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Abstract

This thesis explores statistical methodology in the analysis of data from patients with
Parkinson’s disease (PD), with research conducted in collaboration with the �Host
Microbiome Interaction: Clinical Pharmacology and Therapeutics� group at King’s
College London. A key focus is the quanti�cation of tremor, which is a cardinal sign
of Parkinson’s disease; a better understanding of tremor can lead to an improved
understanding of the disease and present opportunities for earlier diagnosis. Unlike
in existing work which use accelerometers to measure tremor, the use of numerical
integration to estimate displacement due to tremor is explored. Acknowledging that,
whilst theoretically simple, numerical integration is challenging in practice, the work
explores the existing literature on numerical integration and compares a collection
of methodologies that each propose di�erent ways of minimising the numerical error
in the estimated displacement. Ground truth data is mechanically simulated using a
‘wobbulator’ and used to �nd the best performing method. The work then presents
a novel method using techniques from functional data and time series analysis to
detect noise within the recordings. These segments can be omitted before numer-
ical integration, providing guaranteed improvements to the estimated displacement
and other downstream metrics, for example, overall displacement due to tremor and
intermittency of tremor, both by frequency. An analysis of these tremor metrics is
presented alongside a discussion of the clinical relevance to disease understanding,
including the relationship of these metrics with Calprotectin, a biomarker for intesti-
nal in�ammation.

Analyses of bradyphrenia (cognitive e�ciency) in PD is presented, using linear
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(mixed) regression models to model the e�ect of drugs on bradyphrenia. Cross-
sectional and longitudinal analyses are performed. Given the observational nature of
the data, various robustness checks are applied which demonstrate the validity of the
results. The cognitive e�ciency metric is compared to the results of a bradyphrenia
questionnaire to ascertain whether a simple questionnaire can be used to determine
severity of bradyphrenia.

Finally, a review of the literature into the use of audio biomarkers to detect or predict
the severity of PD is conducted. The purpose of this is to understand the extent to
which researchers assess the potential e�ects of confounding variables in the design
of the data collection and model training. This work is motivated by a case study
into the use of machine learning models to detect COVID-19 from the sounds of
spoken language or coughs, which found that after adjusting for confounders that
were not identi�ed in similar studies, COVID-19 detection from audio o�ered no
improvement to classi�cation performance over simple symptom checkers. Various
recommendations are made to researchers conducting similar experiments in future.

Postural instability is a key feature of the disease that can be challenging to measure
objectively. This work assesses the feasibility of calculating angles of lateral and
anterior lean throughout the gait cycle by applying a 3D joint estimation machine
learning model to videos of participants. This proof of concept shows promise and
the proposed analysis of these data using functional linear models is discussed.
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Dedication

This thesis is dedicated to the memory of my uncle David O’Connor, a humble and
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Chapter 1

Introduction

1.1 Introduction to Parkinson’s Disease

Parkinson’s disease (PD) is the second most common age-associated neurodegenera-
tive disorder after Alzheimer’s disease. In PD, degeneration of dopaminergic neurons
of the substantia nigra pars compacta a�ects the whole basal ganglia network within
the brain. This results in a syndrome, parkinsonism, which has four cardinal signs,
brady/hypokinesia (slowness and poverty of movement), tremor, muscle rigidity and
postural instability, alongside other associated facets including bradyphrenia (slowing
cognition), and dysphonia (changes to the sound of a person’s voice). PD develops
with a prodrome of decades, making it challenging to detect in its early stages. Fearn-
ley and Lees [1991] described linear fallout of pigmented neurons with advancing age
in the pars compacta of the caudal substantia nigra at a rate of 4.7% per decade in
controls, but an ‘exponential’ loss of pigmented neurons post-diagnosis, with a 45%
loss in the �rst decade. They estimated that at the onset of symptoms there was a
68% cell loss in one area of the basal ganglia.

There is currently no single overall cure for PD, perhaps not surprising given that
the facets of the disease do not progress in parallel [Dobbs et al., 2015], the pre-
sentation of the disease is not consistent [Dobbs et al., 2015], and that diagnosis
requires bradykinesia and at least one of the other cardinal signs after ruling out
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1.1. Introduction to Parkinson’s Disease Chapter 1. Introduction

secondary parkinsonism (where the cardinal signs may present themselves for rea-
sons other than PD) [Hughes et al., 1992]. However, medicines are available for
symptomatic treatment, and have di�erent pro�les with respect to their e�cacy on
speci�c facets, and their adverse e�ects. Levodopa is the most commonly prescribed
of these, and is always prescribed as combination therapy, with a decarboxylase in-
hibitor, to prevent peripheral breakdown to the ‘replacement’ transmitter, dopamine.

There is growing evidence for a role of the gut microbiome in the aetiopathology,
and evidence that intervention here may result in disease modi�cation [Dobbs et al.,
2015]. An example taken from this work is that Helicobacter pylori (a stomach
pathogen associated with peptic ulcer and gastric cancer) is more prevalent in those
with PD than those without. Eradication of Helicobacter pylori in a randomised
placebo-controlled trial showed sustained improvement of hypokinesia but a worsen-
ing of rigidity. Moreover, the prescription of laxatives within an interrupted time-
series study resulted in a reduction of the expected 6% yearly increase in objectively
measured rigidity in those with PD. These approaches are based on an in�ammatory
hypothesis: peripheral in�ammation leads to systemic and then neuro-in�ammation,
which drives the death of neurons in the brain.

An alternative hypothesis on the causation of PD centres around an unfolded, highly
soluble protein commonly found in the brain called �-synuclein. This protein can
mis-fold and group together to form Lewy bodies and Lewy neurites within neurons
the brain, which results ultimately in neuron death. However these may simply be a
waste product rather than a primary driver of PD - correlation vs causation - albeit
responsible for secondary in�ammation. Many attempts have been made to intervene
in this pathway, but none have resulted in any proven therapeutic intervention.

Parkinson’s disease develops over a long period of time, often decades, which is dif-
�cult to unify with the binary PD-status approach to diagnosis. Lack of continuous
objective quanti�cation of its facets mean cases of PD in the early stages of the dis-
ease are missed - this is where intervention may be most successful. It also classi�es
people without the diagnosed disease as ‘normal’, an obvious fallacy in such a com-
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Chapter 1. Introduction 1.2. A Multidisciplinary Approach

mon disease. Moreover, separate quanti�cation of the facets, as opposed to global
scoring may be crucial to unravelling the drivers and mediators of PD. The current
severity assessment requires a clinician to complete a global assessment on the patient
- the MDS-Uni�ed Parkinson’s Disease Rating Scale (UPDRS) [on Rating Scales for
Parkinson’s Disease, 2003] - where sub-scores (0-4) relating to performance during
di�erent tasks and for di�erent disease facets are given, and totalled in a global score.
The sub-scores are subjective and lack precision (e.g. the smallest tremor considered
is sizable at 1cm). The global score can mask extreme severity in some disease facets.
Hence, an essential contribution to the work, and one on which much of this thesis
is concentrated, is design and development of relevant objective measures for precise
quanti�cation of disease facets on a continuous scale.

1.2 A Multidisciplinary Approach

I, and my supervisory team from the Mathematics Department, are collaborat-
ing with the multidisciplinary Host Microbiome Interaction: Clinical Pharmacology
and Therapeutics (HMI:CPT) research group and their network within and outside
King’s Health Partners. The research group are deeply engaged in the study of PD,
with expertise across clinical, biochemical, immunology, microbiology, bioengineer-
ing/measurement, and statistical modelling aspects. This background provides a
useful starting platform to engage with the problems and challenges. Our objective
is to break down the clinicians ‘black box’ of PD, identifying drivers and mediators
of the di�erent facets with a view to randomised controlled trials of intervention.

There are four key phases to the overall plan of the project:

1. Identi�cation of fundamental components of disease manifestation,

2. Prediction of PD status with classi�cation models,

3. Description of transitions in disease spectrum,

4. Development of time series models to understand evolutionary factors.
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1.2. A Multidisciplinary Approach Chapter 1. Introduction

The work is aimed towards understanding the di�erent pathways of the disease,
with a view to appropriate interventions. It can be viewed as a model in which
the position of an individual and their likely trajectory can be identi�ed, and the
best action to retain them at the baseline or divert them to a more benign trajectory.

The HMI:CPT research group have a cohort of participants, with and without diag-
nosed PD, who attend on an annual basis, where they devote half-a-day to data collec-
tion. (This was interrupted by the COVID-19 pandemic as face-to-face meetings had
to be cancelled). During the assessment sessions, set objective measures and tests are
carried out, questionnaires completed and biological samples provided/taken. These
include:

� Height and weight measurements are taken.

� Gait at free walking speed is measured [Dobbs et al., 1993c], and distance/time
measures at steady state calculated.

� Rigidity is measured bilaterally in the relaxed upper limb [Kirollos et al., 1996],
and the torque to move the supported forearm through a �xed arc calculated.

� A ‘door-knob’ device is used to quantify speed and amplitude of pronation and
supination of the forarm bilaterally, and a ‘foot tapping’ device measures speed
and amplitude of dorsi�exion of the foot bilaterally. The instructions are that
the amplitude should be as large as possible, the speed as fast as possible.

� Tremor is measured, sitting at rest, using small accelerometer devices attached
to the participant’s hands.

� A reaction time task is performed to measure ‘warned’ and ‘unwarned’ reaction
time to break contact of index �nger with a touch sensitive pad.

� Videos of each participant walking down a set corridor towards a camera and
a lateral view walking across the �eld of vision are taken.

� Facial images are taken with a view of assessing facial swelling, and asymmetry.
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Chapter 1. Introduction 1.3. Precise and objective quanti�cation

� The UPDRS (severity) and Hoehn and Yahr (functional) [Goetz et al., 2004]
ratings are carried out by the same observer.

� Set details on disease manifestation are recorded.

� Current medication is recorded.

� A novel questionnaire to cover the presentations of bradyphrenia is completed
by all participants and, additionally with respect to PD probands by their
spouses/carers.

� A questionnaire on animal contact is completed.

� Blood and stool samples are collected, processed and stored.

This is a longitudinal study, with many participants having multiple - up to 6 -
yearly visits. A key focus of the group is the objective measurement of facets.
New additions to the quanti�cation are required, but with continuity of the ex-
isting established measurements. The study was approved by King’s College Lon-
don Research Ethics Committee, participants giving written informed consent [GUT
MICROBIOME DRIVERS AND MEDIATORS IN THE AETIOPATHOGENESIS
OF PARKINSON’S DISEASE AND CO-MORBIDITIES. King’s College Research
Ethics Committee: RESCM-22/23-2810].

1.3 Precise and objective quanti�cation

The overall objective of this thesis is to consider the objective quanti�cation of dis-
ease facets, and the statistical modelling associated with them. Identi�cation of
fundamental components has been homed in on for gait, where mean stride length
at free walking speed was the best predictor of PD status [Kirollos et al., 1996]. The
groundwork on identi�cation of fundamental components been done for objective
quanti�cation of bradyphrenia [Dobbs et al., 1993b], but, for the �rst time, the ia-
trogenic component of that is considered. For tremor, the objective data is collected,
and the fundamental work on how best to use this to discriminate for PD status
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developmed in this thesis. Machine learning models can be used to obtain objec-
tive measures of dysphonia, though there are often issues with the design of these
studies. For postural instability, only subjective quanti�cation from video of stance
and gait, in people with and without diagnosed PD, was available at the start of the
thesis. However, this allowed focus on the critical postural features to extract from
the video, and a proof of concept is outlined.

1.3.1 Tremor

Many people with PD exhibit tremor, which can manifest at rest (rest tremors)
and/or whilst performing a task (action tremor). A so-called ‘pill rolling’ rotatory
motion is characteristic of Parkinson’s disease, di�erentiating it from other types
of tremors, like the single-axis essential tremor which is noted in the relatives of
PD-probands. There is also a distinction in the frequency of tremor: the rest parkin-
sonian tremor is associated with the 3-8Hz frequency band, and essential tremor with
the 8-14Hz band. Tri-axial accelerometers and gyroscopes have been used in previous
studies to quantify tremor, with smart watches and wearables gaining more traction
and interest in recent works. Many studies apply modelling techniques to recorded
accelerometer data and, not surprisingly, achieve good classi�cation accuracy for PD
status with respect to presence/absence of rest tremor. An initial condition in this
thesis was to make the output readily accessible by expressing in terms of displace-
ment rather than acceleration: clinicians and their patients talk of the amplitude of
tremor, the more the displacement, the more disruptive to daily living. The man-
ifestation of tremor both in terms of the percentage of the day a�ected by tremor,
and whether the tremor is in pulses or continuous is also important to patient and
clinician.

Here, preconceptions about the discriminant features of the PD tremor are not im-
posed. Moreover, a continuous spectrum of tremor, irrespective of the diagnostic
threshold, is not excluded. An individual could exhibit more than one ‘type’ of
tremor (e.g. parkinsonian and essential). The triaxial characterisation of tremor
would anatomically be expected to be di�erent between �nger, with its hinge joints
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and thumb. Clinically relevant metrics to describe tremor at rest are developed,
with the aim of using these to examine its drivers and mediators. The data collected
present various challenges. Methods from statistical modelling, functional data, sig-
nal processing and time series analysis are explored, and bought together in a novel
way, to tackle these.

1.3.2 Bradyphrenia

Motivated by previous work from the HMI:CPT group [Dobbs et al., 1993a], a re-
search objective within this thesis is to con�rm whether bradyphrenia is associated
with PD, after adjusting for covariates and confounders, including anti-parkinsonian
medication. It is largely accepted that bradyphrenia is a nosological entity of the
disease: this is questioned here. The answer is of major importance, given that any
iatrogenic long-term slowing of cognitive processing time may, functionally, present
as dementia. If iatrogenic, this outcome could potentially be avoided by tailoring of
medicines.

The starting point is an objective measure of bradyphrenia, the log-ratio of unwarned
and warned reaction times, in keeping with the overall objective of an aetiopathogenic
model. The goal is to improve understanding of bradyphrenia by making inference
from various cross-sectional and longitudinal mixed regression models, validating
�ndings with robustness checks. From a clinical practice viewpoint to be able to
exclude bradyphrenia by a questionnaire would be useful. A novel bradyphrenia
questionnaire (HMI:CPT research group) is assessed against the cognitive e�ciency
metric. A spouse or life partner often reports on cognitive slowing of the PD-proband
to the clinician: the di�erence in responses between partners to the questionnaire,
when the subject is the PD-proband, is assessed.

1.3.3 Audio classi�ers in PD

The use of machine learning (ML) models to classify between those with and without
an illness is becoming increasingly popular. There is a long history discussing dys-
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1.3. Precise and objective quanti�cation Chapter 1. Introduction

phonia associated with PD, and modern ML methodologies and computing power
allows researchers explore classi�cation of PD status with acoustic features, and the
relationship with other facets of the disease. Existing literature suggest that dys-
phonia can be detected early in disease onset, presenting an opportunity for the
development of a particularly useful objective measure for detecting PD in the early
stages. Motivated by work undertaken with the Turing-RSS Health Data Lab during
the COVID-19 pandemic, a review of recently published literature on audio classi-
�ers for PD is performed, aiming to identify trends in study-design quality issues.
Implementation of recommendations coming from this review will lead to more reli-
able reporting of model performance and improved generalisability of models, among
other improvements to the quality of the research output.

1.3.4 Postural Instability

Postural instability is a relatively neglected cardinal sign of PD. This is probably
because although posture can be measured, the ‘instability’ quali�er of posture im-
plies an attempt to maintain the correct posture over time or when moving. Videos
of participants with and without diagnosed PD, at stance and then walking towards
(anterior view) the camera operator, or across the line of sight (lateral), were avail-
able. In PD, posture is not stable, worsening during a walk. The is seen as an
increasing �exed posture on the anterior view and increasing lateral lean on the lat-
eral view. It was expected that the ‘normal’ postural changes during a gait cycle
would be disrupted in PD, progressively within a walk and over follow-up.

A tangible solution to objective measurement of postural stability was, thus, to
quantify change in anterior and lateral lean, through successive gait cycles. Proof
of concept is presented here using pre-trained computer vision (CV) models, with
a view to constructing functional linear models to estimate postural lean from the
videos. Understanding the demographic covariates will be important to answering
the question whether the changes in posture have a pattern within the normal range.
Then the impact of PD can be focused upon. The aim, as with measures of other PD
facets, is to home in on functional components which best de�ne the PD-e�ect. These
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postural instability measures with be used in the aetiopathogenic model irrespective
of diagnostic threshold.

1.4 Layout of thesis

Each chapter discusses the research into a facet of the disease, describing the data
and framing the statistical challenges posed in each case. Methodology is carefully
described and outlined, with comparisons provided where appropriate. Results are
discussed from both a statistical and clinical perspective. References to relevant
publications are provided.
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Chapter 2

Tremor Analysis

2.1 Literature Review

Accelerometers have been used as a key source of data in a variety of applications
for quite some time. Within this research group, they have been used in clinical
sessions attached to the thumb and little �nger on both hands of patients with PD,
their spouses and controls to measure rest tremor - that is, tremor present when the
participant is not active or being asked to complete any task. Tremor is de�ned as
an involuntary, rhythmic muscle contraction leading to shaking movements in one
or more parts of the body. Frequency, measured in Hz, is a property of signals that
measures the number of cycles of the signal within a second. A minimum of 3 oscil-
lation cycles at a given frequency is implicit in use of the term tremor - a de�nition
given by my collaborators. An example data set from the output of an accelerometer
used is shown in Table 2.1.

It is intended to tabulate the key aspects of tremor according to (i) displacement, (ii)
total duration with intermittency, and (iii) dimensionality of movement. Elementary
mathematics tells us that theoretically a double integral of acceleration with respect
to time should recover the displacement, but in practice this is not the case. The
challenges associated with this have been explored in the literature. There are two
approaches to converting acceleration to displacement: integration in the time do-
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Time (s) x-acc (m=s2) y-acc (m=s2) z-acc (m=s2)

0.01 0.18569 0.927542 -0.8345
0.02 0.15106 0.903625 -0.2680
...

...
...

...
19.99 0.161316 0.904846 -0.24347
60.00 0.165649 0.918884 -0.24371

Table 2.1: Tremor recordings approximately 1 minute in length captured with a
sampling rate of 100 samples per second.

main (and with a discrete time series, some form of numerical integration is used)
and integration in the frequency domain, commonly referred to as omega arithmetic.
This review discusses variants of these, detailing the di�erent methods of process-
ing the data alongside integration. This review is the foundation of a controlled
experiment to compare these methods, and rate their success using the results from
the arti�cially simulated tremor. Acceleration was recorded from an accelerome-
ter attached to a ‘wobbulator’. The wobbulator is a device that generates a signal
where the true signal is known. The idea is that each of the integration methods
can be applied to a series of accelerometer records to calculate a displacement and
see which of the derived displacements is closest to the true displacement, using
the mean squared error and maximum absolute error in the frequency domain as
metrics. The most accurate method will then be used to calculate the displacement
of accelerometers when attached to participants. This will immediately provide a
greater understanding of the tremor and its nature between participant categories.

Time Domain Integration

This method uses the fact that

s(t) =
Z t

a
v(t0)dt0 =

Z t

a

Z ~t

a
a(t0)dt0d~t (2.1)

where s(t); v(t) and a(t) are the displacement, velocity and acceleration of the moving
object at time t. Since the data collected are discrete points, a numerical integration
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Figure 2.1: This �gure shows the trapezoidal rule applied to patient data and the
results suggest the presence of 40cm oscillations, which clearly is not correct given
the participants arms are at rest with the tremor presenting itself from the wrist.

method can be used (e.g. the trapezoidal rule, Simpson’s rule) to obtain velocity,
then repeating this once more with the new velocity time series to obtain displace-
ment. Whilst, theoretically, integration alone provides an exact displacement output
this seldom works in practice (as shown in Figure 2.1) due to various sources of noise.

This review will �rst collate issues that have been identi�ed, and then outline dif-
ferent methods used in practice to mitigate against di�erent types of error. Firstly
Han [2010] notes that, for an integration schema applied to accelerometer data to
produce accurate results, the Nyquist frequency should be higher than the frequency
of the components in the signal. In signal processing the Nyquist frequency is de�ned
as half the sampling frequency, the idea being that, if the frequency of the signal is
higher than this, time aliases are introduced at lower frequencies. For example con-
sider a case where the Nyquist frequency is 50Hz. Then a signal at 60Hz will create
a lower frequency alias at 40Hz. The frequencies of our recordings will be below our
Nyquist frequency of 50Hz so this is not an issue.

Sources of error
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Figure 2.2: Full process of converting accelerometer data to displacement presented
in Rocha et al. [2016]. Truncation will not be used as time aliasing is not an issue in
this setup.

Throughout the process of the double integration, errors accumulate leading to
severely inaccurate results [Yang et al., 2006]. Knowledge of boundary conditions is
also required to determine the integration constants [Pfau et al., 2005]. Such errors
have many sources, including the lack of accuracy in numerical integration [Yang
et al., 2006, Han, 2010, Rocha et al., 2016, Zhu et al., 2015] high frequency noise
[Han, 2010], hysteresis [Dwyer and Starzynski, 2017] and orientation of acceleration
[Pfau et al., 2005]. [Brandt and Brincker, 2014] identify the lack of literature on �best
practices or best methods to be used� for time domain integration of accelerometer
signals to avoid the inclusion of these errors in the signals. Here a collection of meth-
ods that aim to remove subsets of the errors, and produce an accurate displacement
signal, are identi�ed.

Method 1 - Rocha et al. [2016]
Rocha et al. [2016] propose a method that uses �ltering throughout the integration
process (Figure 2.2) to remove errors before they can cause large inaccuracies in the
integration process.

The frequency response of a �lter is a function f : R+ ! [0; 1] acting on the frequency
domain of a function, scaling down the amplitudes of certain frequencies in the signal
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Figure 2.3: The graph of a Chebyshev Type 1 low-pass �lter with a passband corner
frequency of half the Nyquist frequency and a passband ripple.

- as seen in the example Chebychev Type 1 �lter of order 4 in Figure 2.3. I consider
the e�ect of the �lter at a particular frequency as a scale of the amplitude, denoted
am := aout

ain
. In signal processing it is common to de�ne the attenuation of a �lter,

and then transform to the e�ect on the amplitude. Attenuation (measured in dB) is
de�ned as

att = 20 log10(am) (2.2)

or alternatively, amplitude multiplier is de�ned as

am = 10
att
20 : (2.3)

Filters can be grouped into high-pass, low-pass, band-pass and band-stop �lters,
depending on whether they remove low frequency components (high-pass), high fre-
quency components (low-pass) or permit frequencies either between a frequency band
(band-pass) or outside of a frequency band (band-stop). The Chebyshev type 1 �lter
low pass shown in Figure 2.3 is a low pass �lter, penalising the amplitude of high
frequency components.
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Figure 2.4: Approximately the �lters used in the Rocha et al. [2016] procedure.

The authors suggest the use of a �lter suggested in Ribiero [1999] which has the
following con�guration:

� Passband corner Frequency: 1Hz

� Stopband corner Frequency: 0.25Hz

� Maximum attenuation on passband: 0.01dB (corresponds to am � 1)

� Minimum attenuation on stopband: 20dB (corresponds to am � 0)

This thesis could not be located online, so the �lters presented in Rocha et al. [2016]
were graphically compared with a variety of Chebychev Type 1 �lters, and a 7th
order Chebychev Type 1 set with a negligible but positive passband ripple had ap-
proximately the same curve (Figure 2.4).
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This �lter is then applied before and after each integration step, the objective being
to remove the noise created during the integration process. This article continues
to highlight the issue of time aliasing, which occurs when the Nyquist frequency is
not su�ciently higher than the frequency of the signal being captured [Han, 2010],
and propose a �ltering truncation to prevent this from happening. As discussed,
this will not be an issue in the wobbulator experiment or in processing patient data.
Having handled the natural error imposed by using numerical integration, the au-
thors identify the error captured in the raw acceleration signal by the accelerometer
and equipment. They suggest the use of a FIR lowpass �lter with the following
con�guration:

� Passband corner Frequency: 15Hz

� Stopband corner Frequency: 20Hz

� Maximum attenuation on passband: 0.01dB (corresponds to am � 1)

� Minimum attenuation on stopband: 20dB (corresponds to am � 0)

This �lter is applied before any other processing is conducted, as displayed in Figure
2.2. Note again that the procedure in this experiment does not include the trunca-
tion stage, as time aliasing, caused when the frequency of the signal is greater than
the Nyquist frequency, is not an issue. This method was used by the authors to
convert accelerometer data taken from two accelerometers attached to a vibrating
structure. The true values of the velocity and displacement were known from the
construction of the experiment and the results of the algorithm were compared with
these, as displayed in Figure 2.5.

The predicted velocity and displacement are somewhat static compared with the real
data at start of the recording, but recovers and performs well after this lag. This
methodology was also used by Lamas-Lopez et al. [2017] and compared with the in-
tegration of geophone data to recover displacement from accelerometer data, where
the absolute displacement of the signal (railway track vibration) was less than 1mm.
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Figure 2.5: The true velocity and displacement of the vibrating structure compared
with the results of the Rocha et al. [2016] method.

They found that the integration method was suitable for this purpose.

Method 2 - Pfau et al. [2005]
This method was used by Pfau et al. [2005] in the processing of accelerometer data to
derive displacement of a horse when moving at three di�erent speeds on a treadmill
with the device being placed above the withers on the horse’s back. The results were
assessed against those of an optical motion capture system as seen in Figure 2.6.

The �rst key di�erence of this method from its peers is the use of a rotation matrix,
calculated from magnetometer data, meaning that one can reverse e�ects of device
rotation on the acceleration and view all of the acceleration data from one global
co-ordinate system. In other methods, it is assumed that there is no rotation. The
acceleromters used by the HMI:CPT group are not programmed to record the mag-
netometer data, and given that the orientation of the device cannot be determined
from the acceleration signals alone, rotational components cannot be considered (i.e.
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Figure 2.6: The displacement obtained from the accelerometer data (red) and the
optical motion capture system (blue) compared at 3 di�erent speeds (walk, trot and
canter), and in three orthogonal directions (roll, pitch and heading), in the Pfau
et al. [2005] method.
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R(t) = I3). Part of the vision of the research group is to enhance the accelerome-
ters used which will permit the recording of magnetometer data, at which stage the
rotational component of this methodology can be considered. Omitting the steps
involving the adjustment for rotation, the method is focused around breaking apart
the accelerometer recording into shorter segments that can be pre-processed. In this
application the strides were determined by the placement of an accelerometer on a
leg of the horse. This is not possible for our application, so instead ‘strides’ were
determined by the turning points of the acceleration signal, in particular four turning
points constituted a stride. Following this, the algorithm is:

1. Acceleration vectors acquired from the sensor,

2. Accelerations cut into ‘stride’ portion,

3. Mean subtraction from accelerations with context window of 3 strides (one
before and one after),

4. These processed accelerations are integrated to velocities,

5. Velocities mean subtracted with context window of 3 strides (as before),

6. Velocities integrated to give displacement.

The authors identify the need to separate cyclical and non-cyclical motion. They
use a 6th order Butterworth high-pass �lter with a 3dB attenuation at 1Hz. The
di�erence between this algorithm for obtaining displacement and the optical motion
capture system can be seen in Figure 2.6, and indeed the results are comparable �
often the results di�er by a small vertical translation, but the amount of displace-
ment through the recording is approximately the same.

Method 3 - Yang et al. [2006]
The paper starts by demonstrating the large amount of drift that can occur when
integrating time series accelerometer data using the trapezoidal rule with no �ltering
or adjusting of the data - as mentioned in the beginning of the chapter. They

27



2.1. Literature Review Chapter 2. Tremor Analysis

begin by discussing a simple correction scheme assuming a quartic baseline in the
displacement - these baselines are denoted with a ��:

s�(t) � �4t4 + �3t3 + �2t2 + �1t+ �0 (2.4)

and hence
v�(t) � 4�4t3 + 3�2

3t
2 + 2�2t+ �1; (2.5)

a�(t) � 12�4t2 + 6�3t+ 2�2: (2.6)

Under the boundary condition that s(0) = s�(0) = 0 and v�(0) = v(0) = 0 it follows
that �0 = �1 = 0. The other coe�cients are found by minimising the sum of squares:

�2;3;4 = arg min
�2;3;4

(
NX

i=1

�
a(ti)� a�(ti)

�2

)

(2.7)

where
�
a(ti)

�N
i=1 is the accelerometer recording. This is equivalent to calculating the

parameter estimates in a linear model:

�� = (XTX)�1XTY (2.8)

where

X =

0

BBBB@

12t21 6t1 2
12t22 6t2 2
...

...
...

12t2N 6tN 2

1

CCCCA
; Y = a(t); �� =

0

B@
��4
��3
��2

1

CA (2.9)

This baseline is then subtracted from the recording a(t) and the resulting signal is
integrated in the time domain. The author identi�es that long term (low frequency)
�uctuations may still occur, suggesting the use of the following high pass �lter in the
frequency domain

g(t) =

8
<

:
1 0 � t � �0

e
t��0
c t > �0

(2.10)

as shown in Figure 2.7. The values of c and �0 are calculated using features of the
spectral decomposition (frequency domain transformation).
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Figure 2.7: The �lter used in the Yang et al. [2006] integration procedure.

Frequency Domain Integration

Integration in the Frequency domain, also called ‘omega arithmetic’, occurs through
the use of Fourier transforms. This method of integration is neatly outlined, including
mathematical reasoning, in Mercer [2006]. Indeed for a �xed frequency !,

ŝ(�) = �
1
!2 â(�) (2.11)

and hence displacement can be obtained from the acceleration signals by using
Fourier transforms and inverse Fourier transforms:

s(t) =
Z 1

�1
ŝ(�)e2�i�td� =

Z 1

�1
�

1
!2 â(�)e2�i�td� (2.12)

=
Z 1

�1
�

1
!2

Z 1

�1
a(t0)e2�i�t0dt0e2�i�td� (2.13)

where ! = 2��. The frequency domain process involves calculating the spectral
decomposition of the signal via it’s Fourier transform, dividing the resulting signal
pointwise by � 1

! and using the inverse Fourier transform on this to recover the signal
in the time domain.
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Method 4 - Brandt and Brincker [2014]
This paper proposes a method called ‘windowed overlap add’. The authors suggest
this method works well for steady state processes, and so it can be assumed that
tremor is a steady state process; that the true underlying tremor has a consistent
amplitude and frequency. For data samples obtained from the wobbulator this is
true, however it is not guaranteed in practice. Nonetheless this method could still
be included in the experiment. The method uses a short-time Fourier transform,
where a window function is used to break the signal up into slices which have some
overlap, and an integration procedure is carried out on each of these pieces; called a
short-time Fourier transform. The nature of the data requires the use of the discrete
short-time Fourier transform

â(�) =
N�1X

t=1

w(m� t)a(t)e2�i� tN (2.14)

The �rst parameter of the process to be determined is the window function � there
are many useful window functions. The author of the paper highlights three good
candidates, and the one that will be applied in the experiment is the Blackman-Harris
window:

w(t) = 0:35875� 0:48829 cos

 
2�t
N

!

+ 0:14128 cos

 
4�t
N

!

+ 0:01168 cos

 

6�tN

!

(2.15)
where N is the length of the window. The procedure asks to split the acceleration
signal into blocks of length N, zero-padding the last sample to ensure it is of length
N. The authors also discuss the appropriate amount of overlap between the blocks,
and determine this to be 75%. Each block is then multiplied by the window func-
tion w(t), and the Fourier transform of this product is taken. Next, the frequency
domain integration is done by dividing by �!2, and the inverse Fourier transform
is used to obtain displacement in the time domain. Each block is then scaled by a
factor of N

2W (0)M , where M is the number of blocks and W (0) is the DC component.
Once this has been done to each block, they are summed together providing the total
displacement throughout the recording.
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Figure 2.8: The schema for recovering displacement from acceleration proposed by
Zhu et al. [2015].

Method 5 - Zhu et al. [2015]
This method is founded on the EEMD method, and uses kurtosis, mean square er-
ror (MSE), energy and singular value decomposition (SVD) with integration in the
frequency domain to recover the displacement of the underlying signal as shown in
Figure 2.8.

The EEMD method was �rst introduced by Wu and Huang [2009] as an extension of
the EMD method initially proposed by Huang et al. [1998], which uses maxima and
minima to ‘sift’ through the data, iteratively constructing a set of components. Each
component must be an intrinsic mode function (IMF), where an IMF is a function
that has approximately the same number of roots as it does stationary points (these
values can di�er by at most one). This is repeated until the �nal component is not
IMF and analogous to the long run mean of the signal. In EEMD, white noise is
added to the data before decomposing into IMFs and repeated several times with
di�erent white noise in each repetition. During the frequency domain integration,
the author identi�es the need to remove any signal whose frequency is below 0.159Hz
to prevent ampli�cation of this noise. An inverse Fourier transform is then used to
obtain the time domain velocity.

In the EEMD methodology, two parameters need to be determined: the amplitude
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of the noise added to the signal, and the ensemble number, which is the number of
times the EMD procedure is repeated with di�erent white noise signals. The authors
advise that the amplitude of the white noise should be 0.2 of the standard deviation
of the signal, and 100 ensembles should be made. Once each of the IMFs have been
obtained, feature extraction is done. The kurtosis, MSE, energy and SVD are stored
in a vector T = (k;mse; E; svd). De�ne T1 = (k1;mse1; E1; svd1) as the features
extracted from the velocity signal obtained by the frequency domain integration, and
for i = 2; ::; n+ 1, Ti = (ki;msei; Ei; svdi) for the n ensembles. Then

jTij =
q
k2
i +mse2

i + E2
i + svd2

i (2.16)

is calculated for each i, and ensemble i for i � 2 is selected such that it minimises
jTij � jT1j across all i � 2. These steps are repeated in accordance with Figure 2.8.
The paper demonstrates that this method performs better than the standard time
and frequency domain methods.

Method 6 - Han [2010]
Unique to this paper, Han begins by not just discussing errors in time and frequency
domain integration but also provides a quanti�cation of error when using both the
trapezium rule and omega arithmetic methods. The author introduces the use of
zero-padding, where all frequency components are set to zero other than signi�cant
ones within the Fourier transform and can be achieved by using a band-pass �lter.
However, Han proposes an improved method which shall be used in the experiment.
This method �ts a curve to the Fourier domain results, as the author claims that
�curve �tting in the region of the natural frequency provides much better results
than simply ignoring the insigni�cant components of the signal�. Theoretically the
Fourier transform is given by

â(f) =
�

1� r2 + i2�r
(2.17)

where r = f
fn

is the frequency ratio with fn = 50 the Nyquist frequency, � is the
dampening ratio (so should be close to 1 for our data as there is no dampening) and
� is the static de�ection - a term used when discussing springs to refer to the distance
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the object moves before reaching its equilibrium position after a weight is attached;
this paper was interested in vibrations hence the use of the terminology here. Given
the observed Fourier transform, the values of � and � that best �t the data need to
be estimated. This was done using a non-linear least squares algorithm, facilitated
by the ‘nls’ function in R simultaneously on the real and imaginary components.
Indeed the above formula implies

â(f) =
�(1� r2)

(1� r2)2 + 4�2r2 � i
2��r

(1� r2)2 + 4�2r2 : (2.18)

The static de�ection and dampening ratio parameters should be positive and whilst
the author suggests a method of detecting when this happens, I have instead trans-
formed the parameters being estimated: � = e�0 and � = e�0 and use the algorithm to
estimate �0 and � 0. The resulting curve in the Fourier domain is then integrated using
omega arithmetic, with the displacement in the time domain being recovered by a
discrete inverse fast Fourier transform. There were convergence issues when using
non-linear least squares to estimate the parameters, and therefore the methodology
was not included in the analysis.

2.2 Collection of Simulated Data

In this section I discuss the collection of simulated data and the results of the inte-
gration methods to obtain displacement are compared with the actual displacement
of the simulated data.

2.2.1 The Wobbulator

The �rst objective was to develop a device in collaboration with the HMP:CPT
group, that would mechanically simulate tremor via sine waves without introducing
excess noise such that the true displacement would be known (Figure 2.9). Magnets
were attached to a metal bar and a rotating motor. With the motor rotating at the
correct frequency the bar becomes resonant, oscillating at a constant frequency and
amplitude. Resonance was established by visually assess a live plot of the accelerom-
eter trace, and the recording was started at this point and left to run for 30 seconds.
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Figure 2.9: The Wobbulator used to simulate tremor.

The results were then saved, a Fourier transform was used to evaluate the frequency
of the displacement (N.B. frequency of acceleration and displacement of a signal are
the same), and the amplitude of the wobble was extracted from a slow-motion camera
recording. After data collection, a series of accelerometer recordings, and a measured
amplitude and frequency for the displacement had been obtained. Given this set of
accelerometer recordings alongside the known values of the amplitude and frequency
of displacement, the performance of the integration methods can be tested.

2.2.2 Application of integration methods

The metadata for each recording was read into R alongside the appropriate ac-
celerometer recording. Each integration method was applied to each accelerome-
ter recording, and the maximum absolute error (MAE) and root mean square error
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(RMSE) between the calculated and measured displacement in the frequency domain
evaluated. The frequency domain was used, as opposed to time domain, because,
for tremor, the key features are the amplitude and frequency, which are both cap-
tured in the frequency domain. Calculating these errors in the time domain would
penalise incorrect boundary conditions (i.e. assumptions around the position of the
device as the recording started) which is not of use in this context. Here MAE is

maxi2f1;::;KgfjDi�D�i jg and RMSE is
q
K�1

PK
i=1(Di �D�i )2. This produced a data

set akin to Table 2.2.2.

Recording No. Frequency Amplitude Method RMSE MAE

1 f1 a1 m1 rmse1;1 mae1;1

1 f1 a1 m2 rmse1;2 mae1;2
...

...
...

...
...

...
2 f2 a2 m1 rmse2;1 mae2;1

2 f2 a2 m2 rmse2;2 mae2;2
...

...
...

...
...

...
30 f30 a30 m7 rmse30;7 mae30;7

Table 2.2: Structure of results after applying the integration methods and calculating
the errors.

2.3 Modelling of simulation results

2.3.1 Linear Mixed model and Inference

To model the results a linear mixed model was used, the random e�ect being the
recording number and the �xed e�ects being the frequency, amplitude and integration
method number. The response variable is � 0, therefore the log-response was used
in the model. Predictions were exponentiated to recover the original scale. That is,

log(Y ) = X� +Zu+ " (2.19)
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where Zu corresponds to the random e�ects, which in our case is the recording
number (a factor) so

Z =

0

BBBBBBB@

1 0 0 0 : : : 0
...

...
...

... . . . ...
0 1 0 0 : : : 0
...

...
...

... . . . ...
0 0 0 0 : : : 1

1

CCCCCCCA

;u =

0

BBBBBB@

u1

u1
...
u30

u30

1

CCCCCCA
(2.20)

corresponding to the 30 recordings. In practice when making predictions, there is not
a particular recording number that can be used, hence for prediction, de�ne Z = 0
leaving us with the predicted log-error

log(Y �) = X� + ": (2.21)

This approach is also justi�ed as E[u] = 0. Considering the �xed e�ects to include
in the model, the likelihood ratio test was employed to determine the presence of
interaction terms between method, frequency and amplitude. Starting with the
full model (X includes all interaction terms), likelihood ratio tests were performed
between this model and models without the interaction terms to test whether they
were signi�cant. By Wilks theorem the likelihood ratio between the two models has
asymptotically a �2 distribution with degrees of freedom equal to the di�erence in
the number of parameters between the models. These tests were conducted with the
Maximum Likelihood estimates of the parameters in each model to determine the
�nal model which was then �t using residual maximum likelihood estimation. The
values of eX� were used to estimate the error for a grid of points in the frequency-
amplitude space to asses which method performs the best. This modelling was done
for each of the types of error.

2.3.2 Results

Frequency Domain RMSE

A full model with all interaction terms was used with the frequency domain RMSE
as the response variable, shown below. The results of the method that minimised
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the RMSE according to this model at each point in the frequency amplitude space
is shown in Figure 2.10.
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Frequency Domain MAE

Again a full model with all interaction terms was used to model the frequency domain
MAE as the response. The results of the method that minimised the MAE according
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Figure 2.10: The coloured region in the graph indicates the methodology with the
lowest RMSE in the frequency domain for signals of the indicated frequency and am-
plitude. That is, the methodology that minimises the residual maximum likelihood
estimator (REML) of � given the frequency and amplitude (top), and the error pre-
dicted with the optimum model from the sensitivity analysis (bottom). The Yang
et al. [2006] method has a lower RMSE across a larger portion of the frequency-
amplitude space in comparison to the Rocha et al. [2016] method.
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to this model at each point in the frequency amplitude space is shown in Figure 2.11
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(2.22)

A contour plot of the RMSE and MAE in the time domain is shown for both methods
in Figure 2.12. This reveals that, whilst the method of Yang et al. [2006] performs well
at preserving the frequency spectra of the signal, the time-domain reconstruction is
less accurate, hence this method should only be used to perform numerical integration
where it is the frequency spectra of the resulting signal that is of interest. For
accurate time domain reconstructions, the method of Rocha et al. [2016] should be
used. Given that the downstream analysis centers around the frequency spectra of
the displacement of tremor, the Yang et al. [2006] method is applied to participant
data.

2.4 Irregularly sampled signals

A single-axis accelerometer was used in the collection of the mechanically simulated
data, di�erent to the 3-axis accelerometers used to record tremor in participants.
Analysis of participant data shows that the sampling rate is not consistent, that is,
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Figure 2.11: These �gures are analogous to 2.10 but showing the method minimising
the integration MAE in the frequency domain. Note here that whilst the REML
estimate shows that a simple Fourier domain integration performs well at high fre-
quencies, the results are sensitive to the parameter estimate and in fact Yang et al.
[2006] is performing best in this region.
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Figure 2.12: A contour plot of the errors in the time domain from the Rocha et al.
[2016] and Yang et al. [2006] method. The Rocha et. al. method is more accurate
within the time domain than the Yang et. al. method.

@c 2 R such that ti+1 � ti = c 8 i. This would not be an issue in the application
of Pfau et al. [2005], as time domain integration methods do not require a regularly
sampled signal. However for the methodology proposed in the following sections
of the chapter, evenly sampled signals are required. Particular methods with this
requirement are the calculation of frequency spectra and stationarity testing, which
will be discussed shortly. There are opportunities to generalise this methodology to
handle non-uniformly sampled data. The Lomb-Scargle periodogram [Lomb, 1976,
Scargle, 1982] could be used in the estimation of frequency spectra, though the pe-
riods would need to be converted to frequency by taking the reciprocal. VanderPlas
[2018] provides a review of other practical issues when calculating the Lomb-Scargle
periodogram which would need to be considered. As discussed previously, there are
methods proposed for multivariate stationarity, which have also been extended to the
case of irregularly sampled spatio-temporal data [Bandyopadhyay and Rao, 2016].
Once packages for implementation of this are openly available (the development of
which lies beyond the scope of the thesis), the noise detection methodology can be
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generalised to irregularly sampled signals.

Consequently, an alternative approach is taken where the values of the signal at an
evenly spaced time grid are estimated from the observed data. A simple method
like linear interpolation could be applied to obtain point estimates. However, this
is a sub-optimal solution as it does not account for positions of peaks and troughs
in the data. It also does not quantify the uncertainty in the estimates, especially
important where there are longer intervals between observations. A probabilistic
approach is preferred where plausible signals are sampled on the evenly spaced grid
with the average taken as the estimate - similar to the multiple imputation approach
in missing data. Gaussian processes (GPs) are well suited to this task and indeed,
their use in this context can be seen in the literature [Vasudevan et al., 2009, Solin
et al., 2018, Ma et al., 2019]. In this section, the GP framework is outlined alongside
a discussion on the choice of kernel with examples of results from di�erent kernels
presented. A simulation study is used to assess the validity of using the GP posterior
mean as the estimator, and computational issues with this approach are discussed.

2.4.1 Gaussian Process Framework

Suppose a signal X = (Xt1 ; :::; Xtn)T has been collected where ti+1 � ti is not con-
stant, i.e. an irregularly sampled signal, with the objective of estimating X 0 =
(Xt01 ; :::; Xt0m)T where t0j+1 � t0j = c 8 i. The GP asserts the following structure:
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X0

!

� N

  
�
�0

!

;

 
KX KXX0

KX0X KX0

!!

(2.23)

under the usual assumption of joint normality for the values of the signal at any
subset of time points. A kernel function K(ti; tj) is used to determine Cov(Xti ; Xtj)
(the auto-covariance of the time-series), and therefore impacts the matricesKX ;KX0

and KXX0 = KT
X0X . The kernel depends only on the times of the observations as

indicated by the choice of notation. In practice, � = �0 = 0, and a nugget � is added
to the kernel used in the construction of the covariance matrix:

K�(ti; tj) = K(ti; tj) + ��titj (2.24)
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which can be interpreted as the measurement noise in the data collection mechanism.
Where one assumes no measurement noise, � is chosen to be a small number close
to 0, in this case, 1�10�6. Indeed, smaller values of � result in a GP that interpo-
lates between the observations, and larger values correspond to regression-type tasks
with the model identifying the overall trend in the data. No nugget is used in the
calculation of KXX0 even if for some i and j, ti = t0j. In the GP framework, the
observations are viewed as two distinct random variables. Similar discussions of the
nugget in GPs can be found in Pepelyshev [2010] and Andrianakis and Challenor
[2012], whilst Gramacy [2020] provides a complete introductory discussion of GPs,
including the nugget. Let KX;X0 = (K(ti; t0j))ij where i = 1; :::; n; j = 1; :::;m and
KX = (K�(ti; tj))ij where i = 1; :::; n; j = 1; :::; n. The conditional Gaussian gives
the posterior distribution of the evenly sampled signal given the observations:

X0j(X = x) � N(KX0XK�1
X x;KX0 �KX0XK�1

X KXX0) (2.25)

The choice of kernel is key to the GP, and therefore the resulting interpolation of
X0. In this case where observations are close together, the kernel should satisfy
K(X; Y ) > K(X;Z) () jX � Y j < jX � Zj, that is, the correlation decays the
further apart the time points. This rules out the use of periodic and linear kernels.
In practice, the exponential quadratic (or radial basis function RBF) and Matern
kernels, shown in Equations 2.26 and 2.27 respectively, are commonly used: r

rKRBF(t1; t2) = �2 exp
�
�
jjt1 � t2jj2

2l2

�
(2.26)

K�
M(t1; t2) = �2 21��

�(�)
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jjt1 � t2jj
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K�

 
p

2�
jjt1 � t2jj

l

!

(2.27)

where jj � jj is the distance between two points, �(�) is the gamma function, K� is the
Bessel function. These de�nitions are taken from Rasmussen and Williams [2005].
Common choices for � are 3=2 and 5=2 for reasons of computational e�ciency as
discussed in the aforementioned reference, and note that lim�!1(K�

M) = KRBF.
These kernels are programmed into frequently used computing packages for GPs
[Pedregosa et al., 2011, GPy, 2012, Erickson, 2023]. Given that the observed sampling
rate is still close to the expected sample rate of 100Hz (corresponding to a Nyquist
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frequency of 50Hz which is higher than needed to estimate the amplitude of signals
from 3-14Hz), there is a preference towards smoother kernels. Examples of GPs
�tted with these kernels to a 1 second window of a patient and a noise recording can
be seen in Figure 2.13 and Figure 2.14. The former shows an example where the GP
with the RBF kernel does not estimate plausible values for the acceleration in longer
periods of recording with no observation. This, in combination with a preference for
smoother kernels, leads to the selection of the Matern 5/2 kernel.

2.4.2 Validation with simulations

To assess the accuracy of the methodology, signals need to be simulated from a data
generating process that mimics the recording of patient data. That is, generating
signals comprising of various di�erent frequencies in the range of 0-50Hz. These
signals are sampled at both an even and uneven grid. The posterior mean of a
GP is used to estimate points on the even grid, as in the methodology described
above, and accuracy evaluated with the RMSE. The sum of 10 di�erent sine curves
is used as the data generating process to replicate the complexity of the participant
data. Let F = f1; ::; 50g be the set of candidate frequencies in the data generating
process. A maximum frequency of 50 is chosen as this is the Nyquist frequency of the
100Hz sampling rate programmed into the accelerometer. A subset of 10 frequencies
~F = ff1; :::; f10g � F where fi 6= fj 8 i 6= j is taken as the set of frequencies used to
generate the signal. Amplitudes and phases are sampled from uniform distributions
ai � U(0; 0:5); pi � U(0; 2�), and the simulated signal is

a(t) =
10X

i=1

ai sin(fit+ pi): (2.28)

The function is evaluated for both a regular and irregular grid, where the irregular
grid is generated using properties from the participant data. When analysing the
time steps from patient recordings, 99.75% of observations are less than 60ms, and
so the simulated irregular grids are designed to re�ect this scenario. When analysing
the density of the time steps, there are two peaks, one around 10ms re�ecting the
programmed sampling rate, and another much smaller peak around 35ms. A Gaus-
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Figure 2.13: The three kernels being considered are �tted to a 1-second window of
patient recording.
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Figure 2.14: The three kernels being considered are �tted to a 1-second window of
noise recording.
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sian Mixture Model (GMM) is used for modelling the two separate peaks. Taking
a cut point of 16ms, the larger and smaller peaks are attributed to approximately
97.12% and 2.63% of the data respectively. Denote these two groups as G1 and G2.
Note that cut points between 12ms and 20ms contribute only to rounding errors in
the estimated quantities for the two groups in the GMM. The lack of sensitivity to
the cut point means the use of, for example, the EM algorithm, would be super�uous.
Whilst the observed prevalence of larger time steps is w = 2:63=97:12 = 0:027, this
quantity will be sampled from a uniform distribution ! � U(w � 0:02; w + 0:02) in
each simulation. Models can then be constructed to understand whether the pro-
portion of larger time steps has a relationship with the amount of error. Therefore,
time steps are simulated from

�i � (1� !)N(m1; s2
1) + !N(m2; s2

2) (2.29)

where �i = ti+1 � ti corresponds to time steps of an unevenly sampled signal, and
mi; si correspond to the sample mean and standard deviation of group Gi. In this
case, m1 = 9:378; s1 = 1:523;m2 = 36:48; s2 = 7:56. Now a cumulative sum of
samples from �i gives an uneven time grid with properties similar to those seen in
the data from participants. The range of the data is also recorded in the algorithm
to provide a measure of the scale of simulated signal. The overall data generating
process can be seen in Algorithm 1.

This was run with N = 1000, and the results can be seen in Figure 2.15. Let
Ei; Ri;Wi denote the RMSE, data range and longer time step weighting from sim-
ulation i. The linear model Ei = �0 + �1Wi + �2Ri + "i yields the results in Table
2.3.

There is a strong relationship between the range of the data and the RMSE of the
Gaussian Process. The errors remain small relative to the range of the data with
maxi(Ei=Ri) = 0:00186 and small overall with maxi(Ei) = 0:0057. There appears to
be no relationship between the proportion of longer time steps and accuracy of the
method. Overall these results validate the approach of GPs for interpolation.
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Algorithm 1 Data Generating Mechanism for GP Approach Validation
Require: N > 0 . Number of samples
n 1
E = ()
W = ()
while n � N do

~F = ff1; :::; f10g � F = f1; :::; 50g . Samples frequencies
a1; :::; a10 � U(0; 0:5) . Samples amplitudes
p1; :::; p10 � U(0; 2�) . Samples phases
a(t) :=

P10
j=1 aj sin(fjt=1000 + pj)

! � U(0:007; 0:047)
T  (0; 10; 20; :::; 1000) . De�nes regular grid
�0 � (1� !)N(m1; s2

1) + !N(m2; s2
2)

T 0 (�0) . Construct irregular grid
while max(T 0) � 100 do

�new � (1� !)N(m1; s2
1) + !N(m2; s2

2)
T 0 T 0.insert(max(T 0) + �new)

end while
X =

�
a(t) for each t 2 T

�

X0 =
�
a(t) for each t 2 T 0

�

Use GP: XjX0� N(X̂;�XjX0)
e = RMSE(X; X̂)
E.insert(e)
W .insert(!)
n n+ 1

end while
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Variable Estimate Std Error p-value
�0 1:04� 10�4 1:23� 10�4 0:40
�1 1:45� 10�3 2:26� 10�3 0:52
�2 4:22� 10�4 4:07� 10�5 0:00

Table 2.3: Results showing relationship of RMSE from estimation with GP with the
proportion of larger time steps and the range of simulated data.

2.4.3 Remarks on computation

Fitting these GPs is computationally intensive: �1500 �les to process, each requiring
the estimation of 3 posterior distributions corresponding to the 3 axes within each
recording, where each posterior is a multivariate normal with at least 5500 dimen-
sions. The process for a single axis takes approximately 4 hours, and so to run each
axis and each �le in series on a laptop would take 1500 � 3 � 4 hours = 750 days.
The high performance cluster (HPC) managed by King’s College London, CREATE
[King’s College London, 2022], was used to manage this. Each �le was submitted
to a node within the HPC, and the three GPs - one for each axis - were �tted in
parallel. The HPC was able to process up to 300 �les simultaneously (limited only
by user CPU allocations) reducing the computational time for all �les to 1 day. Any
�les that the GP had not managed to �t for numerical reason were rerun. The com-
putational needs of using the methodology are a limitation for other users who do
not have access to high performing compute infrastructure.

2.4.4 Results on participant data

The GauPro [Erickson, 2023] R package was used to estimate the GP posterior. The
posterior mean was calculated both on the regular grid, and on the original points,
that is, estimating (X0[X)jX. This facilitates a simple check on the �t of the
GPs: the predictions match the observed acceleration for the observed time points
ti; :::; tn. I also compare the variance of the GP sampled on the regular grid and the
variance of the observed signal as these quantities should be similar. Initial analysis
showed that the estimated length scale in the �tting of the GP was small enough
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Figure 2.15: Plots of the Gaussian mixture model weight ! and range of the data
against the RMSE from the GP on the left and right respectively.

that during some of the longer durations without observations, the GP reverted to
the global mean resulting in poor estimates in these windows. This issue appeared
in �les that clearly had a time-varying mean. To correct for this issue, a LOESS
regression smoother was �rst �tted to the data, and the GP �tted to the residuals.
A small number of smoothness parameters were tested, those being 0.2, 0.3, 0.4 and
0.7, with the model where the variance of the regularly sampled and original �les
being used - details on the distribution of the GP parameters can be seen in Figure
2.16, and Table 2.4 shows the frequencies of each span parameter used in the LOESS
smoother. This addition to the methodology corrected the issue seen previously,
though there were a small number (8/1236) of di�erent signals had issues of �tting
the acceleration well. For these, no LOESS smoother was used. Bland-Altman plots
are commonly used to assess the agreement between two measures and are used here
to compare the sample standard deviations of the original and evenly sampled sig-
nals, shown in Figure 2.17. Agreement is con�rmed in all except �les, and a review of
these �les shows that the issue is a result of abnormally large spikes in the recording.
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Span 0.002 0.004 0.006 0.008
Frequency 795 546 708 1635

Table 2.4: Frequency of span parameters used in LOESS smoothing of acceleration
signals.

These additional 6 �les were removed from the analysis.

Gaussian processes were also used for the imputation of noise recordings which are
discussed in the next section. Figure 2.18 shows the a kernel density estimate for
the ratio of the variances of evenly and unevenly sampled recordings, which shows a
10% reduction in the variance of the recordings after interpolation (5.5% reduction in
standard deviation). The consequence of this is the production of a more conservative
noise classi�er, which is less concerning provided it is still identifying noise.

2.5 Noise Recordings

The application of these methods is to obtain the best estimate for the displace-
ment due to rest tremor captured by the accelerometer. The nature of rest tremor is
that, when no tremor is present, there is very little signal, if any. Preprocessing and
�ltering methods identi�ed in the literature search do not attempt to classify and
omit noise-like sections of recording from the numerical integration process, leading
to unnecessary and avoidable error in the resulting displacement, particularly when
analysing low amplitude signals. This section explores di�erent approaches to this
task, and ultimately proposes a methodology to detect portions of recording that are
noise-like using concepts from functional data and time series analysis.

A collection of noise recordings have been obtained in which the device was left to
rest on a pillow - the same one used in the collection of data from participants -
for 60 seconds. These recordings can be used to construct noise classi�ers discussed
in the following section. Preprocessing steps are required to detect any unwanted
movement recorded in the �les - it is noted by clinicians who collect the data that,
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Figure 2.16: Distributions of the parameters used in the Gaussian Process. Note
that � = � log10(�), and that 37 values (< 1%) with �2 > 0:075 are omitted from
the plot for visualisation purposes.
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Figure 2.17: Bland-Altman plot showing agreement between the sample variances of
the uneven and evenly sampled recordings.
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Figure 2.18: KDE showing the ratio of variances of evenly and unevenly sampled
recordings. An average of 0.9 corresponds to a 10% reduction in variance after
applying the GP interpolation methodology.
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on occasion, the device may slip whilst recording. One noise recordings appear
to contain entirely corrupt signal, where acceleration is observed moving rapidly
between -2g and 2g. This �le is removed and not included in any analysis. This
motivated a check for this behaviour in patient recordings reveals that 8 recordings
display this trait, and these are also not considered in the participant analysis. It
was agreed with collaborators that the �rst and last 5 seconds of recording should be
removed, and therefore the remainder of this discussion is on the recordings after this
removal. To understand the extent to which movement may be contained within the
remainder of the recording, the variance of observations on each axis is considered.
Consider a set of m noise recordings f�(1)

t ;�(2)
t ; :::;�(m)

t g each with three axes such
that �(i)

t = (�(i)x
t ;�(i)y

t ;�(i)z
t ). These recordings may be of di�erent lengths, say

T1; T2; :::; Tm respectively. De�ne �(i)
a:b = f�(i)

t j(a � t � b)g and �(i)
na:b = f�(i)

t j(t <
a)[ (t > b)g. The aim is to �nd ai and bi which maximises ai� bi whilst minimising

ri(ai; bi) =
maxj=x;y;z

�
Var(�(i)j

ai:bi)
�

maxj=x;y;z
�
Var(�(i)j

nai:bi)
� ; (2.30)

that is, the ratio of maximal variance across each axis of signal included and signal
excluded. To frame this as an optimisation problem, additional penalties should be
included, and a reparameterisation is required. In particular, ai and bi must satisfy
0 � ai < bi � Ti. Therefore, let ai = e�i and bi = Ti�e�i . This leads to the following
optimisation problem:

�̂i; �̂i = arg min
�i;�i

�e�i � (Ti � e�i)
Ti

� �ri(e�i ; Ti � e�i)�1 + P�e�i>Ti�e�i
�

(2.31)

= arg min
�i;�i

(f�(�i; �i)) (2.32)

where � is a hyperparameter to be chosen and P is a large penalty, in this case
P = 108. It follows that âi; b̂i are calculated from �̂i; �̂i respectively. The value
of � will depend on the length of time series, variance of signal to include and
variance of signal to exclude. To determine � here, some exploratory analysis of
some key metrics is performed for di�erent values of �. Note that larger values of
� result in small departures from the initialisation of ai and bi as the optimisation
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will depend solely on whether inclusion of neighbouring points cause an increase or
decrease of ri, and that âi ! 0 and bi ! Ti as � ! 0. Initial values are chosen
as �i = �i = log(5), corresponding to ai = 5 seconds and bi = 45 seconds into the
recording. Some exploratory analysis of the optimisation showed that the results are
sensitive to the starting location, and therefore the optimisation is repeated until
convergence as shown in Algorithm 2. Optimisation is performed with the method
of Nelder and Mead [1965] via the ‘optim’ function in R. The results from values
of � = f1=30; 2=30; :::; 3g can be seen summarised in Figure 2.19. Given that an
optimal � would result in a reduction in the variance of the signal whilst maintaining
as much of the signal as possible, the value of � = 0:9 is chosen and noise �les
discussed subsequently are restricted to the estimated âi and b̂i.

Algorithm 2 Estimation of �̂i and �̂i for �
(i)
t given a value for �.

�old
i = �old

i = NA
�new
i = �new

i = log(5)
while �old

i 6= �new
i AND �old

i 6= �new
i do

�old
i  �new

i

�old
i  �new

i

�new
i ; �new

i = arg min�i;�i(f�(�i; �i)) initialising at �i = �old
i ; �i = �old

i

end while
return �new

i ; �new
i

2.6 Background Noise Identi�cation

Suppose a measurement device is recording an n-dimensional multivariate signal from
a source of interest over time, Xt = (X1

t ; X2
t ; :::; Xn

t ) of length TX being collected,
alongside the noise recordings as discussed in the previous section. The objective
is to identify sections of the recording Xt where the underlying observed signal is
indistinguishable from our collection of f�(i)

t gmi=1 irrespective of the coordinate system
in which the signal is observed. Identi�cation of these sections means they can
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Figure 2.19: Key metrics to consider in the selection of �. Boxplots show the 0, 25,
50, 75 and 100 percentiles of the data after identifying outliers following the usual
rule of thumb (median � 1:5IQR). The �rst plot shows the distribution across all
recordings of the ratio of maximal variance after restriction to âi and b̂i, and the
maximal variance of the full signal, for a range of values for � between 0:0_3 and 3.
The second shows the distribution of length of recording retained in seconds for the
same range of � values. The distributions for the chosen � = 0:9 is annotated.
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be omitted from downstream processing tasks, either to improve the accuracy of
downstream analysis or improve processing times.

2.6.1 Characteristics of Magnitude of Signal

In the �rst instance, the methodology assesses the magnitude of observed signal,
and whether this appears to be like noise. This is an important feature as it is
not dependent on the orientation of the device. The univariate time series X t :=p

(X1
t )2 + :::+ (Xn

t )2 and f�(i)
t gmi=1 can be calculated, generating a collection of mag-

nitudes of observed signal from noise recordings. The double bar notation is used to
reduce the burden of the usual jj � jj notation and improve readability.

Shape and Frequency Characteristics

Once the noise detection and numerical integration methodology has been applied,
the aim is to analyse the di�erent characteristics of the signal by frequency band,
highlighting the importance of the frequency composition of the signal. This mo-
tivates a section of the methodology that compares the frequency composition of
the signal to that of noise recorded by the device. Windows of participant data are
deemed as bearing information on rest tremor if the frequency spectra of the signal is
su�ciently �far away� from noise. In this subsection, two approaches to this problem
are discussed, and a simulation mechanism is proposed for future work of comparing
di�erent other methods to understand which perform best for this task.

Series2Graph Approach

A recent paper proposes a methodology called Series2Graph [Boniol and Palpanas,
2020] that aims to embed features of a time series into a graph, as seen in Figure
2.20. The authors claim that this can be used for local outlier detection. This is an
exploration of whether there was a way of using the method to classify windows of
recording as noise or not. The method works by constructing a feature matrix F
where each row corresponds to a set of features extract from a window of length l,
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Figure 2.20: The Series2Graph methodology proposed in Boniol and Palpanas [2020].
The extension I propose to construct a noise classi�er focuses on the embedding of
the time series shown in (b).

fXtgi+lt=i:

Fi =
� i+�X

t=i

Xt;
i+1+�X

t=i+1

Xt; : : : ;
i+lX

t=i+l��

Xt

�
:

Note that F has T�l rows and l�� columns. Dimensionality reduction is performed
on F , and the �rst three principal components are used to construct the graph in a
3-dimensional space. The authors note that, in various datasets that the method was
tested in, the �rst three principal components explained over 95% of the variance
of the original feature space - seemingly su�cient for reasonable results in their
applications. A rotation is then applied and two of the resulting dimensions are
taken as the �nal embedding - this can be thought of marginalising out the time
dimension, so that subsequences that have similar shapes/observations at di�erent
times appear in a similar location in the resulting 2-dimensional embedding, denoted
(SPROJ1(�); SPROJ2(�)). It is this �nal feature space that is the focus of the
remainder of the subsection.
The �rst objective was to explore the feature space when this methodology is ap-
plied to f�(i)

t gmi=1. In this case, a collection of Fis are calculated for each recording
producing a matrix with

Pm
i=1(Ti � l). In our case, l = 100 corresponding to a 1

second subsequence, a choice made as the lower limit of tremor frequency is 3Hz
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with tremor de�ned as 3 beats at a given frequency. The authors suggest the choice
of � = l=3, and hence � = 33 is chosen, though it is asserted in the paper that the
performance of the method is independent of the choices for l and �. The amount of
variance explained by the �rst 3 principal components in this application is > 99:7%.
After applying the rotation to obtain the 2-dimensional embedding space, the points
occupy an ellipsoidal shape. It is not surprising that there appears to be no clear
structure emerging in comparison with Figure 2.21 given that it is noise being ob-
served.
I hypothesise that this embedding space can be used to construct a classi�er for noise.
This is constructed by �tting a bivariate kernel density estimate in the embedding
space - a reasonable approach given that the node extraction in the Series2Graph
methodology uses the modal points of density estimates. Estimation of the density
value for a point is computationally expensive. An alternative approach inspired
by Hartigan [1987] is taken where q% of points with the highest density value are
bounded with a convex hull to construct a decision boundary via the Qhull algorithm
[Barber et al., 1996] with implementation in SciPy [Virtanen et al., 2020]. The paper
discusses the challenges of �tting a convex hull, but developments since publication
of this work mean that checking whether a point is inside the hull is computationally
much faster. There are two reasons for removing a small proportion of points before
�tting the convex hull. Firstly, the clinicians who collect the noise recordings observe
that, on occasion, the device may start to slip on the surface of the pillow and
record some movement. This can be seen by the points in the embedding space that
drift away from the region densely packed with points. Subsequences of recordings
capturing this movement should be removed.
The second motivation for this approach is the hypothesis testing framework with
the analogy as follows: the test statistic is the random vector

S = (SPROJ1(�); SPROJ2(�));

the null distribution is estimated by the empirical bivariate density estimate obtained
from evaluating the test statistic on observed noise, and the decision boundary anal-
ogous to the critical values. It is worth noting that there is no analogy to the p-value.
The choice of a convex hull is sensible given that there are no holes or concave com-
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Figure 2.21: Embeddings of noise recordings outlined in Boniol and Palpanas [2020].
Unlike in Figure 2.20, there is no clear pattern.

ponents of the bivariate distribution. It is left to �nd a sensible value for q, and
verify that the obtained decision boundary is a sensible one. For this, a train-test
format is adopted. The density estimate and decision boundary are calculated from
a subcollection of noise recordings - the training set - with the performance of the
resulting classi�er assessed on the unused �les which compose the test set. The value
of q is chosen such that, the average amount of recording classi�ed as tremor within
the test set (the out-of-sample type 1 error rate) is 5%. This corresponds to a choice
of q = 98:97% corresponding to a removal of 1:03% of the data points, to determine
the decision boundary. Some examples of noise recordings with portions classi�ed as
tremor can be seen in Figure 2.22. In some instances, there are parts of the recording
that appear to have a smaller variance than the remainder of the signal. Whilst they
may not appear to have values of S that fall inside the convex hull, these would not
appear to contain any movement and so should still be excluded from the recording.

Further analysis when applying the method to participant data shows again reveals
subsections of recording classi�ed as noise that con�ict with our intuition of noise,
as seen in Figure 2.22. A key drawback of this method is the lack of explainability -
the feature space is an abstract linear combination of di�erent windows of di�erent
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Figure 2.22: Embeddings of two noise recordings in the test set. In the LHS, the
embeddings are entirely captured by the convex hull and therefore no tremor is
detected in the recording. However in the RHS a signi�cant portion of the recording
lies outside the boundary of the convex hull resulting in 57% of the recording classi�ed
as tremor. Note that the blue portions are contained inside the convex hull, and red
portions outside the convex hull. The black line shows the convex hull.

subsequences of recording. Therefore, it is challenging to explain exactly why certain
portions of signal are classi�ed as noise and others not. This, alongside the spurious
results, prompted the development of a method that was explainable and recognised
the key features of tremor that are of interest in this analysis, which is detailed in
the following sections.

Functional Outlier Approach

Given the interest in frequency composition of signals from participants, the pro-
posed approach centers itself around the frequency spectra of a recording. Taking an
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approach similar to the windowing in the Series2Graph methodology, all one second
subsequences of the time series are considered. The spectral decomposition of each
window is calculated, forming a functional dataset in the frequency domain. More
formally, consider again the dataset f�(i)

t gmi=1, of length T1; :::; Tm respectively. De-
note �(i)

t . For a given �(i)
t let �i;jf denote the frequency spectra of the signal observed

between time points j and j + 100 (i.e. 1 second in length) centered at 0. That is

�i;jf = S

 ����

����
100X

t=0

�(i)
j+t+1 e

� 2�i
101ft

����

����

!

(2.33)

where S denotes the shift function to center the frequency spectra at 0,

S((x1; :::; xk)) = (xdk=2e; xdk=2e+1; :::; xk; x1; :::; xdk=2e�1): (2.34)

The functional dataset constructed from noise recordings is f�i;jf ji = 1; :::;m; f >
0g � f�i;jf ji = 1; :::;m; f = 1; :::; 50g, that is, the collection of frequency spectra
within the frequency range of 1Hz to 50Hz. The DC component of the frequency
spectra at f = 0 is omitted as this is related to the mean of the signal, which is
handled elsewhere in the methodology. Then for a given participant given participant
recording and X

(k)
t of length TXk , de�ne

 k;jf = S

 ����

����
100X

t=0

X
(k)
j+t+1 e

� 2�i
101ft

����

����

!

: (2.35)

Note that � and  correspond to the frequency spectra of noise and participant
recordings respectively. The  k;jf for each j = 1; :::; TXk �100, where TXk is the length
of the recording, can individually be included in in the functional noise dataset, and
an outlier detection method can be used to construct a noise classi�er.

It is widely acknowledged that there are two types of outliers in functional data,
shape outliers and magnitude outliers [López-Pintado and Romo, 2009]. Both are
of interest in this application - magnitude outliers would indicate the presence of a
frequency within a recording that is greater than that observed in noise recordings
and hence some signal of interest, whilst shape outliers would re�ect a di�erence
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in the patterns of frequency composition seen in noise recordings, also constituting
signal of interest. Various functional outlier detection methods for this purpose have
been proposed in the literature.

Hyndman and Shang [2010] construct various outlier detection methodologies based
upon the functional band depth measure introduced in López-Pintado and Romo
[2009]. Sun and Genton [2011] extend this by applying the modi�ed band depth
measure which improves identi�cation of shape outliers. Sawant et al. [2011] reduces
the problem of functional principal components analysis (PCA) to the classical PCA
problem and applies existing methods that identify outliers and produce principal
components that are robust to these outliers. Arribas-Gil and Romo [2014] pro-
pose a method that identi�es theoretical relationships between the Modi�ed Band
Depth and Modi�ed Epigraph Index measures which give rise to an outlier detection
method. Dai and Genton [2018] extend the aforementioned functional boxplot to
case of multivariate functional data by combining it with the measure of directional
outlyingness introduced in Dai and Genton [2019]. Dai et al. [2020] propose some
preprocessing of the functional data that turn shape outliers into magnitude outliers
that are easily detected in the aforementioned functional boxplot. The approach
taken in `ngel López-Oriona and Vilar [2021a] in which the real and imaginary com-
ponents of the quantile cross-spectral density de�ned in `ngel López-Oriona and
Vilar [2021b] are used to construct functional datasets and the Tukey depth measure
is used to classify outliers. This bares a resemblance to the overall noise detection
methodology presented in this thesis. To the best of the author’s knowledge, the
combination of frequency spectra and functional outlier detection is itself novel, as
is the application to noise detection.

In the proposed methodology, the functional box plot is used. This methodology
o�ers the bene�ts of commonality across the functional outlier detection literature,
alongside clear visual aids analogous to the conventional boxplot which can be used to
build con�dence in the methodology with clinicians. The transformations described
in Dai et al. [2020] are not used as this removes the clinical interpretability of the
functional boxplot. However, the simulation study outlined in this work, alongside
results from Dai and Genton [2018] support the use of the directional outlyingness
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depth measure. The computation of functional outliers is performed in the ‘fdaout-
lier’ R package [Ojo et al., 2021].

The functional outlier detection component of the noise classi�er is setup as outlined
in Algorithm 3.

Algorithm 3 Functional outlier methodology for noise detection
F = �
for i = 1; :::;m do

�(i)
t is retrieved
J = Rand(1; :::; Ti � 100; 100)
F = F [ f�i;J1

f ; :::; �i;J100
f g

end for
for k = 1; :::; K do

for j = 1; :::; TXk � 100 do Fk;j = F [ f k;jf g
Functional boxplot constructed on Fk;j
X

(k)
j:j+100 is not noise if classi�ed as an outlier

end for
end for

Rand(X;n) is randomly sampling n objects from X without replacement.

2.6.2 Device noise level - an empirical check

The functional outlier methodology discussed in the previous section identi�es as-
pects of the frequency content of the signal that may not appear to be like noise. An
additional check is required to assess whether the amount of acceleration on the de-
vice itself is within a threshold expected of noise. The construction of such a dataset
is outlined in Algorithm 4. The 2.5% and 97.5% percentiles are used as a decision
boundary. Note that the choice of these percentiles is arbitrary but sensible.
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Algorithm 4 Construction for testing whether the amount of acceleration on the
device is at noise level
N = ()
for i = 1; :::;m do

�(i)
t is retrieved
J = Rand(1; :::; Ti � 100; 100)
N = Append(N; 1

101

P100
i=0 �J1+i; :::; 1

101

P100
i=0 �J100+i)

end for
l = 5th percentile of N
u = 95th percentile of N
for k = 1; :::; K do

for j = 1; :::; TXk � 100 do nk;j = 1
101

P1
i=0 00X

(k)
j+i)

X
(k)
j:j+100 is not noise if nk;j � l or nk;j � u

end for
end for

2.6.3 Stationarity testing and rotary movement

Accelerometer devices are sometimes equipped with gyroscopes which record the
orientation of the device at each observation, as discussed in Section 1.1 and the
numerical integration schema of Pfau et al. [2005]. In the absence of this gyroscope
data, an alternative methodology is needed to identify periods of time where the
movement of the devices is only rotatory - this may not be identi�ed by the method-
ology as presented so far. The rotatory movement of the device changes the amount
of acceleration due to gravity a�ecting each axis, corresponding to non-stationarity
via low frequency signals on the axes. It is a sensible assumption that noise would not
have time-varying properties, i.e. would satisfy the conditions of weak-stationarity.
Therefore this is also tested for in the proposed methodology - if a window of ac-
celerometer data is not stationary, then it cannot be noise. I �rst provide a brief
discussion on existing tests that have been proposed for testing the stationarity of
both univariate and multivariate time series, identifying some issues with the state of
current literature. Simulations are performed to assess the performance of commonly
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used hypothesis tests for stationarity of univariate time series, and the assumption
of stationarity is validated on noise recordings.

Stationary Time Series

The univariate time series Xt = (X1; X2; :::; XT ) with T observations is de�ned as
second-order (weak-) stationary if the following conditions are satis�ed:

1. The mean of the time series is constant over time: E[Xt] = � 8 t,

2. The autocovariance Cov(Xs; Xt) of the time series depends only on js� tj, that
is, the autocovariance is not varying over time.

For multivariate time series, similar properties are necessary for stationarity to be
satis�ed - the mean vector is not time varying, and the autocovariances and cross-
autocovariances are not time varying. Jentsch and Subba Rao [2015a] identi�ed
that whilst many univariate stationarity tests had been developed, there were few
such multivariate tests at the time of publication. Amongst the �aws they associate
with applying univariate stationarity tests to each dimension of the multivariate
time series, they did not comment on the masking of stationarity due to the co-
ordinate system (or basis) in which the measurements are taken, corresponding to the
orientation of the accelerometer in this application. To illustrate this idea, suppose
the device is recording in the standard basis (i; j; k). Non-stationarity in the direction
of i might be more easily detected than non-stationarity in the direction of i+ j + k
as it is then spread over the three axes. Furthermore, they criticise the use of the
Bonferroni correction for multiple testing [Bonferroni, 1936] in frameworks that test
various segments in a time series, and provide a global test as an alternative. This
work was further developed over the following years [Jentsch and Subba Rao, 2015b,
Bandyopadhyay et al., 2016, Bandyopadhyay and Rao, 2016] with now a collection of
tests proposed for use in di�erent scenarios and under di�erent assumptions. Whilst
the concepts and methods are theoretically well de�ned, there is no open-source code
available for the implementation of these methods. In some instances, the authors of
these papers have their own code supporting particular cases of their methodology
but no widely available code for a general d-dimensional time series. Given the depth
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Figure 2.23: The orientation of the accelerometer e�ects the co-ordinate system
that the movement is being observed in, which has the potential to mask any non-
stationarity in the multivariate time series when performing univariate analysis.

and complexity of these methods, it is beyond the scope of this thesis to construct
code bases for these methods, and hence a pragmatic approach is taken.
Consider the tremor recording X(i)

t = (X(i)x
t ;X(i)y

t ;X(i)z
t ). The objective of this

analysis is to locate regions of recording that are non-stationary, indicating the
presence of movement. In a similar approach to the functional outlier detection
methodology, 1-second overlapping subsequences are taken, and each are tested.
Non-stationarity tests for univariate time series are often centered around the pres-
ence of a unit root, with two commonly used unit root tests being the Augmented
Dickey-Fuller (ADF) test [Dickey and Fuller, 1979] and the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test [Kwiatkowski et al., 1992]. Consider a time series yt, and
let �yt denote yt+1 � yt. In the ADF test, the model

�yt = �1 + �2t+ �yt�1 +
kX

i=1

i�yt�i + "t: (2.36)

The null hypothesis H0 : � = 0 corresponding to non-stationarity is tested against
the alternative hypothesis H1 : � < 0 corresponding to stationarity. In the KPSS
test, the model is

yt = rt + �t+ "t; rt = rt�1 + ut (2.37)

where "t � N(0; �2
") and ut � N(0; �2

u). Testing for stationarity is equivalent to
testing H0 : �2

u = 0 corresponding to stationarity, against the alternative H1 : �2
u > 0

corresponding to non-stationarity. In the paper, the authors derive a test statistic
and null distribution.
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Each test was performed on each window from the collection of noise recordings and
the misclassi�cation rate of noise assessed. The KPSS test had a false-positive rate of
3% whilst the ADF test had a false-negative rate of 7%, and therefore the KPSS test
was selected. The null hypothesis of stationarity is also preferable as it is consistent
with the perspective of using outlier detection methodology in the frequency domain.

Given that this is being applied to overlapping windows of participant recordings, and
on each axis, several thousand highly correlated hypothesis tests are performed per
recording, multiple testing should be discussed. Stevens et al. [2017] perform a sim-
ulation study to assess the performance of these methods at successfully controlling
the family wise error rate (FWER) or false discovery rate (FDR) with di�erent levels
of correlation among the test statistics that have a block correlation structure, which
suggest that methods including the Two Stage Benjamini and Hochberg Procedure,
Adaptive Benjamini and Hochberg procedure, and the q-value method all perform
well at controlling the FDR under block correlation dependence. Siegmund et al.
[2011] propose a variant of the landmark paper from Benjamini and Hochberg [1995]
where the discoveries are assumed to come from a Poisson process. However to my
knowledge, no work has been done to assess FDR/FWER control in the general case
of highly auto-correlated p-values with a Toeplitz correlation structure where a high
proportion of the tests are truly signi�cant. In this scenario, the p-values are used to
locate windows of recording that are non-stationary. Several consecutive signi�cant
p-values would result in a larger window of non-stationarity detected. In this way,
the p-values give rise to a Markov Chain with two states, stationarity (not signi�-
cant) and non-stationarity (signi�cant). Given that one wouldn’t expect very rapid
changes between stationarity and non-stationarity, the Markov chain would rarely
change states. That is, given that the previous test is signi�cant, the following test is
expected to be signi�cant, i.e. not a discovery. Therefore in this framework, the �sta-
tistical discovery� is the transition between states, and not a rejected null hypothesis.

To formalise this argument, consider a single axis of signal from a participant record-
ing xt of length T , let pt denote the p-value from the KPSS test performed on xt:t+100,
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with this procedure resulting in T � 100 highly auto-correlated p-values. Then at
time t, consider the two events:

� S0 : pt > 0:05 corresponding to stationarity of the window xt:t+100,

� S1 : pt � 0:05 corresponding to non-stationarity of the window xt:t+100.

The following graph depicts the two state Markov chain:

S0 S1

p01

p10

p00 p11

where S0 corresponds to stationarity (acceptance of the null hypothesis) and S1

corresponds to non-stationarity (rejection of the null hypothesis). The transition
matrix is given by  

p00 p01

p10 p11

!

: (2.38)

In this scenario, one expects p00 and p11 to be large, with
P

i pki = 1 for k = 0; 1.
Crucially, P (pt+1 � 0:05jpt � 0:05) and P (pt+1 > 0:05jpt > 0:05) are high. Given
that relatively few transitions of state are expected in the tremor recordings, there are
few statistical discoveries under this framework, and therefore I propose that in this
setting, no adjustment for multiple testing is required. Moreover the consequences of
a false discovery are not severe - inclusion of that window in the integration process.
Overall, via the methodology outlined in this section, large amounts of noise are be-
ing identi�ed and omitted, meaning there are still large accuracy bene�ts even with
a small number of false discoveries. There is also a risk of information loss if periods
of recording that contain movement are erroneously excluded in adjusting for false
discoveries.
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Figure 2.24: Kernel density estimates for p00, p11, p10 and p11 taken across all axes
of all participant �les. Note that for 30 axes (0.8%), no signi�cant tests are located
meaning that p11 and p10 are not de�ned.

Figure 2.24 shows the distributions of transition probabilities calculated from par-
ticipant data. This shows that the probability of moving from non-stationarity to
stationarity is very low, and the probability of moving from stationarity to non-
stationarity is low, as noted previously.

2.6.4 Noise Classi�er Methodology Summary

The overall pipeline describing the tests performed as part of the noise classi�er
methodology are detailed in Figure 2.25. Overall, if any segment on any axis of
recording is found to be non-stationary, or the magnitude of acceleration is found to
be di�erent from noise either in the level of acceleration of frequency composition via
the methodology that has been outlined, then the segment is included in the �nal
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recording for numerical integration. The empirical cumulative distribution functions
(ECDF) for the proportion of noise found in the recordings has been plotted in Figure
2.26. There are some important observations:

� The control groups all appear to have similar ECDFs, whereas the parkinsonian
group have a larger proportion of recordings that contain no noise - this aligns
with what would be expected.

� A large proportion of recordings contain noise, indicating the importance of
applying this methodology, preventing excess error due to the integration of
noise in conversion of acceleration to displacement or in other downstream
task.

� There are no recordings that are solely identi�ed as noise, suggesting that
movement is detected in all recordings. This validates analyses to determine
whether there are di�erences between the di�erent groups of participants. If,
for example, the results showed only a small proportion of movement is being
detected in the non-parkinsonian groups, there would be little information
gained in analysing the acceleration signals.

2.7 Analysing Displacement due to Tremor

2.7.1 Participant data

After excluding recordings according to the exclusion criteria previously discussed,
there were 1219 tremor recordings remaining, which had been taken from the left and
right thumbs and �ngers of 171 participants of the observational study, 70 of those
with PD (labelled Pd), 47 who were spouses of those with PD as environmental
controls (labelled Ps), 16 participants were controls with a family history of PD
(labelled Cf), and the remaining 38 considered proper controls (labelled Ci). A
breakdown of demographics and covariates of participants within each group at the
time of their �rst tremor recording can be seen in Table 2.5. Note that there are on
average more repeated taken from participants within the Pd and Ps groups than

72



Chapter 2. Tremor Analysis 2.7. Analysing Displacement due to Tremor

Figure 2.25: The overall methodology for detection noise in accelerometer record-
ings. a) The raw tri-axial accelerometer recordings. b) Magnitude of acceleration
is calculated across the three dimensions. c) A 1 second sliding window is used on
the magnitude of acceleration and each window assessed. d) Functional outlier de-
tection methodology used to identify periods of recording that appear di�erent from
noise. e) The average magnitude of acceleration in each window is compared to that
of noise to identify windows that appear di�erent from noise. f) The same sliding
window approach as in c) is taken except this time on the raw accelerometer data.
g) Stationarity tests are performed to detect rotatory movement not identi�ed in d)
and e).
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Figure 2.26: ECDF of the proportion of noise separated by PD status. P corresponds
to those with PD, Ps to their spouses, Cf corresponds to controls with a family history
of PD and Ci to all other controls.
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Pd Ps Cf Ci
Count 70 47 16 38
Age 67.3 (60, 74.75) 64.5 (58, 70) 61.6 (57, 67.5) 65.6 (63.25, 71.75)

Gender (Male) 60% 40% 38% 50%
Height (cm) 165.4 (159, 175.9) 169.6 (162, 176.2) 171.9 (164.3, 180.6) 170.4 (162.4, 173.2)
Weight (kg) 71.8 (62.8, 82) 72.3 (65.8, 80) 71.4 (61.4, 78) 74 (62.5, 80.6)

Table 2.5: Summary of demographics from participants of the study as recorded in
the visit of their �rst tremor recording. [a; (b; c)] corresponds to an average of a,
lower quartile of b and upper quartile of c.

the Cf and Ci groups, with the average number of tremor recordings per participant
at 2.02, 2.04, 1.25 and 1.31 within those groups respectively. Note that ages and
genders are available in all participants, and heights and weights are available in 169
participants (that is, two participants with missing heights and weights.).

2.7.2 Application of Methodology

The Yang et al. [2006] integration method was used on all participant data after
exclusion of noise-like segments to obtain displacement. The exclusion of these points
is justi�ed as noise-like acceleration implies

a(t) = 0 =) v(t) = c =) s(t) = ct for some c 2 R3: (2.39)

This linearly evolving displacement is simply low frequency noise that is not asso-
ciated with tremor and hence can be discarded. After omission of these points, the
time axis was shifted such that the next point of interest is recorded 0.01 seconds
- the sampling rate - after the previously accepted observation. Initial analysis of
the results showed that low-frequency noise persisted in the integration schema. It
is worth noting that during the mechanical wobbulator simulations no low-frequency
noise was present, meaning the results from the analysis do not necessarily re�ect
performance at removing low frequency noise. A 6th order bandpass Butterworth
�lter was applied to the displacement results to remove low frequency noise along-
side any persisting high frequency noise. The corners used in the �lter were 2.5
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and 14.5Hz. Initial analysis of the results showed the presence of boundary e�ects.
Padding can be used to minimise boundary e�ects. An optimal padding procedure
for this task would preserve the frequency composition of the signal at the start and
end of the recordings. Constant padding and Symmetric padding were both tested.
Consider a signal xt = (x1; :::; xn) that will be padded by k observations either side
of x. Brie�y loosen the conventional indexing: let xa:b = (xa; xa+1; :::; xb�1; xb) if
a < b or xa:b = (xa; xa�1; :::; xb+1; xb) if a > b, where a 6= b.

Constant padding: This is where x1 is repeated k times at the start of the signal,
and xn is repeated k times at the end of the signal.
Symmetric padding: This is where xk:1 is appended to the start of the signal, and
xn:n�k is reversed and appended to the end of the signal.

Assessment of these methods on a small sample of recordings showed that constant
padding outperformed symmetric padding in removing boundary e�ects, but some
spikes were still present. An adaptation of symmetric padding was tested, where
the signals used to pad the start and the end of the signal in symmetric padding
are re�ected in the line x = x1 and x = xn respectively. That is, xt is padded
with 2x1 � xk:1 at the start of the signal, and 2xn � xn:n�k at the end of the signal.
This appeared to outperform the other two methods, removing a large amount of
boundary e�ect, as seen in the examples in Figure 2.27. Therefore this method was
used in the processing of the wider dataset. I refer to this as re�ected symmetric
padding.
Clinicians have de�ned four features of tremor that should be quanti�ed using the
obtained displacement signals:

� Total displacement due to tremor,

� Number of pulses of tremor (intermittency),

� Average duration of each pulse,

� Average amplitude of each pulse.
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Figure 2.27: The resulting displacement from an axis of recording for four di�erent
recordings comparing the use of di�erent padding methods to eliminate boundary
e�ects. In each case, it is clear that the re�ected symmetric padding method is best
performing.
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Based on these concepts, I initially propose four tremor metrics. These metrics are
based on the frequency composition of the displacement signal, and each metric will
be calculated per 1Hz frequency band from 3Hz - 14Hz. In these metrics, a variable
width windowing method is used such that, if frequency band f is being assessed,
a window length of 3=f is used, corresponding to the the three beats required in
the de�nition of tremor. Fixing frequency f , the initially proposed metrics can be
calculated as follows:

� Firstly an overlapping window of length 3=f is used to determine whether the
dominant frequency falls within the the interval If = [f � 0:5; f + 0:5). Let
wt = Xt:t+(100�3=f) de�ne the window of length 3=f . A collection of windows
wt1 ; :::; wtk with dominant frequencies !t1 ; :::; !tk 2 If are obtained. If k = 0,
then the total displacement due to tremor of frequency f is 0.

� There exists a collection of non-overlapping windows, ~w1; :::; ~wm of lengths
�1; :::; �m respectively such that m � k and

[ki=1wti = [mj=1 ~wj (2.40)

where m = k only if all wti are not overlapping.

� m corresponds to the number of pulses of tremor during the recording, which
can also be thought of as a measure of intermittency.

� Having identi�ed ~w1; :::; ~wm, the total displacement due to tremor is measured
by locating local maxima and minima within each window, summing the dif-
ferences together.

� The average amplitude of tremor is calculated by averaging over the peak value
for the dominant frequency within the frequency spectra of each ~wj.

� The average duration is given by
Pm

j=1 �j.

Whilst these metrics would describe the clinically relevant features, there are some
issues with these metrics that need exploring. The �rst is that the varying window
length for each frequency f leads to di�erent numbers of points being contained
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within each window wt. For example when f = 14, the window length is 0:214 sec-
onds, resulting in 21 evenly spaced observations with a domain of 0� 50Hz - that is
an observation every 2Hz and a very low resolution in the frequency spectra making
it challenging to estimate the true position of the peak. A common approach which
attempts to arti�cially increase the frequency resolution would be to zero-pad the
signal [Semmlow, 2018]. Other issues include the overlapping of windows leading to
the double counting of displacement in those windows.

Some simulations were performed to assess the severity of this bleeding of signal into
multiple bins. Simple sine waves were generated and passed through the methodol-
ogy. Table 2.6 shows which frequencies were observed as dominant for windows of
length 3=fobserved given a simulated sine wave with frequency fsimulated.

This overlap has severe consequences to the reliability of the metrics: double count-
ing of signal in calculation of the displacement due to tremor, and the inability to
isolate periods where a given frequency is dominant, leading to inaccurate calcula-
tion of number of pulses and duration of tremor. There is also a challenge around
aggregating the results from the three axes to determine the metric values for a single
recording. The use of variable width windows to detect dominant frequencies is not
recommended, and therefore an alternative approach is proposed.
To isolate the components of recording associated with di�erent frequencies, digital
band-pass �lters can be used. For a given frequency f , let Ff denote the 6th order
Butterworth �lter with corner frequencies of f � 0:5Hz and f + 0:5Hz. Note that
the signals are boundary e�ects and do not appear when applying the �lters at this
stage of the processing. Tremor metrics are calculated as in the following:

� Fix a frequency f . Apply �lter Ff toX1
1:T ; X2

1:T ; X3
1:T corresponding to the three

axes of the recording, resulting in �ltered signals X 1
1:T ;X 2

1:T ;X 3
1:T and consider

X1:T = (X 1
1:T ;X 2

1:T ;X 3
1:T ). The total displacement due to tremor associated with

frequency f can be calculated as

Df =
T�1X

i=1

jjXi+1 �Xijj: (2.41)
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fobserved
fsimulated 3 4 5 6 7 8 9 10 11 12 13 14
3 Y
3.5 Y Y
4 Y
4.5 Y Y
5 Y
5.5 Y Y
6 Y
6.5 Y Y
7 Y Y
7.5 Y Y
8 Y Y Y
8.5 Y Y
9 Y Y
9.5 Y Y Y
10 Y Y
10.5 Y Y
11 Y Y Y Y
11.5 Y Y Y
12 Y Y Y
12.5 Y Y Y
13 Y Y
13.5 Y

Table 2.6: A table showing the bleeding of signal of a speci�ed input frequency into
other frequency bins. Y corresponds to presence of dominant signal for frequency
fobserved when inputting a sine wave of frequency fsimulated.
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� In a similar way, the cumulative distance travelled can be calculated as

Dj =
jX

i=1

jjXi+1 �Xijj: (2.42)

From this a measure of intermittency is proposed as

If = Var(�Dj): (2.43)

A very intermittent tremor would result in a large value for If , whereas a
smooth tremor would result in low values for If . This metric is analogous to
the number of pulses metric previously suggested - theoretically a large number
of pulses would mean a highly intermittent tremor.

� Complete this process for each frequency f .

� An analogy to a dominant frequency can be de�ned under this framework.
Consider an upper envelope function for the absolute value of each �ltered
displacement signal Ei

f (t) = Ef [jX i
t j] for i = 1; 2; 3. Linear interpolation is used

to estimate the value of the envelope function between maxima for frequency
f at each time point t = 1; :::; T . Then the duration of dominance for each
frequency f is

Mf =
1
3

3X

i=1

 

T�1
TX

t=1

�f
�

arg max
f

�
Ei
f (t)
��
!

(2.44)

where

�f (x) =

8
<

:
1 if x = f;

0 otherwise.
(2.45)

That is the average proportion of the record for which f has the highest am-
plitude across the three axes.

This approach drops the de�nition of tremor as being 3 beats at a given frequency,
accepting that components of a signal at a certain frequency may always be present,
but low in amplitude at times. This less rigid de�nition allows for the analysis
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of smaller amplitude tremor signals that may not be dominant. The results from
analysing these metrics can be found in Figure 2.28.

Those with PD appear to have a larger total displacement across all frequency bands.
The literature suggests that the 3-8Hz frequency region corresponds to parkinsonian
tremor, and higher frequency tremors correspond to the essential tremor. These �nd-
ings suggest that the total displacement covered by frequencies in the 3-8Hz range
are larger than those of higher frequencies, however those with PD still appear to
have a larger total displacement in the 9-14Hz frequency range. This would explain
where the association of 3-8Hz tremor with PD has come from, but it’s not the only
collection of frequencies that construct parkinsonian tremor.

A similar pattern is seen in the intermittency measure, suggesting that these mea-
sures may be correlated, and indeed this is the case as seen in Figure 2.29. This
suggests that (larger) tremors are inconsistent and appear to come in bursts.

Dimensionality of tremor is also of interest. The typical ‘pill rolling’ motion of tremor
is thought of as being more two-dimensional, whereas the essential tremor is thought
of as being more one-dimensional. To assess whether this trait is observed in these
results, principal components analysis was applied to the displacement data. The
dimensionality of the tremor can be deduced from the principal component scores
- the proportion of the variance explained by each principal component. Given the
signal is 3-dimensional, there are three principal components. Those with a large
�rst principal component are more one-dimensional, and those with a large second
principal component are more two-dimensional. These values can be seen in Figure
2.30, and indeed this does not seem to discriminate between the signals of those with
and without PD.
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Figure 2.28: Boxplots showing distributions of tremor metrics grouped by Frequency
and Parkinsonian status.
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Figure 2.29: The total displacement and intermittency metric are highly correlated
across all frequency bands.

2.8 Future Work

2.8.1 Calprotectin & Microbiome

With the overall objective of an aetiopathognic model of PD and implication of
the microbiome as a disease modi�er, a relationship between gut in�ammation and
tremor is of great clinical interest. Calprotectin is a well-established biomarker of
gut in�ammation, and future work will involve establishing whether there are rela-
tionships between the di�erent tremor metrics presented in this chapter and levels of
calprotectin found in stool samples. Moreover, the tremor metrics presented in this
chapter will also be associated with corresponding microbiome data from 16s RNA
(rRNA) sequenced stool samples to understand whether particular a lack, or abun-
dance of certain bacteria - perhaps grouped at di�erent levels within the bacterial
taxonomy - are associated with tremor.
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Figure 2.30: First and second principal components from participant displacements.
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2.8.2 Simulation Study: Generating Time Series with Out-
liers

Future work will also aim to compare other functional outlier detection methods for
use in the methodology via a simulation study. This would be designed to generate
signals from di�erent frameworks, some containing di�erent types of outliers. There
are two core parts to de�ning the data-generating mechanism for the simulations,
the �rst being the generation of di�erent types of time series, and the second is then
to insert the outliers.

Various approaches to generation of time series data can be seen in the literature.
These can be grouped into two categories: ‘classical’ methods where classical time
series models can be speci�ed and used to generate data, and ‘ML’ methods where
deep neural networks, including generative adversarial networks (GANs) are used to
generate time series data. Under the classical approach, structure in the form of a
time series model is required. Having selected the model, the problem reduces down
to selecting a set of parameter values and initialising the time series. Following this,
the simulations can be performed. This is the approach taken in Kang et al. [2020],
a framework for generating mixture autoregressive models where the user is able to
input the desired features of the time series models, which act as constrains on the
parameter choices within the model.

A collection of classical time-series model frameworks were considered, those being
ARMA, GARCH, Random Walk, White Noise, and Mackey-Glass. Parameter selec-
tion for each model was performed in a strategic way to ensure that simulations from
the model have certain useful properties. Analysis of some initial simulations shows
that the ARMA, GARCH, Random Walk and White Noise frameworks produced sig-
nals with stochastic frequency properties, which gives rise to questions around how
well the functional outlier detection methodology proposed in the chapter would
work under these circumstances. This also brings into question how an outlier for
time-series data should be de�ned - if frequency properties are stochastic, questions
relating to this stochasticity, and the de�nition of an outlier need to be addressed.
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Addition of outliers

Two di�erent types of outlier are considered, discords (single point outliers) and sub-
sequence outliers. Discords are easier to generate, as one can simply select points
that appear su�ciently far away from other nearby points - this can be done by
considering the marginal variance of nearby points for example. Generation of sub-
sequences outliers is more challenging. One proposal is to use frequency properties
of the signal. For example, one could scale the frequency spectra such that it is con-
tained within [0; 1]�[0; 1], and consider the distance from a point to this ‘normalised’
power spectral density:

D(x; f(x)) = arg min
d

(Bd(x) \ f(x) 6= �) (2.46)

where Bd(x) corresponds to the circle centered at x with radius d. A threshold �
could be set such that, x 2 [0; 1]� [0; 1]jD(x; f(x)) > � where f(x) corresponds to
the frequency spectra. Each selected x corresponds to a signal with a given frequency
and amplitude, which can then be simulated and inserted into the time series. Fur-
ther, multiple x1; :::;xk could be selected, with the signals corresponding to each one
summed together.

Overall these ideas need further exploration, but there is a gap in the literature
surrounding a methodology to simulate time series with outliers in this way.
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Chapter 3

Bradyphrenia

3.1 Introduction

Bradyphrenia, a term used to de�ne the slowing of cognitive processing time associ-
ated with Parkinson’s disease, has previously been described as a nosological entity
of Parkinson’s disease (PD) that can be quanti�ed via the log-ratio of warned and
unwarned reaction times - see Dobbs et al. [1993a]. This also explores the rela-
tionship between bradyphrenia and exogenous substances like tobacco, leading us
to ask whether other drugs may a�ect bradyphrenia. Furthermore, a questionnaire
has been designed and is presented in Wang et al. [2023a] which aims to quantify
bradyphrenia. Hence the following research questions are explored:

� What are the di�erences between PD and non-PD groups with respect to
bradyphrenia?

� Do exogenous substances like anti-parkinsonian medication and other medicinal
drugs have an impact on bradyphrenia?

� Do these drug e�ects persist when looking at within-person longitudinal data
where some patients are introduced to/taken o� di�erent drugs?

� Is there a relationship between the questionnaire results and the reaction-time-
based measure of bradyphrenia?
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3.1.1 Data Collection and Exploratory Analysis

The cohort has a total of 208 participants, comprising of 83 patients with diagnosed
Parkinson’s disease (denoted P), 58 spouses of those with PD (Ps), 19 Controls with
a family history of PD (Cf), and 48 proper controls (Ci). A computer program
was used to measure warned and unwarned reaction times in milliseconds for both
the left and right hand, as described in Dobbs et al. [1993a]. They key points are
that data was collected in a block of four measurements � left and right, warned
and unwarned, with the ordering of these being randomised in each block. Then 10
blocks of measurements are taken for each participant, with the geometric average
of each measure across the 10 blocks being taken as the participant’s reaction time.
Longitudinal measures have been taken in some patients where they have attended
periodic follow-up visits, with an average of 2.1 visits per patient and 100 patients
having more than one visit. Mini-mental score [Harvey and Mohs, 2001] of partici-
pants has been recorded. There were 7 participants with a mini-mental score of �26
within the cohort and they have been excluded from the analysis due to cognitive
impairment, as this may a�ect their ability to complete the task. Table 3.1 includes
these participants, and there are excluded thereafter.

3.2 Methods and Results

3.2.1 Cross-sectional Visit 1 Analysis

The �rst approach is a cross-sectional analysis across the �rst visit of each participant,
with the aim of understanding relationships of variables across the cohort, both for
covariate and drug e�ects on cognitive e�ciency. Moreover, any relationship between
bradyphrenia and functional constipation/segmental delay is explored, furthering
work explored in Tucker et al. [2020]. A summary of the data used in the cross-
sectional analysis can be seen in Table 3.1 ([a (b; c)] corresponds to [median, (LQ,
UQ)]), and note that 8 participants had a minimental score of <27 at their �rst visit,
1 of which had a follow-up appointments with a minimental score �27. Note that
colonic transit time data was collected in a subset of participants. The proceeding
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visit will be used for one of these participants, and the other 7 participants (6 with
PD and 1 without) have been excluded from the analysis.

Since most of our cohort are right-handed, and with the disease tending to a�ect
the left side more within this cohort due to disease asymmetry [Miller-Patterson
et al., 2018], the di�erence between left and right hand (almost entirely confounded
with dominant hand and more rigidity, 87.9% of participants are right dominant,
and 87.9% of participants are more rigid on the left side, as seen in Table 3.2) is
examined.

The Kruskal-Wallis (KW) test is used via the kruskal.test function in R [Kruskal
and Wallis, 1952, R Core Team, 2022] to test whether samples from di�erent groups
come from the same population via a check for stochastic dominance:

H0 : The samples come from the same population.

H1 : The samples come from populations of approximately the same form

but shifted or translated with respect to each other.

as described in Vargha and Delaney [1998]. They advise caution around the assump-
tions for this framework of hypotheses, summarised in Hecke [2012], which are that
the shapes of the distributions are the same within each group: �...if di�erent groups
have di�erent shapes (for example one is skewed to the right and another is skewed
to the left), the [KW] test may give inaccurate results�. The assumption of simi-
lar shaped distributions is supported in Figure 3.2. The test was applied to assess
whether either unwanrned or warned reaction times di�ered by hand dominance:

H0 : (Un)Warned reaction times from left and right handed participants belong to

the same population.

H1 : (Un)Warned reaction times from left and right handed participants come from

populations of approximately the same form but shifted or translated with

respect to each other.
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PD Group Non-PD Group
Sample Size 77 124

Age 69 (61, 74) 66 (59, 70)
Gender (Male) 57% 40%
Height (cm) 170.3 (159.5, 176.9) 169.4 (162, 177.6)
Weight (kg) 72 (63, 84) 71 (63, 82)

BMI 24.4 (20.5, 32.8) 22.3 (19.6, 26.9)
Right Handed 92% 85%

Taking Levodopa 40
Levodopa Dosage (mg) 300 (250, 412.5)

Taking Dopamine Agonist 36
Dopamine Agonist Dosage (mg) 1.19 (0.71, 2.1)

Taking Amantadine 5
Amantadine Dosage (mg) 100 (100, 100)
Taking Anticholinergics 9

Anticholinergic Dosage (mg) 4 (4, 6)
Taking COMT Inhibitors 10
Taking MAO-B Inhibitors 37

Taking Laxatives 40 15
Taking NSAIDs 7 11

Taking Anti-depressants 3 10
Taking Anti-psychotics 7 0

Anxiety Index 12 (6, 17) 5(2, 8)
Depression Index 10 (6, 15) 4.5 (1, 10)
Minimental Score 30 (29, 30) 30 (30, 30)

Cognitive E�ciency 0.376 (-0.073, 0.825) 0.394 (0.045, 0.743)

CTT data recorded in 32 37
Functional constipation 34% 30%

Segmental delay in transverse colon 12.5% 0%
Total Markers Retained 19 (8, 36.25) 11 (6, 18)

Table 3.1: Data summary for the cross-sectional analysis.
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Side Dominant Hand Worse Rigidity
Left 25 183
Right 183 22
Equal � 3

Table 3.2: Cross tables between side and dominant hand, and side and worse rigidity.

Figure 3.1: Boxplots showing distribution of the unwarned and warned reaction times
in milliseconds by participant grouping.

The p-values when comparing the the reaction times between left and right handed
participants are 0.929 and 0.819 for unwarned and warned reaction time respectively.
Indeed there is insu�cient evidence that reaction times from left and right hands
belong to di�erent populations and proceed by averaging the left and right reaction
times to obtain the average reaction time per person, per visit. These measures
are used to calculate a metric for cognitive e�ciency, denoted E, �rst introduced in
Dobbs et al. [1993a], that is:

E = Cognitive E�ciency = log(Unwarned)� log(Warned): (3.1)

De�ne E = (E1; :::; En)T , where Ei is the cognitive e�ciency for participant i when
they �rst visited clinic to participate in the study. Note that the Ei’s appears to be
normally distributed, as seen in Figure 3.3.
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Figure 3.2: Boxplots showing distribution of the ratio of unwarned and warned
reaction times on a log scale, by participant grouping.

Figure 3.3: Quantile-quantile plot of cognitive e�ciency metric against a normal
distribution.
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Covariates

Should any measured covariates appear to have a relationship with cognitive e�-
ciency, one would need to adjust for these e�ects. The following covariates have
been recorded:

� Age

� Gender

� Height

� Weight

� Mini-mental Score [Harvey and Mohs, 2001]

� Beck Depression Inventory [Beck et al., 1996]

� Beck Anxiety Inventory [Beck et al., 1988]

Denote the matrix of covariates as X(C) =
�
X(C)
ij
�
, where X(C)

ij represents the value
for the ith covariate for patient j. The superscript C denotes that the covariate values
are in the design matrix, and other superscripts of this nature will be introduced
shortly. Denote

X(C)
i� = (X(C)

i1 ; :::; X(C)
i7 ); X(C)

�j = (X(C)
1j ; :::; X

(C)
201j)

T (3.2)

as the vector of covariates for participant i, and the vector of participant data for
covariate j respectively. In the linear regression model

E = �0 +X(C)�(C) + "; (3.3)

where �0 denotes a vector of the intercept term, no covariates appear signi�cant
predictors bradyphrenia, meaning no covariate adjustment is performed. Variance
in�ation factors (VIFs) were checked to ensure no issue of multi-collinearity between
the covariates, and indeed all values were < 4. The results of the logistic regression
can be seen in 3.3
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Predictor Odds Ratio Con�dence Interval p-value
Age 1.03 0.99-1.08 0.123

Height 0.94 0.88-0.99 0:022
Weight 1.00 0.97-1.03 0.986

Gender (F) 0.11 0.04-0.33 < 0:001
Minimental 0.63 0.38-1.04 0.071
Anxiety 1.21 1.12-1.31 < 0:001

Depression 1.02 1.96-1.09 0.500
Cognitive E�. 0.49 0.08-2.87 0.426

Table 3.3: Logistic regression model predicting PD status from covariates and cog-
nitive e�ciency. Note that whilst poorer cognitive e�ciency was associated with
having PD, it was not statistically signi�cant.

Any signi�cant di�erences in cognitive e�ciency among the non-PD groups (Ps, Cf
and Ci) is checked �rst, as this could re�ect an environmental e�ect between P
and Ps that is not seen within the two control groups, or perhaps a genetic e�ect
of PD in the Cf group not present in the others. Again the Kruskal-Wallace test
can be used, and gives a p-value of 0.481, and hence it is concluded that there is
no signi�cant di�erence in cognitive e�ciency between the three groups, and pool
them into one ‘non-PD’ group. A box-and-whisker plot showing the distribution of
cognitive e�ciency between the two groups can be seen in the left of Figure 3.5.
It appears that the PD group has a higher variation in cognitive e�ciency that
the non-PD group. This can be formally assessed using the F -test for di�erences
in variances, which has a p-value of 0:012. Note that cognitive e�ciency is not a
signi�cant predictor of PD status (p = 0:426), tested via a logistic regression model

Pj =
1

1 + e�(�0+�1Ej+X
(C)
j �(C)+"j)

(3.4)

where �1Ej denotes the term corresponding to cognitive e�ciency in the model, and
Pj 2 [0; 1] can be interpreted as the probability of having PD.

Previous work in Tucker et al. [2020] identi�ed a relationship between colonic transit

95



3.2. Methods and Results Chapter 3. Bradyphrenia

time (CTT) and bradyphrenia. The following two models are presented [odds ratio
(p-value)]

1. Model A:

� Segmental delay in the transverse colon (CTT (1)) [38.67 (0.01)]

� Functional constipation (CTT (2)) [4.57 (0.001)]

2. Model B:

� Segmental delay in the transverse colon (CTT (1)) [17.9 (0.05)]

� Total markers retained (CTT (3)) [1.04 (0.02)]

Given the presence of strong relationships - in particular the large odds ratios in
those with segmental delay in the transverse colon, this is something that was as-
sessed within a subset of participants on this study. Various measures related to
CTT have been taken in a 73 participants (36 with PD and 37 without). Partici-
pants with consectutive visits were invited to participate in a separate study relating
to CTT, and these 73 are those who also have data relating to the bradyphrenia study.

Segmental delay in the transverse colon and functional constipation are binary in-
dicators for presence of condition, and total markers retained takes non-negative
integer values, and is a count of the number of markers. Given these can potentially
indicate presence of PD, a linear regression model with these 3 variables (de�ning
CTT = (CTT (1) CTT (2) CTT (3)) is used alongside covariates:

E = �0 +X(C)�(C) +CTT (�1 �2 �3)T + ": (3.5)

No variables show as signi�cant in this model. Cook’s distance is used to check
for in�uential points [Cook, 1977] (denoted Di) with a lower-limit threshold of 4=n
applied (where n is the number of observations, n=73). This highlights 5 observa-
tions. Re�tting the model with these omitted, continues to indicate that none of the
variables are signi�cant. The choice of the 4=n threshold is used in line with rule of
thumb.
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Drug indicators

Exogenous substances and their e�ect on bradyphrenia is of particular interest. The
following drugs are considered in the analysis:

1. Levodopa: A commonly used drug in PD as a dopamine replacement reagent
most e�ectively used to manage the bradykinesia (slowness/poverty of move-
ment). Levodopa is a drug that requires higher doses as the disease progresses
to maintain the e�ect [Gandhi and Saadabadi, 2023].

2. Dopaminergic agonist: These drugs were developed as an alternative to the use
of Levodopa in Parkinson’s disease due to side e�ects that occur after prolonged
use of Levodopa, and are recommended for the management of bradykinetic
symptoms in younger people with the disease [Choi and Horner, 2023].

3. Amantadine: Initially used as an antiviral treatment for In�uenza A in the
early 2000s until the virus developed resistance to the drug, it is now used to
combat the bradykinesia, rigidity and tremor associated with PD, best used as
a short term therapy for mind disease [Chang and Ramphul, 2023].

4. Anticholinergic drugs: Within PD, benzotropine and trihexylphenidyl are used
to counter the lower dopamine levels induced by the disease, with trihexylphenidyl
being most prevalent in our cohort. They can be used to treat the symptoms
of various other illnesses [Ghossein et al., 2023].

5. Monoamine Oxidase-B inhibitors (MAOBIs): A type of anti-depressant not
too commonly used for mental health illnesses due to dietary restrictions, side
e�ects and safety concerns, though o�ers some bene�ts to those with PD by
enhancing dopamine-inducing e�ect of levodopa [Sub Laban and Saadabadi,
2023, Volz and Gleiter, 1998].

6. Catechol-O-methyl transferase inhibitors (COMTIs): After prolongued use of
levodopa, patients experience a higher proportion of time where they feel the
drug is taking e�ect, a so-called �o�� time, which requires more frequent ad-
ministration of the drug, or higher doses. The use of COMTIs are to reduce
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amount of time where patients are experiencing this �o��, or to help patients
tolerate a lower dose of levodopa [Willman and Tadi, 2023].

7. Laxatives

8. Non-steroidal anti in�ammatory drugs (NSAIDs)

9. Anti-depressants

10. Anti-psychotics

where drugs 1-6 are anti-parkinsonian, and therefore only taken among those within
the PD group. Denote the design matrix of these binary variables (1 indicating the
drug is being taken, 0 as not) as X(D). Table 3.4 presents the correlation matrix for
these binary drug e�ects, with correlation measured by the phi-coe�cient as de�ned
in Revelle [2022]. That is, for two binary variables Q1 and Q2 with the corresponding
cross table

Q1 = 0 Q1 = 1
Q2 = 0 a b
Q2 = 1 c d

de�ne
� =

a� (a+ b)(a+ c)
p

(a+ b)(c+ d)(a+ c)(b+ d)
: (3.6)

Dosages of drugs 1-4 being taken at the time of the clinical visit are recorded, and the
design matrix with dosages as opposed to binary indicators isX(D0). Two approaches
to understand drug e�ects are taken. One model uses the binary indicators, and uses
the dosages for the drugs in which they are available.

Firstly, simple regression models for each drug are constructed to understand the
marginal e�ects of each drug on cognitive e�ciency:

Ei = �0 + �(Dk)X(Dk)
i 8 k 2 f1; :::; 10g (3.7)

In this approach, only the anticholinergics appear to have a signi�cantly non-zero
positive e�ect on cognitive e�ciency as seen in Table 3.5. Next consider the multiple
regression model

E = �0 +X(C)�(C) +X(D)�(D) + " (3.8)
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Lev Dop Ama AnCh MAO COM Lax NSA AnDe AnPs
Lev 1 0.45 0.16 0.19 0.41 0.46 0.28 -0.03 0.03 0.25
Dop 1 0.34 0.40 0.78 0.37 0.47 0.08 0.00 0.16
Ama 1 0.43 0.34 0.26 0.19 -0.05 -0.05 0.24
AnCh 1 0.46 0.5 0.35 0.02 -0.07 0.37
MAO 1 0.36 0.43 0.03 -0.10 0.15
COM 1 0.27 0.01 -0.07 0.35
Lax 1 0.04 0.01 0.11
NSA 1 -0.03 -0.04
AnDe 1 0.11
AnPs 1

Table 3.4: �-coe�cient measure of correlation between the drugs included in the
analysis.

Variable Intercept Coe�cient Con�dence Interval p-value
Levodopa 0.4 -0.05 (0.37 � 0.43) 0.129

Dopamine Agonist 0.38 0.05 (-0.02 � 0.12) 0.167
Amantadine 0.39 -0.01 (-0.18 � 0.17) 0.928

Anticholinergics 0.38 0.2 (0.07 � 0.33) 0:003
MAOBIs 0.37 0.07 (-0.00 � 0.14) 0.053
COMTIs 0.38 0.09 (-0.03 � 0.22) 0.146
Laxatives 0.38 0.03 (-0.03 � 0.09) 0.376
NSAIDs 0.38 0.06 (-0.04 � 0.16) 0.233

Anti-depressants 0.39 0.01 (-0.08 � 0.11) 0.794
Anti-psychotics 0.39 0.05 (-0.18 � 0.27) 0.674

Table 3.5: Summary of simple regression models using drug indicators to predict
cognitive e�ciency.

99



3.2. Methods and Results Chapter 3. Bradyphrenia

Model 1 Model 2
Predictor Coef. CI p-value Coef. CI p-value
Intercept 0.39 0.36 � 0.42 < 0:001 1.12 0.02 � 2.23 0:047
MAOBIs 0.08 -0.00 � 0.16 0:065 0.08 -0.01 � 0.16 0:067
Levodopa -0.09 -0.17 � -0.02 0:01 -0.11 -0.18 � -0.03 0:004

Amantadine -0.16 -0.35 � 0.03 0:102 -0.17 -0.35 � 0.02 0:085
Anticholinergic 0.22 0.07 � 0.37 0:005 0.21 0.06 � 0.36 0:005
Minimental -0.02 -0.06 � 0.01 0:191
Observations 201 201

R2 0.091 0.099

Table 3.6: Summaries of regression results from models predicting e�ects of drugs on
cognitive e�ciency with p = 4 and p = 5 parameters, de�ning Model 1 and Model 2
respectively.

and examine the conditional drug e�ects. Backwards variable elimination using AIC
[Akaike, 1974] as model �t criteria was used to select the variables to be included in
the model. This yields the Model 1

E = �0 + �1MAOIBs + �2Levodopa + �3Amantadine + �4Anticholinergic (3.9)

as shown on the LHS of Table 3.6 with 4 parameters and an intercept. Model 2 with
5 parameters:

E = �0+�1MAOIBs+�2Levodopa+�3Amantadine+�4Anticholinergic+�5Minimental
(3.10)

can also be considered as it has a similarly low AIC as demonstrated in Figure 3.4.
This model is presented on the RHS of Table 3.6.

Interactions between medications are of particular medical interest - in this case,
potential interactions between levodopa and the MAOBIs/COMTIs as it is pharma-
cologically reasonable to prescribe these alongside levodopa. There are not enough
patients taking a combination of levodopa and COMTIs to estimate the interaction
between these terms individually, so those taking COMTIs and MAOBIs are pooled
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Figure 3.4: For varying numbers of parameters included in the model, a plot showing
the minimum AIC across all possible models. Those circled are presented in Table
3.6
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Predictor Coef. CI p-value
Intercept 0.39 0.36 � 0.42 < 0:001

MAOBIs [ COMTIs 0.03 -0.08 � 0.13 0:620
Amantadine -0.15 -0.34 � 0.04 0:117

Anticholinergic 0.23 -0.08 � 0.38 0:003
Levodopa -0.12 -0.21 � -0.03 0:012

(MAOBIs [ COMTIs) \ Levodopa 0.08 -0.08 � 0.23 0:322
Observations 201

R2 0.088

Table 3.7: Regression results upon pooling of MAOBIs and COMTIs, and considering
an interaction with levodopa.

into one group (note that they were not highly correlated, with � = 0.36). For two
binary drug indicators D(1) and D(2), D(1) [D(2) are de�ned as the binary indicator
for whether the patient is taking either D(1) or D(2), and similarly D(1) \ D(2) the
binary indicator for taking both D(1) and D(2). Consider the model presented in
Table 3.7 where the e�ect of the interaction levodopa [ (MAOBIs \ COMTIs) is
examined. Whilst it appears the negative e�ect of levodopa is mostly counteracted
when taking MAOBIs or COMTIs, the e�ect of the interaction is not signi�cant.

Having obtained a parsimonious model (Model 1) for the e�ects of drugs on bradyphre-
nia, the contribution of these drugs on the increased variance of cognitive e�ciency
in PD can be assessed. Figure 3.5 shows the distribution of cognitive e�ciency be-
fore, and after, adjusting for the drug e�ects using the optimal model. The dataset
is partitioned into two subsets, those with PD and those without, denoted P and P 0

respectively. Let EP denote cognitive e�ciency of those with PD, and EP 0 that for
those without PD. An F -test for di�erence in variances is used:

H0 : Var(EP) = Var(EP 0);

H1 : Var(EP) 6= Var(EP 0):

The p-value for this test is 0.012 (F = 0.603 (0.397 - 0.897)), meaning a signi�cant
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Figure 3.5: The distributions of cognitive e�ciency and model residuals (adjusted
cognitive e�ciency) respectively for the PD and Control groups.

di�erence in the variance between the PD and control groups. This test is repeated
after adjusting for the drug e�ects: ~Ei = 0:39 + (Ei � Êi) where Êi corresponds to
the predicted cognitive e�ciency from Model 1 for patient i. Hence the test is

H0 : Var( ~EP) = Var( ~EP 0);

H1 : Var( ~EP) 6= Var( ~EP 0):

This test has a p-value of 0.133 (F = 0.737 (0.486 - 1.097)). There is no longer a
signi�cant di�erence in variance between the two groups - the drug e�ects explain
the di�erence in variance between the PD and non-PD groups.

In�uential points

Further analysis is done to identify and understand the impact of in�uential points
within the modelling. Three di�erent thresholds of Cook’s Distance are used and the
results compared:

D = 1, D =
3
n

nX

i=1

Di = 3 �D and D = 4=n (3.11)
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D = 1 D = 4=n = 0:020 � 3 �D = 0:019
Predictor Coef p-Value Coef p-Value
MAOBIs 0.08 0.065 0.09 0:016
Levodopa -0.09 0:010 -0.11 < 0:007

Amantadine -0.16 0.102
Anticholinergic 0.22 0:005

COMTIs 0.14 0.062
Height (cm) 0.0019 0.125

Anti-depressants 0.06 0.164
Observations 201 185

R2 0.091 0.088

Table 3.8: Comparison of regression models after model selection with the omission
of points from three di�erent Cooks distance thresholds. Note that in the case D = 1,
no points are excluded.

The �rst and third are considered rules of thumb, where values greater than 1, or 4=n
respectively, are considered highly in�uential. The second is the default threshold
provided when analysing Cook’s distance in Matlab [Inc., 2019]. In this case, the
second and third thresholds listed identi�ed the same set of 16 points, which were
removed from the analysis. Repeating the step-wise variable selection process after
omitting in�uential points with the three di�erent thresholds yields the results seen
in Table 3.8.

The results show that the signi�cance of the Amantadine, and even it’s presence
in the model with D = 1 seems due to the 16 participants identi�ed as in�uential
by the other thresholds. Furthermore, these participants appear to mask the e�ect
of the COMT Inhibitors in the second model. Whilst there are no clinical grounds
for excluding these data points from the analysis, it is important that the results
presented are caveated with this information. The di�erences in the two models
above warrant some further analysis into the sensitivity of the selected variables to
slight di�erences in the data.
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Regression Bootstrapping

In bootstrapping, various di�erent data sets are compiled by sampling from the
original data set with replacement. It is used here to assess the robustness of the
model inferences. Shao [1996] discuss the use of this methodology, and provide
some recommendations on how best it can be implemented, in particular advising
caution on the size of the bootstrap sample m - if m is the same as the size of the
data n, then the variable selection procedure is not consistent. They show that if
log(log(n)) � m � n

log(log(n)) (with log := loge), then the results are consistent. To
maximise the volume of data used to estimate the parameters in the model,

m =
�

201
log(log(201))

�
= 120 (3.12)

is selected. The results of variable inclusion in the model under bootstrapping are
presented in Table 3.9.

Levodopa and anticholinergics appear notably more frequently than all the other
variables, suggesting that inferences made about these drug e�ects are more robust
than inferences made on other drug e�ects.

E�ects on Reaction Times

The e�ect of the drugs can be further explored by examining their impact on the
reaction times themselves. Whilst it is useful to understand how the drugs are im-
pacting bradyphrenia, the way in which that e�ect manifests within the reaction
times provides a lower level of detail. The model selection process is repeated using
the same explanatory variables as before, but this time with the warned and un-
warned reaction times as response variables. This yields the models in Table 3.10.

As previously mentioned, an improved cognitive e�ciency is de�ned by a larger
distance between unwarned and warned reaction time (where the warned reaction
time is the lower value). This analysis shows that levodopa appears to have a negative
e�ect on cognitive e�ciency by delaying the warned reaction time more so than the
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Variable Exclusion (%) Dropped (%) Included (%)
Age 0 69.4 30.6

Height 0 76.5 23.5
Weight 0 85.1 14.9
Gender 0 77 23

Minimental 0 68.5 31.5
Depression 0 71.7 28.3
Anxiety 0 68.9 31.1

MAOB Inhibitors 0 56.3 43.7
Dopamine Agonists 0 73.4 26.6

Amantadine 5.8 54.5 39.7
Anticholinergics 0.4 33 66.6

Levodopa 0 29.2 70.8
COMT Inhibitors 0.4 67.8 31.8

Laxatives 0 73.2 26.8
NSAIDs 0 65.8 34.2

Anti-depressants 0 69.1 30.9
Anti-psychotics 14.9 35.1 50

Table 3.9: A table showing results from the bootstrap variable selection, repeating
with 1000 bootstrap samples. ‘Exclusion’ means that the variable was excluded
before model selection, as only one factor level for the variable was found in that
resampled data set. ‘Dropped’ indicates that the variable was not included in the
model after variable selection, whilst ‘Included’ indicates inclusion of the variable in
the model after variable selection.
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Warned RT Unwarned RT
Predictor Coef. CI p-value Coef. CI p-value
Intercept 339 199 � 479 < 0:001 685 365 � 1005 < 0:001

Weight (kg) -0.93 -2.08 � 0.23 0:115
Anticholinergic -78 -172 � 15 0:099

Age 2.22 0.49 � 3.95 2.53 0.84 � 4.22 0:004
Depression 2.63 0.05 � 5.20 0:046 2.64 0.14 � 5.15 0:039
Levodopa 133 85 � 182 < 0:001 108 60 � 157 < 0:001

Dopamine Agonist 80.83 6.4 � 155 0:033 109 37 � 182 0:003
MAO-B Inhibs -137 -210 � -63 < 0:001 -130 -199 � -61 < 0:001
Height (cm) -1.42 -3.10 � 0.25 0:096
Amantadine -118 -235 � -1.3 0:048

Anti-Psychotics 193 49 � 339 0:009
Observations 201 201

R2 0.261 0.310

Table 3.10: E�ects of explanatory variables on unwarned and warned reaction time,
measured in milliseconds.

unwarned reaction time. A similar pattern is seen with the Monoamine Oxidase-B
Inhibitors - the associated improvement of warned reaction time is larger than the
improvement of unwarned reaction time. The e�ect of the dopamine agonists are
interesting, whilst they appear to improve cognitive e�ciency, they have a negative
e�ect on both warned and unwarned reaction times. Amantadine doesn’t appear in
the model for warned reaction times due to a lack of e�ect (quanti�ed by AIC), but
it has a positive e�ect on the unwarned reaction time by speeding it up. Hence,
it appears that bradyphrenia has a negative e�ect on cognitive e�ciency, but this
conclusion hides the association of the drug with faster unwarned reaction times.
This analysis highlights the need to delve deeper, looking to see exactly how the
impacts of drugs on cognitive e�ciency are manifesting within the reaction times.
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Predictor Coef. CI p-value
Intercept 0.38 0.36 � 0.41 < 0:001

Dopamine Agonist Dosage (/2.1mg) 0.105 -0.01 � 0.216 0:065
Levodopa Dosage (/300mg) -0.053 -0.10 � -0.01 0:023

Amantadine Dosage (/100mg) -0.120 -0.260 � 0.020 0:092
Anticholinergic Dosage (/4mg) 0.137 0.002 � 0.272 0:046

Observations 201
R2 0.093

Table 3.11: Results after variable selection using the medicine dosages where avail-
able.

Drug dosages

These �ndings can be validated by checking whether the same patterns of drug
e�ects on cognitive e�ciency appear when using the dosage data, X(D0). Applying
the same model selection framework, the �ndings (as seen in Table 3.11) mostly
align with those from the optimal drug indicator model. The only di�erences are
that the dosages have teased out a positive e�ect of dopamine agonists on cognitive
e�ciency(though not signi�cant at the 5% level), and the MAO-B Inhibitors have not
been selected. Modelling with dosages provides clinicians with an understanding of
the impact that the dosage of the drug has on bradyphrenia, given that the dosage
of a drug falls within the bounds of dosages seen within the study, i.e. without
extrapolating.

3.2.2 Longitudinal Analysis - All Time

This follow-up analysis looks to see whether the drug e�ects are prevalent when look-
ing at cognitive e�ciency longitudinally through patient follow-up visits. Applying
the exclusion criteria for participants minimental score, three participants had min-
imental scores <27 at their second visit - these observations have been excluded,
and one participant had a minimental score <27 at their �nal two visits (4th and
5th), with these observations also being excluded. This gives a total of 422 observa-
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tions from the 201 individuals previously discussed. Firstly athe variables had to be
categorised into patient and visit level.

� Patient level covariates denoted CP

� Age ! Age at �rst visit

� Height ! Average Height across visits

� Weight ! Average Weight across visits

� BMI ! Average BMI across visits

� Hand dominance

� Visit level covariates denoted CV

� Depression

� Anxiety

� Minimental

� Drug indicators and dosages are all recorded at visit level, denoted D where
drug indicators are used and D0 where dosages are used

� Dopamine Agonist dosage

� Levodopa dosage

� Amantadine dosage

� Anticholinergic dosage

� COMT Inhibitor

� MAO-B Inhibitor

� Laxatives

� NSAIDs

� Anti-depressants
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Figure 3.6: The distribution of drug dosages observed as participants have repeated
visits to clinic.

� Anti-psychotics

Let �ij correspond to the date of visit i for participant j. Then time (in number of
days) since �rst visit is de�ned as tij = �ij � �1j such that t1j = 0 8j. The distri-
bution of drug dosages in those with PD can be seen in 3.6, within which the most
notable changes as participants return for clinic visits are the increased dosages of
Amantadine and Dopamine Agonist begin taken.

Two linear mixed models are considered:

� A model containing covariates and all drugs, with e�ects estimated on only the
subset of the cohort with PD.

� A model containing covariates and drugs that are not used to treat PD, with
e�ects estimated using data from the whole cohort

The analysis is decomposed in this way to:

1. identify whether drug e�ects persist both under comparison to others with PD
and over time;

2. determine whether any covariate e�ects appear signi�cant across the cohort
over time.
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Both models remain similar to those already examined, but with an additional time
e�ect, and random intercepts per participant. The �rst model above, �tted with
data only from those with diagnosed PD, is of the form

Eij = �0+�ttij+X
(CV )
ij �(CV )+X(D)

ij �
(D)+X(D0)

ij �(D0)+X(CP )
j �(CP )+�j+"ij (3.13)

where i indexes the visit number, and j indexes the patient. This can be written as
the mixed e�ects model

E = X� +Zu+ " (3.14)

where

X =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 t11 X(CV 1)
11 : : : X(D010)

11 X(CP1)
1 : : : X(CP5)
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1
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; (3.15)
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(3.16)
Variable elimination is completed only within the �xed e�ects, using an F -test at
each step to determine which variable should be removed (if any), with parameters
being estimated with Maximum Likelihood Estimators. Using the variables that sur-
vived variable selection, the models are re-�tted using residual maximum likelihood
(REML) estimates in order to obtain unbiased estimators of the variance compo-
nents of the model. The model summary is presented in Table 3.12. Note that
p-Values have been estimated using the F -distribution where the degrees of freedom
are estimated using the Kenward-Roger method presented in Halekoh and Hłjsgaard
[2014].
The second model, �tted with all data, but where the columns of X related to Anti-
PD medication are removed, was �tted in the same framework as the �rst. The
summary of this model is shown in Table 3.13.

3.2.3 Longitudinal Analysis - Visit-to-visit changes

The purpose of this analysis is to understand whether changes in explanatory vari-
ables between visits correspond to changes in cognitive e�ciency between visits. This
causes a shift in our explanatory and response variables, where the deltas between
visits are considered. This now means exclusion of patients who have only one visit,
and only visit-level e�ects are included in the model - those denoted CV and D0. A
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Variable Coe�cient CI p-Value
Intercept 0.520 0.348 � 0.693 < 0:001

Age (�rst app., /decade) -0.021 -0.047 � 0.006 0:121
FBD (C3) -0.040 -0.086 � 0.006 0:089
Laxatives 0.046 -0.003 � 0.096 0.067

Observations 422
Marginal R2 0.021

Conditional R2 0.498

Table 3.12: A summary table of the regression model looking at e�ects of covariates
and non-anti-parkinsonian medication on cognitive e�ciency. The e�ect of age at
�rst appointment is given in decades.

Variable Coe�cient CI p-Value
Intercept 0.685 0.316 � 0.693 < 0:001

Age (�rst app., /decade) -0.021 -0.047 � 0.006 0:121
Levodopa Dose (/300mg) -0.052 -0.107 � 0.002 0:061

Observations 185
Marginal R2 0.046

Conditional R2 0.513

Table 3.13: A summary table of the regression model looking at e�ects of all covari-
ates and all recorded drugs within the cohort with diagnosed PD. Same framework
used as in Table 3.12.
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� will be pre�xed to variables to indicate that the di�erence between visits is being
used, and the longitudinal index [i] will denote the di�erence between visit i and
i+ 1, for example,

�X(CV 1)
[1]j = X(CV 1)

2j �X(CV 1)
1j (3.17)

and denotes the change in the value of covariate CV 1 between the �rst and second
visit. There is only one individual who is taken o� of anti-psychotics during visits,
and therefore will not be able to estimate the e�ect of introduction/withdrawal of
anti-psychotics on change in cognitive e�ciency. Therefore modelling is done using
the following variables:

� Time between visits

� Di�erence in Minimental score between visits

� Di�erence in anxiety inventory between visits

� Di�erence in depression inventory between visits

� Change in indicator for taking laxatives between visits2 f�1; 0; 1g

� Change in indicator for taking NSAIDs between visits 2 f�1; 0; 1g

� Change in indicator for taking Anti-depressants between visits 2 f�1; 0; 1g

� Change in Levodopa dosage between visits

� Change in Amantadine dosage between visits

� Change in Anticholinergic dosage between visits

� Change in Dopamine Agonist dosage between visits

� Change in indicator for taking MAOBIs between visits 2 f�1; 0; 1g

� Change in indicator for taking COMT Inhibitors between visits 2 f�1; 0; 1g
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Variable Coe�cient CI p-Value
Intercept -0.020 -0.048 � 0.009 0:185

�Depression inventory 0.007 0.001 � 0.012 0:022
�Anxiety inventory 0.004 -0.000 � 0.008 0:071

�Laxatives 0.083 -0.004 � 0.170 0:063
Observations 221

R2 0.06

Table 3.14: Linear regression model using changes in variables between visits to pre-
dict the change in cognitive e�ciency using entire cohort, excluding anti-parkinsonian
drugs from the model. Note that there were 221 observed di�erences between visits
(=422 observations -201 �rst visits).

Models are initially �tted with a random participant intercept:

�E[i]j = �0 +�t�t[i]j +�X(CV )
[i]j �(CV ) +�X(D)

[i]j �
(D) +�X(D0)

[i]j �
(D0) +�j +"ij (3.18)

In the model �tting process, variable selection is performed on both the �xed e�ects
and random participant intercept. The random intercept variance Var(�) � 0, and
hence the random participant intercept is removed from the model, reducing the
models to �xed-e�ects regression models. As in the previous section, two modelling
approaches are taken, the �rst excludes anti-parkinsonian medication and uses data
from the whole cohort, and the second includes anti-parkinsonian medication but
estimates parameters only using the data from those with diagnosed PD. The former
approach results in the model summarised in Table 3.14, and the latter in Table 3.15.

This modelling suggests that changes in anti-parkinsonian medication do not corre-
late with increasing or decreasing cognitive e�ciency. One possible explanation for
this is a built-up tolerance to anti-parkinsonian medication (e.g. levodopa). Hence
a dose may be increased to maintain it’s e�ect on disease symptoms.
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Variable Coe�cient CI p-Value
Intercept -0.026 -0.075 � 0.023 0:294

�Depression inventory 0.011 0.002 � 0.020 0:016
�Laxatives 0.134 -0.013 � 0.281 0:074
Observations 108

R2 0.079

Table 3.15: Linear regression model using changes in variables between visits to
predict the change in cognitive e�ciency including anti-parkinsonian drugs, with
e�ects estimated using data from the cohort with diagnosed PD only. Note that 108
of the 221 between-visit changes were from participants with PD.

3.3 Bradyphrenia Questionnaire

3.3.1 Introduction

Completion of reaction time tests described in the previous section are time consum-
ing in clinical sessions, and require special equipment like the touch pad in order to
obtain the measurements. An alternative method to measure bradyphrenia might be
via a questionnaire. This would make bradyphrenia measures far easier to collect and
more accessible to other clinicians as it is quick to complete and can be completed
remotely. Such a questionnaire, comprising of 9 questions, has been designed, with
questions grouping into four overarching themes: attention (S1, 3 questions), cogni-
tive slowing (S2, 2 questions), multi-tasking and executive function (S3, 3 questions),
and mental state (S4, 1 question). The questions were:

1. Do you �nd it di�cult, or that you need more time, to complete a cognitive
task?

2. Do you feel that it is di�cult responding to a conversation or keeping up with
story line?

3. Do you �nd it hard to concentrate or that you easily get distracted?

4. Do you �nd it di�cult to hold onto new information?
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5. Do you sometimes feel overloaded with information?

6. Do you have di�culty to perform more than one task or keep in mind more
than one thing at a time?

7. Do you feel disorganised or less able to plan than previously?

8. Do you �nd it di�cult to do things in the right order?

9. Do you feel that stress, depression or anxiety contributes to your mental di�-
culties? If so, which of these?

and response options were:

0. Not at all,

1. Rarely,

2. Sometimes,

3. Quite often,

4. All the time.

The �rst focus of the questionnaire is attention as, without full attention, cogni-
tive processing will be impaired. Following this, the questionnaire directly targets
cognitive e�ciency. The remaining questions focus then on covariates that might im-
pact cognitive e�ciency. Executive function would be considered as having a slower
decline, whereas stress, depression and anxiety would be more temporal covariates
and hence they are considered separately. More details on the development of the
questionnaire can be found in Wang et al. [2023a]. Participants completed the ques-
tionnaire about themselves (the self score), and an environmental control was also
asked to complete the questionnaire about each participant - oftentimes this per-
son was a spouse or carer (the partner score), where such a person was available -
this was in 55 of the 103 individuals who recorded self scores. The variable stating
whether the score has been provided by the participant or partner is described as
‘perspective’, and encoded with values 1 and 2 meaning self score and partner score
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respectively.

A brief discussion on the treatment of this data and appropriate modelling techniques
is needed, as the proposal is to treat these scores as integer values, the sum of
these being used as a ‘Bradyphrenia Score’. There is a breadth of literature on the
collection of subjective data and treatment of such data as continuous by including
them as response variables in linear regression models. Winship and Mare [1984]
show via an example the di�erences of inference resulting from a linear model and
an ordinal probit model due to the treatment of the ordered variable as continuous.
A robust discussion around the issues in measurement theory with subjective data
is given in Kampen and Swyngedouw [2000], alongside a categorisation of di�erent
classes of ordinal data, and the corresponding issues with them. This can be thought
of as ordinal observations of a latent continuous variable, which in this case is the
frequency of the event in question. In Robitzsch [2020], the authors argue that
under these conditions, and where the ordinal variable has more than 3 categories,
the treatment of that variable as continuous is �as defensible as the treatment of the
variable as ordinal�. The ‘bradyphrenia score’ is de�ned as the sum of all the the
answers to the questions, a continuous variable. Research questions to be explored
here include:

� Are the self-reported scores signi�cantly di�erent from the partner reported
scores?

� Does the bradyphrenia score correlate with bradyphrenia questionnaire score?

� If so, are the drug e�ects able to explain any di�erence in score between PD
and non-PD groups, as with cognitive e�ciency?

3.3.2 Modelling and Results

As has been discussed previously, participant visits where the minimental score of
the participant is < 27 have been removed due to impaired cognitive function.
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Question QWK Level of agreement
Q1 0.40 Moderate
Q2 0.30 Moderate
Q3 0.21 Fair
Q4 0.39 Fair
Q5 0.41 Moderate
Q6 0.45 Moderate
Q7 0.32 Fair
Q8 -0.01 Poor
Q9 0.35 Fair

Table 3.16: Quadratic Weighted Kappa values for each question in the Bradyphrenia
questionnaire to assess the level of agreement between participants and their spouses.

Reliability scores are considered between the partner scores for each question, with
fair to moderate agreement between the two shown between the self and partner
scores in all questions except question 8. The Quadratic Weighted Kappa (QWK)
[Cohen, 1968] measure of reliability is selected for its suitability to ordinal data [Nor-
man and Streiner, 2008]. Interpretation of the reliability statistics has been taken
from the descriptions suggested in Landis and Koch [1977], and the results can be
seen in Table 3.16.

The di�erences between the self and partner score are examined �rst. Figures 3.7
and 3.8 display the di�erences between the self and partner score, which suggest
that on average, there is not much di�erence between the carer and self scores.
Ordinal regression can be used to model the di�erence of scores for each question,
and quantify the e�ect of perspective. Consider the ordinal mixed regression model

P (Sik � s) =
1

1 + e�(�s�
P
j �

Qj �
Qj
i ��P �

P
i +k+"ik)

(3.19)

where Sik denotes observation i from participant k, s 2 f0; :::; 3g denotes the di�er-
ent levels of the ordinal response, �s denotes the intercept of the linear predictor for
score s, j 2 f2; :::; 9g denotes the question number with �Qj representing the e�ect
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of question j, �P denotes the e�ect of the score coming from the partner, k corre-
sponds to the random per-participant intercept with k

iid� N(0; �2
) and "ik denotes

the residuals with "ik
iid� N(0; �2

"). Delta functions �Qji and �Pi which have a value of
1 if observation i comes from question j or the partner respectively, and 0 otherwise,
are de�ned. This model was �tted using the ‘clmm’ function in R [Christensen, 2022],
and the results are presented in Table 3.17. The large odds ratio for �3 is due to
the majority of scores given were � 3, i.e high values of P (Sik � 3). The estimated
within-participant standard deviation was � = 1:43, suggesting some variability in
responses across questions, i.e. that participants are not selecting the same score for
all questions. The e�ect associated with the partner score in the model is signi�cant,
indicating that partners give higher scores. Some further investigation into this by
the inclusion of an interaction between perspective and PD Status shows no signi�-
cant di�erence between partner and self scores in those without PD, but a signi�cant
di�erence in those with PD. Questions 5 and 8 have signi�cantly lower scores across
the cohort than other questions, whereas question 6 has signi�cantly higher scores
than the other questions across the cohort.

The next research question looks to understand whether the bradyphrenia ques-
tionnaire is capturing the true signal of cognitive e�ciency by comparing the ques-
tionnaire scores with our cognitive e�ciency measure. Firstly, any confounding of
covariates with each question is addressed. Possible confounders include

� Age

� Gender

� BMI

� Depression index

� Anxiety index

� Minimental score
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Parameter Odds Ratio Con�dence Interval p-value
�0 0.70 0.40 � 1.20 0.195
�1 1.39 0.80 � 2.40 0.239
�2 9.63 5.46 � 17.00 < 0:001
�3 61.62 32.41 � 117.15 < 0:001
�Q2 0.97 0.59 � 1.59 0.898
�Q3 0.99 0.60 � 1.65 0.982
�Q4 0.95 0.57 � 1.58 0.830
�Q5 0.52 0.31 � 0.87 0:013
�Q6 1.74 1.05 � 2.88 0:031
�Q7 0.83 0.49 � 1.39 0.475
�Q8 0.21 0.12 � 0.38 < 0:001
�Q9 1.05 0.63 � 1.76 0.858
�P 1.73 1.35 � 2.22 < 0:001

Observations 990

Table 3.17: Ordinal mixed regression model predicting the response score with ef-
fects for each question and whether the response was from the partner with a random
e�ect for participant.. QX denotes the binary indicator of the score coming from
question X. The within-participant variance �2

 = 2:068 suggesting some variation
in the scores given across di�erent questions and by di�erent scorers. The 990 obser-
vations are derived from 55 records with both self and partner scores recorded, each
comprising of 18 question scores, 9 self scores and 9 partner scores.
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Figure 3.7: Frequency of self score and partner score pairs for each question.
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Figure 3.8: Boxplot of the di�erence between the self and partner scores for each
question.
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The grouping of the questions described in the introduction motivates the assess-
ment of confounders at the question level rather than the overall bradyphrenia score
- all questions in S1, S2 and S3 will face adjustment with respect to all confounders,
whereas in S4, depression and anxiety measures will not be used as this would remove
the signal that the question is trying to capture (and indeed, both would be signif-
icant at the 0.1% level if they were included in the model). Treating the scores as
ordinal makes it di�cult to adjust for confounders that are having subtle e�ects, and
instead assume a linear spacing between selected options and treat the response as a
continuous variable. In Robitzsch [2020], the authors argue that where the response
is an ordinal variable with more than 3 categories, and are ordinal observations of a
latent continuous variable - in our case this is the frequency of events - the treatment
of that variable as categorical is �as defensible as the treatment of the variable as or-
dinal�. Linear mixed models are used for this adjustment, �tting a random intercept
per patient. Note that there are only 9 subjects with repeated measures, meaning
only a small amount of data to estimate the within-subject variance. Denote the
vector of scores for question k as S(k). The model

S(k) = X(k)�(k) +Zu(k) + "(k) (3.20)

is used in a similar fashion as before where X(k) correspond to covariate values
after variable selection has been performed for the scores from question k and �(k)

the associated coe�cients, Z describes the presence of random intercepts with u(k)

giving the random intercept values for question k, and "(k) are the residuals for
question k. Note that Z remains the same for all questions. The adjusted score for
each question is de�ned as

~S(k) = �(k)
0 +Zu(k) + "(k) (3.21)

where �(k)
0 is a vector where each element is the intercept calculated in the model

from question k. Finally consider the adjusted bradyphrenia score

~S =
9X

k=1

~S(k): (3.22)
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Age (Years) -0.02
Gender (F) 0.41 -0.51� -0.63y -0.64� 0.49
Depression 0.04� 0.07� 0.07y 0.06� 0.02 0.06y 0.06� 0.02
Anxiety 0.03 0.03� 0.04� 0.04� 0.05�

BMI -0.00
Minimental -0.33 -0.49� -0.49� -0.29

Table 3.18: E�ects of covariates on questionnaire scores rounded to two decimal
places. �� denotes signi�cance at 5% level; �� denotes signi�cance at 1% level; �y

denotes signi�cance at 0.1% level.

Table 3.18 gives the coe�cient for each covariate present after variable selection for
each question, along with the associated strength of p-value. However, further check-
ing of model assumptions reveals a model misspeci�cation in the distribution of the
residuals. For each question, the responses are bimodal (a peak at zero for those who
do not recognise the feeling of the question within themselves, and a peak at 2 for
those who do) and this pattern persists in the residuals, breaking the model assump-
tion that residuals are normally distributed. It is argued via simulation studies in
Schielzeth et al. [2020] that estimates of �xed e�ects are fairly robust to a misspec-
i�ed residual distribution, including in the bimodal case - and hence the impact of
covariates on the question scores can be assessed. It appears that many of the ques-
tions are confounded by depression and anxiety - it seems that mental health factors
can have a signi�cant impact on self-perception of bradyphrenia. This demonstrates
the importance of considering covariates when looking to understand the relationship
between cognitive e�ciency and bradyphrenia score.

Now consider a di�erent approach to answering the research question, modelling
covariates without speci�cally adjusting for them, avoiding the use of models with
potentially incorrect distributional assumptions.

Let Q(j)
i denote the score of the jth question by the ith person. Then consider the
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linear mixed-model

Ejk = �0 +
9X

i=2

�iQ
(i)
jk +

6X

i=1

�iXCi
jk + k + "jk (3.23)

with random patient intercepts, where cognitive e�ciency is the response variable,
and the individual question scores are used alongside covariates as explanatory vari-
ables. The results of this model are in Table 3.19. Only question 4 is a signi�cant
predictor of cognitive e�ciency, which supports the use of our cognitive e�ciency
metric given that this question is �Do you �nd it di�cult, or needing more time, to
complete a cognitive task?� within the cognitive slowing section, though the use of
this question alone lacks the sensitivity of the cognitive e�ciency metric given the
overall model has a low marginal R2 of 0.143. A similar model

Ejk = �0 + �1Sjk +
6X

i=1

�iXCi
jk + k + "jk (3.24)

is used to assess whether the overall bradyphrenia score is a good measure of cognitive
e�ciency. Given that most scores in the previous model were not signi�cant, it is
not surprising that neither is the bradyphrenia score (p = 0:382).

3.4 Discussion

First I will summarise the results of the study.

� In a cross-sectional observational study into cognitive e�ciency:

� Demographic covariates appear to have no relationship with our measure
of cognitive e�ciency.

� There is a signi�cant di�erence in the variance of cognitive e�ciency be-
tween those with and without PD.

� This signi�cant di�erence can be explained by anti-parkinsonian drugs.
After adjusting cognitive e�ciency via regression, no signi�cant di�erence
remains.
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Variable Estimate Con�dence Interval p-value
Intercept -1.363 -4.177 � 1.451 0.338

Q1 -0.004 -0.061 � 0.053 0.893
Q2 -0.005 -0.051 � 0.042 0.898
Q3 -0.001 -0.51 � 0.049 0.964
Q4 0.065 0.015 � 0.116 0:012
Q5 -0.017 -0.074 � 0.041 0.564
Q6 -0.004 -0.050 � 0.041 0.857
Q7 -0.33 -0.079 � 0.012 0.149
Q8 0.025 -0.024 � 0.073 0.315
Q9 -0.003 -0.052 � 0.047 0.920

Minimental 0.066 -0.026 � 0.157 0.155
Anxiety -0.002 -0.009 � 0.005 0.521

Depression 0.003 -0.006 � 0.011 567
Age -0.003 -0.008 � 0.001 0.137

Gender (F) -0.019 -0.123 � 0.085 0.712
BMI 0.0001 -0.0005 � 0.0007 0.704

Observations 103

Table 3.19: Linear mixed regression model predicting the Cognitive E�ciency with
the questionnaire responses and covariates. There are 92 questionnaire responses
with a small number (11) of repeated responses from participants to estimate the
within-participant variance, which was �2

 = 0:0322, i.e. � = 0:18.
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� MAOBIs and Anticholinergic medication correlate with improved cogni-
tive e�ciency, whereas Levodopa and Amantadine correlate with a worse
cognitive e�ciency.

� Combining MAOBIs or COMTIs with Levodopa appears to negate the
negative e�ect of the Levodopa.

� Findings on Levodopa and Anticholinergics are reinforced in a non-parametric
bootstrap analysis.

� In longitudinal follow-up data on cognitive e�ciency:

� Levodopa is signi�cant in the modelling of cognitive e�ciency, in the
negative direction (worsening cognitive e�ciency).

� In mostly cross-sectional data (with follow-up in a small number of partici-
pants):

� Partner scores are signi�cantly higher than participants scores (in those
with PD).

� The total bradyphrenia score has not a signi�cant correlation with cogni-
tive e�ciency, though question 4 alone does (but with a low R2).

One limitation to the study is around the collection of the data, which are observa-
tional and participants are not matched by covariates, therefore no causal conclusions
can be made using the data. The lack of ability to draw causal inference was in part
a driving factor for the use of the bootstrap, alongside the results around the cat-
egorisation and omission of in�uential points. There was potential to use methods
in causal inference like propensity score matching to minimise the e�ect of potential
confounding factors and obtain more robust inferences - particularly for drugs that
are more common within the parkinsonian group (e.g. levodopa), but as none of the
observed covariates were candidates for potential confounders, there was little to be
gained from this exercise.
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Another limitation is that the study is restricted to those in the UK, and a major-
ity of the participants are white British, meaning inferences are not representative of
other ethnic groups. A review into the way the disease presents itself within di�erent
ethnic groups [Ben-Joseph et al., 2020] conclude it is probable that disease manifes-
tation di�ers between ethnic groups. Research shows that Black and Hispanic groups
appear to have an increased risk of cognitive impairment (though these �ndings come
from US-based studies so may not necessarily apply to the UK population). The au-
thors state that in general, more research is needed into the manifestation of PD in
di�erent ethnic groups, and such research could extend our work and provide �ndings
that represent a wider population.

There is another issue in the treatment of PD as a binary label (control vs non-
control), given that PD has a long prodrome, and indeed some of the controls may
have early stage PD that has not yet been detected. The objective measures of
bradyphrenia will be included as part of the overall aetiopathogenic model will pro-
vide more nuanced analyses of the relationship between bradyphrenia and PD.

The nature of participant drop out has not been investigated. One can imagine a
scenario where those with more severe PD are less likely to be able to attend clinical
visits due to a deteriorating condition, meaning that those with more severe PD are
less likely to be represented in follow up visits in the study - an issue that that of-
ten impacts studies involving aging participants [Beller et al., 2022, Chat�eld et al.,
2005]. The study could be made more robust through the documentation of data
around participant drop out, particularly within the PD group, to allow for as as-
sessment as to whether a bias in the demographic of participants dropping out could
have an impact on the results when modelling longitudinal e�ects.

Anxiety and depression are signi�cant predictors of the individual question scores
within the questionnaire. Di�erences in perception of anxiety and depression by age
are recorded in the literature [Wetherell et al., 2009, Kreitler, 2017], and hence it
might be useful in further research to obtain some responses from younger people

129



3.4. Discussion Chapter 3. Bradyphrenia

to understand whether these �ndings are consistent in younger people. In partic-
ular surveying those with early-onset PD (those under 40 years who exhibit some
symptoms of the disease, some 3-5% of cases [Post et al., 2020]) would provide in-
teresting insights into perception of bradyphrenia and cognitive e�ciency via the
questionnaire.
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Chapter 4

Audio Classi�ers

4.1 Introduction

Following advances in machine learning and improvements to computing power, a
vast research e�ort in studying the application of these methods in healthcare is
under way [Bhardwaj et al., 2017, Javaid et al., 2022]. In 2020 alone there were
9640 publications exploring the use of AI and machine learning in healthcare, con-
tributing to 59% of all machine learning papers published that year [Pugliese et al.,
2021]. The use of audio signals in prediction of disease status a variety of illnesses has
been becoming increasingly popular. Early research into the e�ects of PD on vocal
chords indicates that certain phonetic sounds can discriminate between those with
and without PD [Little et al., 2008], with this area of research becoming increasingly
prominent in the literature, as will be discussed in this chapter.

The use of audio classi�ers has also come to the foreground in the detection of other
respiratory illnesses, including in the Sars-COV-2 (COVID-19) pandemic. The abil-
ity to predict infection status in near real-time during the COVID-19 pandemic would
o�er an easy method of mass testing at large events and social venues, perhaps even
being used as a prerequisite to lateral �ow or PCR testing. Examples of the training
of audio classi�ers for COVID-19 can be seen in Kim et al. [2018], Laguarta et al.
[2020], Brown et al. [2020], Han et al. [2021], Xu et al. [2021b], Kim et al. [2022],
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Taw�k et al. [2022], Askari Nasab et al. [2023]].

Some of the aforementioned studies report remarkably high accuracy scores, no-
tably Laguarta et al. [2020] assesses machine learning performance using audio data
to detect COVID-19 reporting 98.5% sensitivity and 94.2% speci�city, with 100%
detection accuracy amongst asymptomatic cases. This chapter �rstly explores my
contribution towards a project looking to understand whether these performance
metrics are realistic in collaboration with researchers from Oxford University, Impe-
rial College London, University College London, the Alan Turing Institute and the
UK Health Security Agency (UKHSA) who formed a subgroup of the Turing-RSS
Health Data Lab (TRSSHDL). The �ndings of this work can be found in Coppock
et al. [2024], Pigoli et al. [2023], Budd et al. [2023].

Following this work, the second part of this chapter aims to explore whether the
issues found in studies related to COVID-19 detection are also seen in the most
recent publications evaluating the use of machine learning models to classify those
with Parkinson’s disease against either a healthy control group, or a group with
another illness also associated with dysphonia.

4.2 COVID-19 Case Study

4.2.1 Author Contributions

This was a wide collaboration between researchers from di�erent organisations and
of di�erent disciplines, alongside civil servants within the UKHSA. This section will
discuss the authors contributions to a pre-speci�ed analysis plan, the exploratory
analysis of the data collected and the design of a ‘challenging’ test set to ensure that
results re�ected the performance of models in the real world. The idea of matching
was not the authors, though exploratory analysis performed by the author motivated
the choice of variables that matching was performed on, with all members of the lab
contributing to the �nal outcome. The author was not responsible for the choices
of machine learning models applied to the audio, though did critically assess the
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choices made alongside other members of the lab - these models will be mentioned
for completeness. The author engaged with the project after the design of the study
and survey, and did not contribute collection of the data which was managed by
UKHSA and their external partners.

4.2.2 Introduction

In the COVID-19 pandemic, the rolling out of testing mechanisms for the virus was
crucial to the management of virus spread and reducing the public health impacts of
the virus [World Health Organization, 2020, Mercer and Salit, 2021]. The gold stan-
dard to test for COVID-19 is the polymerase chain reaction (PCR) test, for which
samples must be sent to scienti�c labs for analysis [Sha�e et al., 2023]. Lateral �ow
tests were also widely used by the population as these were easy to perform by an
individual at home. The UK COVID-19 Inquiry highlights the challenges associated
with the rolling out of testing in the early phases of the pandemic [Whitty and Keith,
2023]. Previously discussed studies showed promise for the use of machine learning
models to predict COVID-19 infection via an acoustic biomarker in the sound of
speech and coughs, presenting an opportunity to wrap a model into an app that
could be used to quickly and easily screen for COVID-19 en masse. The aforemen-
tioned studies into an acoustic biomarker for COVID-19 report high accuracy scores,
but often have been performed on smaller datasets, and concerns about the quality
of research can be found in the literature [Coppock et al., 2021].

In many areas of statistics, parameter estimates and con�dence intervals allow model
inference which plays a key role in understanding how a prediction has come about.
A core challenge in the application of large, complex machine learning models to
audio data is explainability, and understanding the key factors that in�uence the
prediction. Moreover when applied to observational data, issues of confounding pose
further complications as it can be di�cult to determine whether the true signal of
interest is being learned, or the e�ect of some confounding factor. To illustrate this
idea, suppose that a majority the audio samples from those with COVID-19 were
active smokers, and a majority of those testing negative for COVID-19 were non-
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smokers. Any present COVID-19 biomarker could not be untangled from a smokers
cough, and therefore the presence of any acoustic biomarker could not be estab-
lished. The Turing-RSS Lab worked with the UKHSA to acquire a large dataset
of audio recordings, alongside an array of demographic and infection metadata at-
tributes where PCR tests had been used to establish infection status. This data
would then be used to perform a feasibility study into the use of machine learning
to predict COVID-19 infection status. There were two recruitment channels for the
collection of samples. Users of NHS Test and Trace, the UK Governments COVID-
19 testing service, were contacted at random and invited to provide audio samples,
which acquired predominantly COVID-positive samples. The REACT Study Riley
et al. [2021] conducted UK-wide COVID-19 monitoring during the pandemic as part
of the UK Governments strategy, and participants were invited at random to provide
audio samples, collecting a majority of COVID-negative samples. Participants were
asked to provide 4 di�erent audio samples:

� A single cough

� Three consecutive coughs

� Three sharp exhalations

� Reading �I love nothing more than an afternoon cream tea�

A pseudonymised version of this dataset is openly available, see Coppock et al. [2023].
Initial exploratory data analysis was performed and used to prespecify an analysis
plan before any model training to reduce the risk of positive result bias. In the
reporting of results from the study, the TRIPOD guidelines [Moons et al., 2015]
were adhered to as closely as possible. It is worth noting that data collection and the
labs research were ongoing in parallel, meaning the volume of data was increasing
throughout the project until data collection was complete, as seen in 4.1. Part of the
analysis plan was to set a point in the data collection where all future data would
be used to create a temporally out-of-sample test set. Therefore, all data collected
between 1st March 2021 and 29th November 2021 was considered for use in training
and evaluating model performance.
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Figure 4.1: Volume of COVID-positive and COVID-negative samples collected over
time by each recruitment channel. Jumps in the the number of samples from REACT
correspond to the di�erent rounds of the study.
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4.2.3 Exploratory Data Analysis

This section will address notable �ndings in the exploratory data analysis.

Data Quality and Missing Data

Initial analysis revealed some potential data quality issues that needed to be ad-
dressed. The following requirements were imposed:

� Participants must be aged 18 or over

� Test results must be obtained by a PCR test

� Audio recordings submitted more than 10 days after the PCR test are excluded
as, in this case, the audio may not correspond to the infection status

� The test must be performed in a lab not under investigation by the UKHSA
for providing inaccurate results

� No discrepancy in the recording of symptoms (i.e. any symptom must not be
selected alongside the ‘No Symptoms’ option).

After the removal of submissions that did not meet the data quality requirements,
missing data was assessed. Missing data were grouped by submissions missing audio
�les, and submissions missing meta-data attributes. The objective was to establish
whether these were missing at random. Figure 4.4 shows the distribution of demo-
graphics between these two groups and the remainder of the data. Given that the
amount of submissions containing missing information is relatively small, and that
there were no clear patterns in the metadata of these submissions, a ‘missing com-
pletely at random’ mechanism is assumed and the submissions with missing data
removed.

Symptoms and Recruitment Channel

It is clear from Figure 4.4 that symptoms confound COVID-19 infection status. This
is not surprising given the dual channel recruitment framework and public policy
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around the use of Test and Trace, in particular, that members of the public should
use the service only if experiencing some of the common COVID-19 symptoms. This
is a challenge faced by many of these types of studies - those with asymptomatic
infection cannot easily be identi�ed and targeted for recruitment, and therefore it is
a challenge to avoid a majority of COVID-positive cases coming from participants
with symptoms. A breakdown of symptoms can be seen in Figure 4.2.

Age

Analysis of the ages of participants split by COVID-19 infection status reveals a
clear pattern that those testing positive were younger than those testing negative
with a median age gap of 12 years. This di�erence may be a result of various
factors including the impacts of public health advice and higher levels of risk on
the behaviour of older people, and increased levels of vaccination in older people.
This di�erence presents age as a potential confounder of COVID-19 status. One
limitation of the results from this study would be their applicability to Scotland,
Northern Ireland and Wales given the lack of data from these areas.

Smoker status and other respiratory illnesses

Given the e�ects of smoking on the respiratory system and associated smoker’s cough,
information on participants smoker status was collected in the survey. Figure 4.3
shows the split of smoker status by COVID-19 infection status on the left. From
this it does not appear that there is a substantial di�erence between those testing
positive and negative. Similarly, data was collected on other respiratory conditions
that participants may have. A majority of participants have no condition, and in
those that do, there is again no substantial di�erence in those testing positive and
negative.

Geographical spread

The geographical distribution of submissions is important to consider. Whilst �[...]
the role of accents and dialects, culture and geographical location in coughing [is]
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Figure 4.2: Symptoms are listed on the left in order of appearance. The plots present
the frequency of combinations of symptoms. Frequency cut o�s of 80 and 30 for
symptom combinations are used for the COVID-positive (top) and COVID-negative
(bottom) plots respectively.
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Figure 4.3: Barplots showing smoker status (left) and respiratory conditions (right)
by COVID-19 infection status.

less� [Askari Nasab et al., 2023], these factors have an important role in speech,
which was also collected as part of the study. Figure 4.5 shows the volume of data
collected by region and, whilst the split of COVID-19 infection appears balanced
across the country, there are notable di�erences in the volume of data collected from
each region, and it is therefore important to assess whether model performance drops
in regions that have lower numbers of submissions.

4.2.4 Methodology and Results

One objective of the research group was to ensure that reported model performance
was representative of out-of-sample and in-the-wild performance. This motivated a
diversion away from the standard protocol of generating random train-test splits,
towards a carefully designed split that would replicate these conditions, coined the
designed train and designed test sets. In the design of this test set, issues of po-
tential confounders could also be addressed. The following factors were taken into
consideration:

� Confounding of age,

� Recruitment channel,

� Symptoms,

� Location of submission.
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Missing audio (1213) Missing meta-data (162) Final dataset (37018)

Gender

Test result

Height by
gender

Age by
test result

Symptoms

First Lan-
guage

Weight by
gender

Figure 4.4: Breakdown of the key demographic attributes for the portions of the
dataset with missing audio features, missing meta-data and the remaining complete
data.
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Figure 4.5: Geographic distribution of the submissions by recruitment source (Left:
NHS Test & Trace, Right: REACT). Top: Total number of submissions. Bottom:
Submissions as proportions of the total population.
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As a result, the test set was designed to over-represent participants with certain
demographics. In particular

� Those whose �rst language was not English,

� Those who are not White British,

� Those who are older and tested COVID-positive,

� Those who are younger and tested COVID-negative,

� Those in certain geographic locations with corresponding COVID-19 infection
status.

These factors can be seen as in�uencing the designed train-test split presented in
Algorithm 5. There were two key factors that motivated such a design. The �rst
being that the demographics of those in the training set should be representative
of the population within which the model would be used in-the-wild. For example,
the oversampling of younger COVID-negative participants and older COVID-positive
participants balances the di�erence in age by COVID-19 infection status previously
identi�ed. The second was the desire to understand out-of-sample performance, in
particular in those from di�erent geographic locations, those from ethnic minorities,
or whose �rst language was not English. The precise selection of these subgroups
should be motivated by �ndings from the meta-data analysis - for example, positive
were held out from Leeds and Cornwall due to the high volume and proportion of
positive submissions from these areas, maximising the size of the geographically out
of sample group in the test set.

Whilst this designed test set would indeed act as a challenging test set, it did not
control for the confounding of symptoms. This motivated the construction of a
matched test set. A matching exercise was performed between COVID-positive and
COVID-negative participants, where those with similar covariates are paired to create
a dataset that is balanced with respect to the matched covariates, removing any
performance boost due to the learning of confounders in model training. The exercise
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dramatically reduces the size of the dataset in which the performance can be assessed.
In smaller datasets, the reduction in volume of data in the matching process could
lead to over�tting and generalisability issues, and could possibly be a reason why
these methods are not explored in smaller studies.
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Algorithm 5 Test set construction. The sample sizes in parentheses re�ect the test
set that was generated for the methods’ assessment.
The following steps have been applied in this order to construct the test set from the
submission meta-data:

1. Select all records from 5 randomly selected languages (excluding English)
(n=370). (to test out of sample performance for unseen �rst languages.)

2. Select all records from 5 randomly selected ethnic or nationality groups (ex-
cluding British) (n=857). (to test out of sample performance for unseen ethnic
or nationality groups.)

3. Select all negative cases from Leeds and Cornwall (n=547) (the locations were
speci�cally chosen as submissions from each location had a large number of
positive submissions, allowing to test out of sample performance for unseen
locations)

4. Select all positive cases form Birmingham and She�eld (n=388) (the locations
were speci�cally chosen as submissions from each location had a large number
of negative submissions, allowing to test out of sample performance for unseen
locations)

5. Select all records from 4 other randomly selected local authorities (n=390)
(to test for geographic and dialectal confounding.)

6. Select all asymptomatic cases (positive test result with ‘no symptoms’ selected)
(n=439)
(to test if the audio-based method can be extended to asymptomatic positive
cases, which are rare in the dataset.)

7. Of those whose age is above the median by gender and tested positive, 50% of
records are selected (n=1299).

8. Of those whose age is below the median by gender and tested negative, 50% of
records are selected (n=3032).
(to understand if Age could be acting as a confounding variable).
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9. Select all REACT positives (n=79)

10. Select all Test and Trace negatives (n=962)
(to understand if recruitment channel could be acting as a confounding vari-
able.)

11. Sample without replacement to ensure there is an even distribution of viral
load categories (n=598 high, 598 medium and 598 low) (in case the analysis of
accuracy of the models by viral load is required.)

12. Fill test set to a 70-30 split by sampling without replacement from the remain-
ing data randomly from records where viral load is not recorded (n=2932)

Note that the groups listed above in (a)-(l) are not mutually exclusive.

Machine Learning Models

In the analysis, three machine learning approaches were assessed. The �rst was the
use of OpenSmile [Eyben et al., 2010] to extract 6373 features, which were subse-
quently inputted into a support vector machine classi�er. Support vector machines
calculate a ‘maximum-margin’ hyperplane in a high dimensional space that discrim-
inates between the two groups. The margin is de�ned as smallest distance between
the hyperplane and points within each group. The second was to apply a Bayesian
ResNET-50 [He et al., 2016] - a convolutional neural network with 50 layers. Con-
volutional neural networks are a class of deep neural network with speci�c layers
in the network that are designed to process images, or data structures with spatial
information (for example, spectograms). Posterior distributions were estimated via
Monte Carlo dropout [Gal and Ghahramani, 2016]. The �nal approach used the Self-
Supervised Audio Spectrogram Transformer (SSAST) [Gong et al., 2022] methodol-
ogy. This uses the audio spectogram with a transformer to make predictions, whilst
improving performance by also optimising the network over masked portions of the
spectogram. Further details of these models can be found in Coppock et al. [2024].
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Figure 4.6: Schematic depicting the structure of the train-test split creation. Fig-
urines represent participants and COVID-19 infection status. Colours of represent
di�erent demographic covariates. Note that the hold out of purple �gurines in the
designed test set, and that the brown �gurines are exclusive to the longitudinal test
set. Good performance, similar to that reported in other studies, is found when using
the randomised split, and longitudinal test set. A small reduction in performance
(95% CI presented) is seen in the designed test set, but overall performance is still
good. After matching within the designed test set, a notable drop in performance
can be seen demonstrating the impact of confounding on the model performance.
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The mathematical structure of these deep learning models is beyond the scope of
this thesis, but the details can be found in the corresponding references.

Results

Results given in this section have all been taken from the SSAST model which ap-
peared to have the best overall performance.
It can be seen in Figure 4.6 that, with the typical randomised train-test split, reason-
able performance is achieved with an area under the receiver operating characteristic
curve (ROC-AUC) of 0.85, and an area under the Precision-Recall curve of 0.77.
Training the models on the remainder of the data after constructing the designed
test-set and assessing model performance shows a small decrease in performance with
a ROC-AUC of 0.8 and a PR-AUC of 0.68. This would suggest a reasonable out-of-
sample performance. The reason for this good performance on the challenging test
set comes from the assessment of performance on the matched subset of the designed
test set, where the ROC-AUC falls considerably to 0.62, and the PR-AUC to 0.59.
Indeed the confounding of symptoms is still present in the designed test set.

Experiments were also performed under a matched training set to understand the
performance of machine learning models after removing signal that could be learned
via confounders in model training. The ROC-AUC and PR-AUC on the matched
test set after matching in the training set are 0.64 and 0.62 respectively. This sug-
gests that there is no strong bioacoustic marker for COVID-19, and other members
of the lab explored the use of other methods which suggest that other unmeasured
confounders might explain the residual performance.

A full presentation and discussion of the results can be found in Coppock et al. [2024].

Discussion

Following positive signals in the literature, this work investigates the feasibility of
developing a ML model that can accurately predict COVID-19 status via audio sam-
ples. It was carefully framed around an extensive exploratory data analysis, which
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was used as the foundation for an analysis plan which was drafted and �nalised before
any model training and evaluation - crucial to inspire con�dence in the results and
reduce the risk of �shing. Exploratory analysis showed clear potential confounders
in the dataset despite, the most prominent being symptoms. This was created by the
dual track recruitment, where those with symptoms were advised to have a COVID-
19 PCR test, and subsequently recruited for the study. This would be a challenge
in the recruitment for any similar study into the e�cacy of machine learning audio
classi�ers into respiratory illnesses, as those will the illness are typically only aware
of this due to the development of some symptoms. Our work does not disprove the
presence of a biomarker for COVID-19, but does show that current machine learning
methods are not su�cient after adjusting for confounders.

There is potential for studies to subvert this confounding where the objective is to
classify between di�erent respiratory illnesses, and those without any illness. Ad-
dressing this as a multi-class problem eliminates the confounding of symptoms with
any single outcome, and would be more appropriate to address whether there was a
unique biomarker for the assessed illnesses - for example, Xu et al. [2021a] achieved
a ROC-AUC of 0.813 when classifying COPD against Asthma. It is worth noting,
however, that this �nding is based on results from a total of 70 participants, 29 males
and 41 females, and no relationships of covariates and disease state are explored or
discussed in the paper meaning the �ndings are not robust to any confounding in
the data.

The �ndings in this study highlight the need for care when machine learning meth-
ods are applied to observational data. Potential confounders should be identi�ed and
incorporated into the data collection process to ensure that any e�ects can be ac-
counted for in the methodology. Any other confounders should be identi�ed as part
of an extensive exploratory data analysis, and these confounders must be accounted
for to understand whether the intended signal is being learned in the training of the
machine learning models.
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4.3 Audio Classi�ers in PD

In the previous section, several �aws identi�ed in the literature are discussed and
addressed in study conducted by the TRSSHDL, including a lack of exploratory data
analysis, the overlooking of confounding variables that should be accounted for, and
the inclusion of recordings from the same speaker in the training and test sets. Ad-
ditionally this study also constructs challenging out-of-sample test sets in order to
ascertain a more accurate estimate of real-world performance.

During the COVID-19 pandemic, there was a large shift of focus - academics in
areas related to machine learning wanted to be the �rst to investigate applications
related to COVID-19. A review by Gorman [2023] found various quality issues in
the quality of public health research related to COVID-19 during the pandemic. The
issues identi�ed in this review might also explain the lower quality research into the
use of a potential acoustic biomarker to detect the virus. This motivated a review
into the latest research papers exploring the use of audio classi�ers to detect PD.

4.3.1 Systematic Review

A review paper published in 2022 explores some of these issues [Ozbolt et al., 2022].
More precisely this paper examines whether the following study-design �aws appear
to in�uence the reported performance of machine learning models:

� Age di�erence between the PD and control groups,

� The inclusion of recordings from the same speaker in the training and testing
sets,

� Large feature vectors with relatively small numbers of participants,

� Selected classi�cation method,

� Choice of validation / testing scheme,

� Di�erences between the datasets used across the studies, and any downstream
impact on performance.
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Many of these issues were addressed in the COVID-19 work of the TRSSHDL group,
indicating perhaps a more wide-spread issue with study design quality in audio-based
machine learning classi�ers.

Following this, the scope and objective of the review was to explore the di�erent
methods used and quality of study design for 20 of the most recent publications
related to audio classi�ers in PD. Papers were selected in Scopus using the query:

TITLE-ABS-KEY(parkinson AND disease) AND TITLE-ABS-KEY(audio
OR speech OR sound OR vocal OR phonetic) AND TITLE-ABS-KEY(machine
AND learning) AND NOT TITLE-ABS-KEY(multimodal) AND (LIMIT-
TO(DOCTYPE, "ar") OR LIMIT-TO(DOCTYPE, "re")) AND (LIMIT-
TO(LANGUAGE, "English")).

Papers assessing the performance of multi-modal models or using EEG signals were
removed from the analysis, and audio modalities not related to speech were removed
- for example, audio recordings of �nger tapping, foot tapping, or other motor-related
tasks. A full breakdown of the review and papers can be seen in Appendix A.

This review identi�ed the following features of the study-design and methodology of
each paper:

� Audio modality or modalities

� Language(s) used

� Number of participants

� Meta-data addressed in the paper

� Confounders identi�ed, if any

� Whether the dataset is balanced with respect to any covariates

� Whether any type of matching was used
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� Preprocessing methods

� Audio features selected

� Machine learning methods used

� Train-test split methodology and use of cross validation

� Presence of speaker leakage across the train and test sets

� Use of any oversampling methodology to balance class frequencies

� Highest reported accuracy

Audio modality

Di�erent modalities can be seen used across the literature, with some in combination
with eachother. These can be grouped into spoken text, spoken sentences, sustained
vowels and diadochokinetic sounds. Recordings of sustained vowels were most com-
mon with 16 of 20 studies including the sound of at least one sustained vowel to
generate features for the ML models - previous research has found that sounds of
sustained vowels outperform other audio modalities in classi�cation of people with
PD against healthy controls [Almeida et al., 2019]. The most commonly used was the
/a/ sound, which was used in 15 of those 16 papers. Spoken text was used in 40% of
the included studies, and this text was prescribed in all articles. Two of the research
papers use features obtained from the diadochokinetic task of quickly repeating the
sounds /pa/-/ta/-/ka/, and another paper collected samples of participants saying
/pa/-/ta/.

Language

The diversity of language spoken by participants is acknowledged in some studies,
with 25% of the articles included in the review using multiple datasets collected from
participants speaking di�erent languages. However a majority of studies do not in-
clude participants who speak di�erent languages or fail to document the language(s)
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spoken by participants - 50% of studies using exclusively the sustained /a/ sound
did not documenting the language spoken by participants, and 25% of studies used
recordings from participants who all speak the same language.

Study size

Many of these studies are small in size. All studies included in this review report
a breakdown of sample size by PD status. Two studies used a dataset obtained
from a total of 31 participants, 23 of those with PD and 8 without. The largest
study combines 5 datasets, each with a di�erent language being spoken, resulting
in a total sample size of 506 participants, 241 of those with PD and 265 healthy
controls. Though this study was far larger than most, with a median (mean) number
of participants with PD of 60 (97.5) and non-PD (healthy control or other illness) of
50.5 (79.5).

Meta-data Analysis, confounders and matching

Exploratory data analysis of meta-data surrounding the participants in each study
was often super�cial. Age and Gender are given in 55% and 65% of the studies
respectively. Few studies (25%) discuss the severity of PD across the cohort either
via UPDRS scores or the Hoehn and Yahr (H&Y) scale, and 15% of studies discuss
the time-since-diagnosis of PD. One study collected the dosage of levodopa being
taken by participants with PD. Issues of confounding factors is largely not discussed.
One paper identi�ed gender as a possible confounder but the participants had a
near-equal split of gender between the PD and healthy control groups. Language
was identi�ed as a confounding factor in another paper which used 5 corpora, each
with participants speaking a di�erent language, and controlled for this by including
language in the chosen ML model. One study identi�ed Age and Speech Intensity
Rating as potential confounders, and subsequently performed an additional experi-
ment where the PD and non-PD group underwent propensity score matching based
on these two variables.
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Acoustic features

Often either handcrafted features like jitter and shimmer, Mel-frequency cepstral co-
e�cients (MFCCs) and Gammatone cepstral coe�cients (GFCCs), or Mel-Spectograms
/ scalograms are used to extract features from the audio signal - 25%, 35% and 25%
respectively. Three papers use a wavelet transform, and two papers present unique
methods for extracting useful features from audio recordings.

Preprocessing

Methods of preprocessing the data were largely dependent on the acoustic features be-
ing used. Where handcrafted features were being used, three papers rescaled/normalised
the features in some way, either via the mean and standard deviation, min-max
rescaling, or by using the inter-quartile range. One paper requires the use of speaker
diarization to detect sections of a phone call which correspond to the patient. An-
other method involved segmentation of the recording to remove portions of recording
that were silent. Over half (55%) of the papers describe no preprocessing of the data,
and one article describes a complex set of preprocessing steps which aim to re�ne
and draw out key features of the signal - see Lilhore et al. [2023] for more details.

Machine Learning Methods

A variety of machine learning methods can be seen across the studies included in the
review. Commonly seen methods include Support Vector Machines (SVMs, 60%),
Random Forests (RFs, 30%), k-Nearest Neighbours (KNNs, 30%), Decision Trees
(DTs 20%), Gradient Boosting methods (XGBs, 25%), Logistic Regression (LR,
20%), Naive Bayes (20%), Multi-layer Perceptrons (MLPs 35%) and Convolutional
Neural Network-based methods (CNNs 35%). The number of ML methods applied
within each paper varies, though one paper explores 20 di�erent types of models in
order to �nd the best performing one on that dataset. //
Below are some additional details on the machine learning methods that have not
previously been discussed within the thesis:

� k-Nearest Neighbours: A voting-style algorithm where the label of the new
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data point is assigned by considering the most common label among the k
nearest points in the training set. In this setting, k is a hyperparamter that
can be tuned via hyperparameter optimisation methods.

� Decision Trees: A collection of leaves and edges, where each leaf represents a
feature within the training set, and an edge corresponds to a condition related
to previous leaf.

� Random Forests: Various shallow decision trees are trained, ensembled with
either a voting algorithm for classi�cation, or taking an average of the outputs
for regression.

� Gradient Boosting: A tree-based method where each consecutive tree uses the
residuals of the previous tree as inputs.

Train-test split

Cross validation was commonly found in the literature with 70% of studies apply-
ing some variant when evaluating the performance of ML models. One of these
considered various train-test set ups to evaluate within-sample and out of sample
performance when applying a model to an unseen dataset, a dataset collected from
participants speaking a di�erent language, or adjusting for a gender bias. A group
of 5 studies (25%) used a single random train-test split, one of which accounted for
assessing performance on di�erent languages.

Highest Reported Accuracy

A majority (95%) of the studies reported the accuracy metric, that is

# True Positives + # True Negatives
Total number of predictions

with one reporting no accuracy �gure but a ROC-AUC of 0.97. Of the accuracies pro-
vided, the [minimum; lower quartile; median; upper quartile; maximum] accuracies
reported were [0.8; 0.88; 0.93; 0.97; 0.986].
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Speaker Leakage

Speaker leakage refers to the inclusion of recordings from the same participant in
both the training and testing sets. In this review, 60% of papers were found to be
a�ected by speaker leakage.

4.3.2 Discussion

This review highlights that various �aws in the quality of available data and study-
design are found in recent literature. Many of the datasets used in the study do not
have detailed meta-data, and therefore it is not possible to understand how repre-
sentative the sample is of any wider population, with only Age and Gender being
commonly addressed. Even among those studies that do describe the age and gen-
der splits within the cohort, some do not think critically about the potential for
these factors to act as confounders. Dhanalakshmi et al. [2024], Saleh et al. [2023],
Jumanto et al. [2024], Hossain and Amenta [2024], Bhakar et al. [2024] and Akila
and Nayahi [2024] all discuss the gender split in the PD and non-PD groups, but
all fail to address that there is an imbalance which could provide some predictive
signature. Similar issues can be seen in the analysis of participant age, which is
most striking in Iyer et al. [2023] where the average age di�erence between the PD
and Healthy Control groups is 18.7 years, though the authors suggest that the ML
outputs were independent of age as fundamental frequency was still signi�cant in a
general linear model with age as a covariate. Though no analysis is performed to,
for example, investigate whether the spectograms and ML methods applied in their
analysis could predict (or encode information about) the participant’s age. Eguchi
et al. [2023] was the only work to explore the use of propensity score matching, and
report a decrease in performance after matching, though do not provide the amount
by which performance decreased. The broadest meta-data analysis across all studies
in the review was seen in Kovac et al. [2024], who provide a breakdown of gender,
language, age, time-since-diagnosis, levodopa dosage within the PD cohort, and both
UPDRS and H&Y scores.
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The narrow scope of these studies alongside a lack of meta-data also raises questions
around both the generalisability of the models, and presence of confounders. The
Ozbolt et al. [2022] review highlights that the majority of studies examined were
performed only on a single dataset collected for that study comprised of participants
with the same primary language, questioning not only how well the model would
perform in other geographies, but the issue of cross-corpora testing. This review
demonstrates a development in the interest of obtaining multiple corpora collected
from di�erent geographies and participants speaking di�erent languages, the most
pertinent of which is Kovac et al. [2024] which combines �ve di�erent datasets ob-
tained in �ve di�erent countries. Though a majority of the articles describe only
applications of ML methods on a single corpus with participants speaking the same
language. Some studies using sustained vowel sounds fail to report the spoken by
participants, which not only means the language spoken cannot be considered as
a potential confounder, but makes it di�cult for other researchers to include those
corpora in their with the aim of testing out-of-sample performance as they are unable
to consider the impact that language might have on model performance. In particu-
lar, Wang et al. [2023b] uses three di�erent corpora, two of which have Turkish and
Chinese speaking participants, but the languages spoken in the Little et al. [2009]
dataset are not documented, it is only given that the participants were supervised by
six medical centers in the USA. The importance of testing cross-corpus performance
is highlighted in Veetil et al. [2024], who observe a 27% drop in accuracy from 80%
to 53% when testing their model against a di�erent corpus.

Very few of the studies consider other medical conditions. Rios-Urrego et al. [2024]
consider patients with an essential tremor, and explore the performance of a tri-class
classi�cation model achieving an accuracy of 71%. Eguchi et al. [2023] explore classi-
fying between patients with PD and with spinocerebellar degeneration (SCD), which
is also known to have an impact on speech. No other works included in the review
discuss other medical conditions that might impact speech. Critically, there is a well
established relationship between smoking history and PD, where a history of smok-
ing appears to be protective of PD [Wang et al., 2022]. Moreover, previous research
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has found that various audio features including shimmer and jitter are signi�cantly
di�erent in smokers [Vukovi¢ et al., 2022]. Moreover, there are links between PD
and other respiratory illnesses documented in the literature [Docu Axelerad et al.,
2021]. These are examples of confounders that have not been addressed in the data
collection or methodology in any study in scope of this review.

Ozbolt et al. [2022] highlight that various studies in their review include recordings
from the same speaker in the training and testing sets, leading to an arti�cially
in�ated performance metric that certainly would not represent out-of-sample perfor-
mance. Often this is due to the creation of random train-test splits, either to create
a single hold-out set, or as part of cross-validation (CV), where there are multiple
recordings per participant. This can also be seen in COVID-19 audio biomarker lit-
erature. Given that in a majority of papers reviewed in this work random recording-
level train-test splits are used, this is not capturing the attention of researchers in the
community. This does also seem to have a relationship with accuracy - 50% studies
that do not have speaker leakage [Veetil et al., 2024, Kovac et al., 2024, Hossain and
Amenta, 2024, Rios-Urrego et al., 2024], report the lowest accuracy measures among
all articles, with models scoring less than 87%. One study reporting a high perfor-
mance (ROC-AUC = 0.97) without speaker leakage [Iyer et al., 2023] is a�ected by
confounding of age. Including this study, 7 out of the 10 papers with best performing
models are not accounting for speaker leakage in their train-test split methodology.

These studies mostly have small sample sizes, and some with imbalanced classes.
Di Cesare et al. [2024] includes 16 participants with PD and 21 healthy controls.
The Little et al. [2009] dataset, used in Saleh et al. [2023], Jumanto et al. [2024],
Wang et al. [2023b] and Bhakar et al. [2024] is comprised of recordings from 23 par-
ticipants with PD and 8 healthy controls. In some works, various corpora of audio
recordings are combined to both increase the diversity of data used in the study
and increase the sample size. Alongside these small sample sizes, various works use
high-dimensional features with only a few of these applying feature selection meth-
ods before training the ML model. The Ozbolt et al. [2022] review found that large
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feature sets in combination with small sample sizes can lead to overoptimistic results,
citing feature vectors that are �100 larger than the sample size. The length of the
�nal feature vector is poorly documented in some cases: Yildirim et al. [2023], with
80 participants, starts with a feature vector of length 3000 before a feature selection
algorithm is used, but the �nal size of the feature vectors is not discussed. Overall,
this magnitude of di�erence between number of participants and length of feature
vectors are not seen in the literature included in this review. Sampling techniques
are used in the methodology of 6 papers, of which Synthetic Minority Oversampling
Technique (SMOTE) [Chawla et al., 2002] is used in 4 of them. Recent literature
suggests the SMOTE should be used with caution, and explored alongside other sam-
pling schemes, or at least follow up analyses performed to understand the impact of
SMOTE [van den Goorbergh et al., 2022, Elor and Averbuch-Elor, 2022] - analyses
not found in the papers using SMOTE in this review.

Model explainability and inference is not featured in any of the articles featured in
this review. Explainable AI has been gaining increasing attention within the ma-
chine learning community, and methods for various data types are available and easy
to implement in commonly used machine learning software. For example, Shapley
Additive Explanations (SHAP) values [Lundberg and Lee, 2017] estimate feature
importance in machine learning models, and would work well in many of the papers
included in this review that use handcrafted features and MFCCs. Selvaraju et al.
[2016] present a visualisation tool to aid with the explainability of CNNs, and could
be used to demonstrate the segments of a spectogram that are contributing most to
the predicted label, and wrapped into the ‘explainable-cnn’ Python package. Whilst
explainability methods would be useful in re�ning feature selection and comparing
which features are more or less important across di�erent studies, but also needed
for clinical buy-in, which is imperative in the wider adoption of AI in healthcare.

Recommendations

Following the �ndings from this review, various recommendations can be made to
researchers engaging in the �eld of audio machine learning classi�ers in the �eld of
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PD (and in some cases, beyond):

� There is a gap in the �eld for a large dataset to be collected with rich meta-
data from a geographically-diverse group of participants representing di�erent
ethnicities with di�erent �rst-languages.

� Detailed meta-data analysis should be presented and potential confounding
variables identi�ed. This should either be accepted as a limitation of the
study, or where sample size permits, matching of participants can be performed
against these confounders.

� Other medical conditions should be recorded and controlled for, and medi-
cations being taken by participants should be considered to address whether
certain medications are protective of PD, or whether there may be an iatrogenic
component.

� Performance should be measured across di�erent corpora to understand the
sensitivity of the model to corpus-speci�c features.

� Bench-marking of new machine learning methods should be completed against
sustained vowel sounds, as these are most common across the literature.

� More care should be placed in the generation of train-test splits. These should
be done at the speaker level and not the recording-level. In order to ascertain
more realistic performance estimates for out-of-sample performance, a chal-
lenging test-set could be constructed in a similar fashion to the TRSSHDL
COVID-19 study.

� Cross-validation should be used where sample sizes are small, which appears
to be common practice.

� Use of explainability methods should be applied to demonstrate the key features
that result in a prediction to readers and consumers of the research.

Moreover, given that quality issues with study-design has been found both in
applications to PD and COVID-19, there would be bene�t in a wider review covering
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various di�erent applications to assess the scope of these issues within the �eld of
ML with audio data.
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Chapter 5

Conclusion

5.1 Summary

This thesis explores various facets of PD, building on gaps in the literature and open
areas of research both statistically and pathologically.

5.1.1 Tremor

The second chapter explores Parkinsonian tremor. Existing clinical methods to quan-
tify the severity of tremor of PD lack precision. The HMI:CPT research group aims
to obtain both precise and objective measures of the cardinal signs, including tremor,
and other important disease facets. Accelerometers are used to measure tremor and,
unlike in other studies, the aim is to estimate the displacement due to tremor from
the accelerometer signal, and develop metrics to quantify fundamental components
of tremor. A review of numerical integration methods that have been applied to
accelerometer data in previous work is completed, and a simulation study with me-
chanically simulated data collected from a 1-dimensional accelerometer is performed
to ascertain which methods performs best on the type of signals seen in participant
data.
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Due to an uneven sampling rate in the tri-axial accelerometers used to collect partic-
ipant recordings, some preprocessing will be required. Interpolation with Gaussian
Processes is used, with various kernels compared to assess which is most appropriate.
This was done via simulations, where irregular samples are taken from signals with
varying complexity, and the nature of irregularity designed to re�ect that observed
in the participant data. The Matern 5/2 kernel was selected.

In this work, a novel methodology for noise detection is developed. Whilst �ltering
methods can be used to reduce the amount of noise in a signal, the method presented
in this thesis aims to identify segments of recording that are classi�ed as noise by
testing various conditions. The �rst being the amount the device is accelerating is as
expected when compared to noise recordings. Secondly, functional outlier detection
is used to determine whether the frequency spectra appears di�erent to that of noise.
The �nal condition is that the segment of recording is stationary - noise is stationary,
validated by applying hypothesis tests for stationarity to noise recordings. A lack
of open-source code to facilitate multivariate stationarity tests leads to the use of
univariate stationarity tests. These sections can then be removed before the numeri-
cal integration procedure, providing guaranteed improvements to the accuracy of the
displacement signal as these segments of noise cannot accumulate any error.

Finally, having obtained the displacement signal, two frameworks for tremor metrics
are proposed. The �rst uses the frequency spectra of 3=f second windows of dis-
placement for each f in 3Hz, ..., 14Hz to identify the dominant frequencies of tremor
within the signal, noting that tremor is de�ned as 3 beats at a given frequency. A
simulation study demonstrates the weaknesses in this methodology, and a more �ex-
ible collection of metrics is de�ned which uses Butterworth �lters to extract signals
within a given frequency band.

These results have implications on understanding of the disease, including the key
�nding that whilst the total displacement due to tremor in those with PD is larger
within the parkinsonian range, the displacement due to tremor within other frequency
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bands is also larger within the PD group. Additionally, those without PD also tend
to have higher amplitude tremors within the PD frequency band. Higher frequency
tremors more often associated with essential tremor also appear to have some dis-
criminatory power between those with and without PD. The resulting hypothesis is
that these tremor metrics may be used to de�ne a continuum of progression with
respect to tremor, which crosses the threshold for PD diagnosis. Use of this contin-
uum re�nes our ability use tremor as an outcome of potential aetiopathogenic drivers.

5.1.2 Bradyphrenia

An analysis of bradyphrenia is undertaken to question the assumption that it is
nosological in PD after adjusting for covariates, furthering existing work undertaken
within the HMI:CPT group. Initial analysis showed a signi�cantly higher variance
in the cognitive e�ciency of those with PD when compared to those without. Note
that the spouse, control with family history of PD and control without family his-
tory of PD groups were not signi�cantly di�erent, hence grouped together. Anti-
parkinsonian medication appeared to have signi�cant e�ects in regression modelling.
After adjusting for these drug e�ects, there was no longer a signi�cant di�erence of
cognitive e�ciency between the PD and non-PD groups, suggesting a large iatro-
genic component. Though this does not entirely exclude the nosological component
expected from the relationship of bradyphrenia to slow colonic transit [Tucker et al.,
2020].

The study is of major importance to clinical practice given that the most widely
used anti-parkinsonian medication, levodopa, is implicated in bradyphrenia, and
that the anti-cholinergic ‘burden’, which has been loosely associated with dementia
[Coupland et al., 2019], appears to speed up cognitive processing. Large scale studies
of the bradyphrenia in relation to patterns of prescribing are needed to better de�ne
potential causal agents. These can, then, be the focus of design of within-subject
intervention studies and between group comparisons, including longer term follow-
up. Design of cause/e�ect studies will be challenging because of the need to optimise
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e�cacy on the motor aspects in a progressive disease.
Scores from the bradyphrenia questionnaire were compared with the cognitive ef-
�ciency metric to ascertain whether the questionnaire could act as an alternative
to quantify cognitive e�ciency. Both participants with PD and their spouses com-
pleted the questionnaire with respect to the person with PD, along with healthy
controls. The analysis found that spouses typically provided higher scores than the
participants with PD, and that the overall bradyphrenia score did not correlate with
cognitive e�ciency.

5.1.3 Audio Classi�ers

The volume of research into classifying those with PD based on audio recordings
has been increasing in recent years alongside developments in machine learning and
the ease of constructing complex models. The quality of this research was of inter-
est given the results from the Turing-RSS Health Data Lab’s study into detecting
COVID-19 using audio signals found several �aws in the design of other recently
published work in the area. In this work, training and testing sets were carefully
designed in order to obtain more realistic estimates of real-world and out-of-sample
performance. Matching was subsequently completed within the test set to control for
confounding. The performance with a randomly generating train-test split matched
those of other studies in the �eld, though this performance fell signi�cantly when
assessing the trained models against the matched test set - indeed, there was no
performance bene�t when compared to simple symptom checkers.

A review of recent publications in the use of audio ML models found that various
study-design �aws can also be found in this literature. There is a lack of datasets
available that contain detailed meta-data, meaning exploratory analysis often lacks
detail, and potential confounders like smoker-status and other respiratory conditions
cannot be addressed. Various studies include multiple recordings per participant,
however fail to account for this in the generation of train-test splits, meaning record-
ings from the same participant exist in both the train and test set leading to in�ated
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performance metrics. A large proportion of the studies only use a single corpora,
with participants all speaking the same �rst language. This may lead to issues of
generalisability and optimistic performance metrics being reported. One study high-
lights the importance of using recordings from multiple corpora after reporting a
signi�cant drop in performance when assessing their models cross-corpora. Various
recommendations are made following the results of this review that would improve
the quality of studies in the audio ML �eld, particularly in the context of PD. This
is crucial to clinical buy-in, as objective measures of dysphonia via machine learning
o�ers a signi�cant opportunity to improve detection of PD in the early stages.

5.2 Future Work

5.2.1 Statistical Methodology

There are various aspects of the statistical methodology that require further research.

The �rst relates to the numerical integration methods tested. Deep learning ap-
proaches were out of scope of this thesis, though further work could be done to ex-
plore whether sequence-to-sequence models might outperform the methods reviewed
in this thesis.

The selection of the functional outlier detection method could also be further investi-
gated, with performance compared in a simulation study. Initial ideas are presented
surrounding the data generating mechanism for simulating time series signals con-
taining di�erent types of outliers has been discussed in the thesis, but these ideas
need further exploration. Perhaps the use of the frequency domain to select the char-
acteristics of outlying signals induces bias given that the performance of the methods
is also being assessed in the frequency domain.

There is also an opportunity to explore the application of carefully designed training
and test sets to audio-based machine learning classi�ers within PD. Replication of
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the studies with the use of these more challenging train-test splits, with matching
in the test set where possible, would provide hard evidence of the over-reporting
of performance metrics in this area. Such compelling evidence might encourage
adoption of these practices within the community. The application of state-of-the-art
audio classi�cation methods to a large dataset collected from multi-lingual and multi-
national participants has huge potential to improve early detection of PD alongside
a wider aetiopathogenic model.

5.2.2 Postural Instability

Objective, precise measures of postural instability has, till now, been much neglected
in the literature. It will be interesting to observe the correlation of this with the
other cardinal signs of PD. Clustering of the facets has already shown rigidity to be
dissimilar to the cluster containing brady/hypokinesia and UPDRS tremor sub-scores
[Augustin et al., 2023]. Clinical observation by the HMI:CPT research group suggests
that postural instability will be grossly dissimilar to both. The HMI:CPT group
have been recording videos of patients from the front on walking down a corridor
(anterior videos) and side on walking across a space (lateral videos). Lateral and
Anterior angles of lean are candidate functional components of postural instability.
The de�nition of these angles can be seen in Figure 5.1 where the crutch and mid-
point of the shoulders are used as key reference points. Machine learning models in
the area of computer vision are needed to estimate the locations of these points -
there were many phases of discovery and testing in this part of the research.

Proof of Concept: VideoPose3D

The Video Pose 3D algorithm is a model presented in Pavllo et al. [2019] trained on a
large amount of data that is able to predict the 3D position of the subject. The overall
framework uses Detectron2 [Wu et al., 2019] to estimate 2D joint positions, with a
convolutional model then used to estimate the most plausible 3D joint positions,
as in 5.2. Whilst Detectron2 is designed to operate on videos with multiple people
in shot, the VideoPose3D model is designed for videos with a single participant.
In some videos, multiple people are visible as these are taken in a corridor which
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Figure 5.1: These angles are the proposed features to quantify postural instability.

other practitioners and clinicians have access to. Therefore additional logic has been
added which asserts that, at the start of the recording, the subject identi�ed closest
to the center is the subject of interest, and the center of the subject’s bounding box
c1 = (x1; y1) is recorded. An iterative procedure is then applied where the subject of
interest is identi�ed as closest to the subject of interest in the previous frame. That
is, given frame k contains M subjects,

ck+1 = arg min
m

(jjck � ck+1;mjj) (5.1)

where m indexes each subject, and ck+1;m corresponds to the center of the bounding
box for subject m in frame k + 1. Subject m is selected as the subject of interest.

This algorithm predicts the mid shoulder and mid hip as part of the model outputs,
denote this as s = (s1; s2; s3);h = (h1; h2; h3) respectively. The the angles can be
calculated as:

�a = tan�1
�
s3 � h3

s2 � h2

�
; (5.2)

�l = tan�1
�
s3 � h3

s1 � h1

�
: (5.3)

The di�culty has been with computation, and the CREATE HPC has been used
due to the computational requirements.
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Figure 5.2: The convolutional model used within VideoPose3D given the 2D joint
estimation from Detectron2.

Oscillations in lean have been demonstrated to �t the gait cycle in normal volunteers
(Figure 5.3). It is likely that this normal physiological pattern will be disrupted in
PD making the gait unstable. The other advantage of 3D outputs is that the results
can lend themselves to other interesting physical properties related to PD.

Further research and modelling of results

Following a recent surge in the availability of open-source 3D posture estimation
models, further work is required to understand which would be best performant for
estimating joint positions to calculate angles of lean. The proposed analysis is to
use foot positions provided by the posture estimation model to de�ne the sections
of recording that correspond to each step. The time-axis within each section will be
adjusted such that all steps from all participants have the same duration - this is
permissible as gait measurements are already recorded in clinical sessions, therefore
features independent of gait cycle are of interest. For each of the anterior and lateral
lean videos, the functional linear model structure would be

Yi;j(t) = �(t) + �i(t) + sj�s(t) +Xi�(t) + Zi;j�i(t) + "i;j(t) (5.4)
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Figure 5.3: The graph on the left shows the calculation of angle throughout the
recording. To the right of this are the �rst frame of a video of a control, the corre-
sponding predicted 3D posture output for that frame.

where i indexes the participant, and j indexes the within participant observation
(each step). The terms in the model are identi�ed as follows:

� �(t): Overall average over time.

� �i(t): Within participant deviation from �(t).

� sj�s(t): The step number corresponding to observation j and associated pa-
rameter capturing trends in changes to angles of lean throughout the recording.

� Xi�(t): The covariates and parameters associated with participant i, including
age, gender, height, weight, average stride length recorded by gait measure-
ments and PD status.

� Zi�i(t): Functional random intercept per participant. The �i(t)s are realisa-
tions from a mean 0 Gaussian process.

� "i;j(t): Random noise within each recording.
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Inference on this model would give the e�ect of various covariates on the proposed
postural instability markers, alongside the covariate-adjusted e�ect of PD on postu-
ral instability. Moreover, comparison of the model parameters with UPDRS scores
against postural instability for each participant could be used to validate the choice
of markers.

Demonstration of the feasibility of continuous objective measures of postural instabil-
ity from videos, allows progression to the stage of identi�cation of fundamental com-
ponents on relevant datasets, with particular reference to variability within the gait
cycle. The aim will be to use these fundamental components in the aetiopathogenic
modelling.

5.2.3 Aetiopathogenesis of PD

The novelty, quality and breadth of data collected within the research group lead to
an abundance of open questions yet to explore, each bringing their own statistical
challenges. Avenues to explore that would lead to improved understanding of the
disease, its drivers, mediators, and the di�erent pathways through the disease:

� Understanding the relationship between tremor and gut in�ammation bio-
markers/gut microbiome.

� Clustering of the disease facets, and their changes over time, should reduce the
number of aetiopathogenic pathways to pursue.

� Alongside the ongoing video work on postural instability, computer vision mod-
els will be applied to facial images, with metrics designed, using the model
outputs, to quantify facial swelling. This will be of immediate use in an in-
terventional study using anti-in�ammatory agents in PD, replacing subjective
comparisons.
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5.3 Personal Re�ection

To describe my PhD journey as a roller-coaster feels an understatement. I began
my PhD journey having just graduated with a �rst class MSci in Mathematics from
King’s College London, with my dissertation introducing me to research into parkin-
sonian tremor with this research group. Over the proceeding 4.5 years, I have de-
veloped in many ways, and learnt a great deal about myself. I started with little
understanding of the research process and a lack of con�dence in my ability to read
and understand complex methods described in research papers, apply them, and fur-
ther develop them. I have found that aspects of this have changed in the course of
the PhD. I now have a good understanding of the research process, and value greatly
the need to ground and frame research in the context of the existing literature, as
this is how clear progress is made. I now believe that, given an appropriate amount of
time, I can digest and understand complex statistical, signal processing and machine
learning methodology, and how to apply these in programs like R and Python, two
languages I have become very familiar with over the last few years. This progress
has been far from linear, with many lows in and amongst the highs - imposter syn-
drome being the biggest challenge throughout this journey, an issue that I believe
needs more attention within academia. One of the most profound realisations on this
journey has been that �the more you know, the more you realise you don’t know",
something that is perhaps di�cult to grasp until really experiencing this. I not only
now respect, but greatly admire the tenacity of academics who spend their careers
and in some cases, their lives, exploring the unknown.
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Appendix A

Audio Classi�ers Literature Review

The table in this appendix details the literature review completed as part of the
chapter on audio classi�ers. It details the audio modalities (note that the 5 vowels
correspond to \a\, \e\, \i\, \o\, \u\) and languages (where applicable) used in each
study; the population sizes of the PD and non-PD groups; whether any meta-data
analysis was completed, and if so, for which variables; whether any confounders were
identi�ed in the paper (in cases where no confounding was identi�ed, it was not
discussed in the paper); confounders identi�ed from the provided meta-data analysis
as part of the review (NA where no meta-data analysis is presented); whether any
matching mechanism was applied; preprocessing of features; the choice of audio
features; whether any sampling methods were used; the machine learning methods
used; how the train test split was created; the largest reported accuracy across models
considered in the work (AUROC is used where accuracy was not reported); and
whether recordings from the same speaker might be included in both the training
and testing sets.
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Reference Audio modality Language(s) PD,N Size Meta data Id. Confounders
Rios-Urrego et al.
[2024]

Spoken sentence, \pa-
ta-ka\

Czech, German, Span-
ish

50,50 Age, Gender, Symp-
tom Duration, UPDRS

None

Di Cesare et al. [2024] Spoken sentence English 16,21 Gender None
Veetil et al. [2024] 5 vowels Spanish, Italian 98,92 Age, Gender Gender
Dhanalakshmi et al.
[2024]

\a\ NA 188,64 Gender None

Yildirim et al. [2023] Spoken sentence, \pa-
ta\, 5 vowels

Italian 28,52 None None

Saleh et al. [2023] \a\ NA 211, 72 Age, Gender None
Jumanto et al. [2024] \a\ NA 23,8 Age, Gender None
Eguchi et al. [2023] Spoken text Japanese 251,101 Age Age, Speech Intensity
Kovac et al. [2024] Spoken text, \a\, \pa-

ta-ka\
Czech, American,
Israeli, Colombian
Spanish, Italian

241,265 Gender, Language,
Age, PD duration,
Levodopa dosage,
UPDRS, H&Y

Language

Wang et al. [2023b] Spoken text, 5 vowels Turkish, Chinese, NA 79,82 Gender, Age None
Hossain and Amenta
[2024]

\a\ NA 564,192 Gender, Age, PD Du-
ration, UPDRS

None

Bhakar et al. [2024] \a\ NA 23,8 None None
Akila and Nayahi
[2024]

\a\ NA 188,64 None None

Cantürk and Günay
[2024]

\a\, \o\, \u\ NA (Turkey) 20,20 Age, Gender None

Iyer et al. [2023] \a\ NA 40,41 Age, Gender, H&Y,
PD Duration

None

Nayak et al. [2023] Spoken words, 5 vow-
els

Spanish 50,50 Gender, Age None

Boualoulou et al.
[2023]

\a\ Turkish, Spanish 70, 70 Gender, Age None

Al-Mashanji et al.
[2023]

5 vowels NA 147, 48 None None

Abedinzadeh Torghabeh
et al. [2023]

Spoken sentence English 16,21 H&Y None

Lilhore et al. [2023] \a\, \o\, \u\ NA (Turkey) 20,20 None None
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Reference True Confounders Matching Preprocessing Sound features Oversampling
Rios-Urrego et al.
[2024]

None Dataset balanced by
age and gender

None GMM-UBM Supervec-
tors

None

Di Cesare et al. [2024] None None Speaker diarization MFCCs, GTCCs Oversampling
Veetil et al. [2024] None Split by gender None VMD, VMD-HS None
Dhanalakshmi et al.
[2024]

Gender None None MFCCs, Wavelet,
Handcrafted features

SMOTE-ENN

Yildirim et al. [2023] NA None None Spectogram None
Saleh et al. [2023] Gender None None Min-max feature scal-

ing
Handcrafted features,
vocal fundamental fre-
quencies

Jumanto et al. [2024] Age, Gender None Normalisation of fea-
tures

Many handcrafted fea-
tures

SMOTE

Eguchi et al. [2023] Age, Speech intensity
rating

Propensity Score
Matching

None Spectogram None

Kovac et al. [2024] Language None Features standardises
scaled with IQR

Many handcrafted fea-
tures

None

Wang et al. [2023b] None None None Many handcrafted fea-
tures

None

Hossain and Amenta
[2024]

Gender None None MFCCs, Wavelet,
Handcrafted features

SMOTE

Bhakar et al. [2024] Gender and Age None None Many handcrafted fea-
tures

SMOTE

Akila and Nayahi
[2024]

Gender None Normalisation of fea-
tures

Deep Neural Network Pre-sampling

Cantürk and Günay
[2024]

None None None Scalogram None

Iyer et al. [2023] Age None None Spectogram, hand
crafted features

None

Nayak et al. [2023] None None None MFCCs, Spectogram,
Chromagram, Ton-
netz, Spectral contrast

None

Boualoulou et al.
[2023]

None None None EMD & MFCCs,
BFCCs

None

Al-Mashanji et al.
[2023]

NA None None Hand crafted features None

Abedinzadeh Torghabeh
et al. [2023]

None None Segmentation with
VAD

WS Transform None

Lilhore et al. [2023] None None Framing, Hamming
Window, Variable
mode decomposition,
EEMD, Gaussian
smoothing

Spectogram None
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Reference ML Methods Train Test Split Highest
Accu-
racy

Speaker
Leakage

Rios-Urrego et al.
[2024]

GMM-UBM, PCA & SVM Grouped by language 86.2% 0

Di Cesare et al. [2024] SVM, KNN, NN Random single split 92.3 1
Veetil et al. [2024] CNN, SVM, RF, NN Tested on external

data, cross-language,
split by gender, 10-
fold CV

80% 0

Dhanalakshmi et al.
[2024]

PCA & RF, EGradBoost, KNN, SVM, DT, LR 10 Fold CV 96.5 1

Yildirim et al. [2023] AOA & CNN, KNN, SVM Random single split 98.19 0
Saleh et al. [2023] Ensembles, LR, Ridge Classi�er, SGD Classi�er,

Passive Aggressive Classi�er, KNN, DT, Extra
Tree, Linear SVC, SVC, Gaussian NB, AdaBoost,
Bagging Classi�er, RF, Extra Trees, Gaussian
Process, Gradient Boosting, LDA, QDA, XGB
Classi�er, NN Classi�er

LOOCV, Strati�ed 5-
Fold CV

97.35 1

Jumanto et al. [2024] PCA & SVM with GridSearch for variable selec-
tion

10-Fold CV 97.44 1

Eguchi et al. [2023] CNN 5-Fold CV 87 1
Kovac et al. [2024] XGBoost LOOCV, 10-fold CV,

cross-language
85 0

Wang et al. [2023b] EMSFE LOSO, single random
split, 10-fold CV

93.75 0

Hossain and Amenta
[2024]

SVM, LR, KNN, DT, RF, NN 10-fold CV 85.09 0

Bhakar et al. [2024] Naïve Bayes, RF, KNN 10-fold CV 89.74 1
Akila and Nayahi
[2024]

PCNN, MASS Single random split 95.1 1

Cantürk and Günay
[2024]

CNN 10-fold CV 95 0

Iyer et al. [2023] CNN, LR, RF 10-fold CV AUROC:
97

0

Nayak et al. [2023] SVM 10-fold CV 98 1
Boualoulou et al.
[2023]

SVM, NN 5-fold CV 92.1 1

Al-Mashanji et al.
[2023]

Feature selection used Correlation, Information
Gain, Variance Thresholds & DT, Naïve Bayes,
SVM

Single random split 98.62 1

Abedinzadeh Torghabeh
et al. [2023]

SVM, DT, Naïve Bayes, NN, DA, Ensembling
with WMV

Single random split 98.8 1

Lilhore et al. [2023] ResNet50, NN, CART< XGBoost 10-fold CV 93.01 1
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