td>0.04 (0.03)</td>
</tr>
<tr>
<td>Collagen-1(^+) α-SMA(^+)</td>
<td>0.3 (±0.3)</td>
<td>ND</td>
<td>-</td>
<td>53 (±5.3)</td>
<td>- (0.0006)</td>
</tr>
<tr>
<td>Fibronectin+ α-SMA(^+)</td>
<td>0.3 (±0.3)</td>
<td>ND</td>
<td>-</td>
<td>58 (±5.5)</td>
<td>- (0.0004)</td>
</tr>
<tr>
<td>CD140b+ α-SMA(^+)</td>
<td>3.3 (±0.9)</td>
<td>ND</td>
<td>-</td>
<td>0.3 (±0.3)</td>
<td>- (0.03)</td>
</tr>
<tr>
<td>NG2+ α-SMA(^+)</td>
<td>7.3 (±1.9)</td>
<td>ND</td>
<td>-</td>
<td>0.6 (±0.3)</td>
<td>- (0.02)</td>
</tr>
<tr>
<td>Angio-1+ α-SMA(^+)</td>
<td>6.7 (±2.7)</td>
<td>2.7 (±1.2)</td>
<td>NS</td>
<td>2 (±0.6)</td>
<td>NS (NS)</td>
</tr>
<tr>
<td>Angio-2+ α-SMA(^+)</td>
<td>0</td>
<td>6.7 (±2.3)</td>
<td>0.05</td>
<td>54.3 (±6.4)</td>
<td>0.002 (0.001)</td>
</tr>
</tbody>
</table>

*ND=not done

Table shows proportion of CD34\(^+\) cells expressing the indicated molecules, expressed as % (±SEM) of total CD34\(^+\) cells. The cells were isolated day 3 post-injury from the mouse strains indicated, and incubated with thrombin for 0, 1 or 5 days, as indicated.