“What are you thinking when you look at me?” A pilot study of the use of virtual reality in body image

Victoria A. Mountford1,2, Kate Tchanturia1,2, Lucia Valmaggia1,3

1. Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London SE5 8AF
2. Eating Disorders Service, South London and Maudsley NHS Foundation Trust, Maudsley Hospital, Denmark Hill, London SE5 8AZ
3. Virtual Reality Lab, NIHR/Wellcome Trust, King’s Clinical Research Facilities, King’s Hospital London.

Running head: Using virtual reality in the study of body image

Address for correspondence: Dr Victoria Mountford

Eating Disorder Service, Middle House, Maudsley Hospital, Denmark Hill, London, SE5 8AZ, UK. Tel: +44 203228 3180. Fax: +44 203228 4995.

vicki.mountford@kcl.ac.uk
Abstract

Body image disturbance is implicated in the aetiology, maintenance and relapse of the eating disorders and remains challenging to treat. New paradigms such as virtual reality may offer an ecologically viable method to assess and treat body image disturbance. This pilot study aimed to determine if a virtual reality environment could elicit increased body image disturbance in a non-clinical group of women who were dieting due to body image concerns or non-clinical women who were not dieting. Forty-one non-clinical females participated in the virtual reality paradigm (a London Bus Journey), completing pre and post measures of body image satisfaction, and social evaluative concerns. Results did not support the hypothesis that the virtual London Bus would elicit increased body image disturbance. However, dieters reported significantly higher levels of social evaluative concerns and comparison to avatars during the virtual environment compared to non-dieters. Participants reported acceptable levels of sense of presence and enjoyment of the VR environment. Possible explanations for the failure of the VR environment to trigger increased body image disturbance are discussed, including choice of environment and avatar fidelity. In conclusion, this pilot study suggests that virtual reality might have potential in the treatment of disturbed body image, whilst highlighting the need for further research into the required levels of representational and behavioural fidelity of virtual environments and avatars.
Introduction

Many individuals with eating disorders report high levels of distress and anxiety relating to body image and body image disturbance (BID) has been implicated in the aetiology, maintenance and relapse of the eating disorders\(^2,3\). Body image is a multi-dimensional construct incorporating a mental picture of the body's physical appearance informed by cognitive, affective, behavioural, and perceptual aspects\(^1,4\). Clinical experience and the literature\(^5\) suggest that individuals with eating disorders may also be preoccupied by the perceived appraisals of others, leading to distorted assumptions and distress. According to cognitive behavioural models, these assumptions and emotions lead to behaviours such as avoidance, checking or camouflage which further reinforce BID\(^1,6-7\). Previous studies theorised that not only does body dissatisfaction rely on one’s own evaluation but also on the perceived evaluation or approval of others. In one such study, non-clinical women with high and low body concerns undertook a computerised evaluative conditioning task in which a picture of their body was always paired with a picture of a smiling face. In only those women with high levels of body concern, the pairing of their body with a positive stimulus led to increased global self-esteem and body satisfaction\(^8\). Similarly, Alleva et al.,\(^9\) found that ‘high BID’ women saw others’ bodies as thinner than their own. Women with ‘low BID’ did not rate themselves differently on thinness, suggesting this dimension is less important for their self-evaluation. Individuals with eating disorders report fear of negative evaluation of appearance by others leading to psychosocial impairment, for example, finding it difficult to go outside\(^5\). In a related field, Anson et al.,\(^10\) found individuals with Body Dysmorphic Disorder had high levels of appearance concerns relating both to their own thoughts and to their perceptions of others thoughts. More investigation is required into how the perceived appraisal of others may influence BID of people with eating disorders. Further, there is limited exploration using ‘real-time’ methodology to assess self-evaluation or perceived evaluation by others by people with eating disorders and how this may affect BID. Using methodology that is a ‘real-life’ as possible is key to ensuring that concurrent appraisals and
beliefs are accessed, as methodology based on self-report may be biased. VR is more effective than traditional body image techniques11.

Despite the crucial role of BID in eating disorders, it is often overlooked in treatment programmes, possibly because it is a complex area resistant to intervention12. Potential challenges include limited research into the mechanisms of change in body image treatment, difficulties for individuals in expressing the construct of body image and the possible limitation of utilising treatments that are broadly ‘talking’ and reasoning based to address a multi-dimensional concept12-13. A recent review of BID treatments reported cognitive behaviour therapy as the most commonly used approach, but found room for improvement13; suggesting BID focussed interventions may enhance current evidence-based treatments. VR may enhance current treatments by addressing some of the above challenges, in particular by treating BID in a multi-dimensional and experiential manner, rather than predominantly cognitively and through high levels of acceptability and feasibility to patients.

It has been proposed that Virtual Reality (VR) paradigms may be particularly effective for the assessment and treatment of BID12. VR is a proxy, ecologically valid method of assessing appraisals in real life, offering the unique advantage of the ability to ‘control’ the environment and the avatars within it, thus providing a social setting that can replicated. We can therefore observe how the individual interprets the avatars behaviour. An avatar that looks in the direction of the individual immersed in the virtual environment may be interpreted as a ‘curious glance’ by an individual low in BID, while an individual high in BID may attribute thoughts such as ‘they think I’m fat’. VR exposure has potential for treatment, unlike conventional exposure, the patient does not need to leave the therapy room, thus maintaining privacy, and it may also be more acceptable to patients who are highly anxious. It also enables the clinician or researcher to be aware of exactly what is happening in real time, and further, may be beneficial to individuals with less imagination. For these advantages to be realised, it is imperative that the virtual environment elicits approximately similar degrees of anxiety as the real-life situation14. In relation to the eating disorders, early
studies demonstrate that VR produces similar levels of anxiety and body dissatisfaction as real life15-16. Ferrer-García et al.15 investigated the levels of anxiety of student controls and patients with eating disorders in five different environments including a neutral room, kitchen, restaurant and swimming pool. The control group demonstrated increased anxiety only in the swimming pool environment, whereas the clinical group showed significantly higher levels of anxiety in all environments compared to the neutral room. People with anorexia nervosa and bulimia nervosa had comparable emotional and physiological reactions when shown virtual food and real food but not to photographs of food16. In patients who binge-eat, ‘eating’ a forbidden food in the virtual kitchen led to characteristic reactions present in ‘live’ binge-eating situations, including anxiety, guilt and urge to overeat17. Interestingly, in contrast to their predictions, Gutiérrez-Maldonado et al.,18 found that the additional presence of avatars in the virtual environment did not have an impact on BID. It remains unclear whether the presence of avatars in VR would trigger social-evaluative concerns relating to BID. Fear of negative appearance evaluation predicts levels of body image, mood and eating attitudes19. Additionally, the close relationship between social anxiety and eating disorders20, further supports the hypothesis that the presence of people may exert a significant impact on BID. There has been limited study of this in the VR BID field, however one study found – in contrast to their prediction - that presence of avatars in a restaurant VR did not have an effect18. They postulated that this was because participants were sitting down in the VR. Thus, a VR bus journey was selected as a familiar, everyday environment in which participants would be required to be standing and thus clearly visible to other passengers.

VR offers opportunities to investigate the social evaluative concerns of people with eating disorders. In order to determine proof of concept, a pilot study using non-clinical women with high and low levels of body concern was undertaken. The aim of this exploratory study was first, to determine if a VR paradigm can elicit increased BID through the mechanism of self-evaluation and the perceived evaluation by others and second, to determine whether there was a difference between dieting and non-dieting females.
Materials and Method

Participants

Twenty-one non-clinical women who were currently dieting and twenty non-clinical women who were not currently dieting participated in the study, recruited using King's College London research advertisement email circular. Sample size was based on research that a total sample of between 24 and 50 is recommended for feasibility studies21,22. Dieters and non-dieters were recruited to access women with high and low levels of body concern. To ensure that groups were distinct and to assess level of dietary restraint, all participants were screened using the Restraint Scale23. Participants with a score of 14 or above were classified as restrained eaters; those with a score below 14 are classified as unrestrained eaters15. Participants who reported dieting but scored below 14 were excluded from the group analysis (N=3) and participants who did not report dieting and scored 14 or above were excluded from the group analysis (N=2). Thus, there were 18 participants in each group. The study was granted ethical approval by King’s College London Research Ethics Committee.

Virtual reality environment

The virtual environment was a 4-minute journey on a London bus (see Figure 1). The software was developed using the Unity software package by Ari Jacobs of "I'm VR" under commission of KCL London. "Middle VR for Unity" was used to make the software compatible with the VR hardware. The environment was displayed in colour via a headset; the display used was an nVisor SX111 with headphones, with a resolution of 1280x1024 pixels, 280 x 1024 resolution, 111 degree FOV with Advanced Video Control Unit (NVIS, Virgina, US). Participants wore the headset and could move through the virtual environment on the bus by walking and whole body turning. Their head position and orientation were

The VR bus journey was chosen as an appropriate scenario as it is relatively neutral in relation to many aspects of eating disorders (e.g. in contrast to a café or clothes shop, which could trigger anxiety regarding eating or body image). The bus was populated by computer-generated characters, known as avatars, representing a mix of age, gender and ethnicity. The avatars were all of normal body weight and appearance. Importantly, the avatars were programmed to display only neutral behaviour, for example occasionally glancing around. Participants were not able to see their own body, nor were they represented as an avatar; they were fully immersed in the VR environment.

-- Insert Figure 1 about here --

Procedure

All participants gave written informed consent. Participants were tested in a single session, lasting approximately one hour. First, participants completed demographic questions and weight and height were recorded using calibrated scales and height measure. Participants completed the pre-VR measures. 3 dieters and 2 non-dieters were excluded at this point due to not meeting criteria on the Restraint Scale. Participants entered the VR paradigm for a training session, to ensure comfort and familiarity. Following this, participants entered the 4-minute VR bus journey, in which they were asked to ‘form some impression of what you think about the people on the bus and what they think about you’. Participants completed the post VR measures and undertook a brief semi-structured interview to elicit feedback about
their experience. Participants were contacted one week later to determine if there were any side effects resulting from the VR.

Assessment instruments

Pre-virtual reality measures

Eating Disorders Examination Questionnaire (EDE-Q)25. This 36 item 7-point self-report questionnaire assesses eating disorders pathology and is derived from the Eating Disorder Examination. It consists of four subscales, measuring levels of Restraint, Shape Concern, Weight Concern and Eating Concern. It also assesses level of eating disordered behaviours. The EDE-Q has good psychometric properties26 and a clinical cut-off score of 2.3 in conjunction with objective binge episodes27. Cronbach’s α was .80 for Restraint, .91 for Shape Concern, .83 for Weight Concern and .81 for Eating Concern.

Restraint Scale23. The 10 item 4-point Restraint Scale was used to assess levels of eating restraint in the dieters and non-dieters to ensure the groups were distinct. This method is established by Coehlo et al.24, who identified 14 as the cut-off point to differentiate levels of restraint. Cronbach’s α was .86.

Fear of Negative Appearance Evaluation Scale (FNAES)19. This six-item scale assesses concerns relating to negative evaluation of appearance by others. Each item is rated on a Likert scale from 1-5 with higher scores indicating greater levels of fear of negative appearance evaluation. The FNAES has good internal consistency and is significantly correlated with other measures of BID. Cronbach’s α was .91.

Liebowitz Social Anxiety Scale (LSAS)28. Individuals with comorbid social anxiety may present with higher levels of appearance related concerns, particularly regarding the evaluation by others, the LSAS is included so that levels of concern can be established in those with and without social anxiety. The LSAS is a 24-item 4-point self-report measure,
which assesses levels of social anxiety. It has two subscales, Fear and Avoidance, Cronbach’s α was .86 and .77 respectively.

Pre and post virtual reality measures

Body Image States Scale (BISS)

The BISS is a six-item questionnaire that measures momentary evaluative and affective experiences of one's own physical appearance. Each item is rated on a 9-point scale. For example, participants are asked to rate ‘Right now, I feel…’ from ‘extremely dissatisfied with my appearance’ to ‘extremely satisfied with my appearance’. The BISS was developed particularly for use in experimental manipulations and therefore is highly acceptable to the current study. The BISS has acceptable reliability and validity. Cronbach’s α was .87.

Visual Analogue Scales

To assess how being in the social VR environment may have affected mood and BID, participants completed visual analogue scales (VAS) before and after the VR experiment, rating affect (stressed/ anxious/ happy) and BID (attractive – unattractive/ ugly – beautiful/ fat – thin). Post VR only, four VAS were added; how much were you thinking about the way you look during the journey?, how much were you thinking the other passengers were thinking about the way you look during the journey? how much were you comparing your appearance to the other passengers? how socially anxious you felt with the other passengers? Two final VAS explored the experience of the VR journey, assessing level of presence or immersion and enjoyment were added.

Finally, because of the preliminary nature of the study, feedback was sought from participants regarding their experience of the virtual reality environment and the avatars.
Statistical Analysis

All analyses were conducted using SPSS for Windows (Version 22). All significance tests were quoted as two tailed probabilities. Paired sample T tests were conducted on the whole sample to determine if the VR scenario elicited an increase in BID. Independent t tests were carried out to determine that the two groups were distinct in regard to levels of restrained eating and body image concerns. 2 (condition: non-dieters versus dieters) x 2 (time: pre versus post) were used to analyse the data to determine if the VR scenario did induce the hypothesised increase in BID.

Results

The demographic and clinical characteristics are shown in Table 1. Most participants were women in full-time employment or study and 75% of the sample reported themselves as White, 25% reported themselves as Asian, Black or Mixed background. There were no significant differences between the groups on age t(34) = -.922, p=.363. The mean score for the EDEQ Shape and Weight Concerns combined was .72 for non-dieters and 2.67 for dieters. As to be expected there were significant differences in BMI t(34) = -2.482, p=.018, Restraint Scale t(34) = -10.26, p=.00 and all subscales of the EDEQ, thus indicating that the two groups were distinct and that the dieting group had significantly higher shape and weight concerns. The dieting group also had significantly greater fear of negative appearance evaluation – FNAES t(34) = -4.74, p=.00. There were no significant differences between the groups on social anxiety, suggesting that any findings would not relate to social anxiety.
Experience of the virtual reality environment

Two VAS items asked about sense of presence and acceptability of the VR environment. There were no significant differences between groups, therefore results are presented for the complete sample. The mean score for sense of presence was 64% (range 5-100%) with 24/36 participants rating it over 60%. The mean score for enjoyment of the VR environment was 60% (range 5-99%) with 22/36 participants rating over 60%. At one week follow up, one participant mentioned feelings of sickness for three hours post VR, no other participants noticed any side effects.

BID and the VR environment

Contrary to the first hypothesis, participants did not experience a change in BID after entering the VR environment. There was no significant difference on the VAS measuring body image related items (Attractive, Beautiful and Fat) before and after. However, participants rated themselves as significantly less stressed after being in the VR environment t(40) = 2.497, p=.017 (Table 2).

Insert Table 2 here

The second hypothesis examined whether there were differences between dieters and non-dieters. There was no significant time by group interaction for the BISS or the VAS that measured body image related items (Attractive, Beautiful and Fat). There were no significant differences in emotional state (VAS; Stressed, Anxious, Happy). ANOVA results are presented in Table 3.
Social evaluative concerns in the VR environment

Four post-VR VAS asked participants to what extent social evaluative concerns were present. These demonstrated that dieters reported themselves to be thinking significantly more about their appearance during the journey and to believe that others were thinking about their appearance. They also reported greater levels of comparison with other passengers and feeling more socially anxious, although all ratings were under 50.

Participant feedback on the VR environment

Due to the exploratory nature of the study, participants were also asked for their feedback on the VR environment. There was a high level of consensus with participants stating they enjoyed the VR environment and found it interesting to take part. They reported a high sense of presence. Participants reported finding the bus and the buildings very realistic. Many commented on how it felt just like a normal urban bus, in that other passengers were not paying them any attention. Despite not asking directly about eye contact, two thirds of each group commented that they did not feel under scrutiny because the avatars did not make eye contact with them. Finally some participants commented that they did not have much in
common with the other passengers and therefore this reduced anxiety regarding scrutiny. This feedback highlights significant potential limitations of the research, including lack of a sufficiently emotionally arousing VR environment and concerns regarding avatar fidelity.
Discussion

The current pilot study aimed to investigate the feasibility of using VR paradigms to assess social evaluative concerns relating to body image in women with high and low body concerns. The main hypothesis that entering the VR scenario populated with avatars would lead to changes in state body image, was not supported, nor were there changes in analogue measures of emotional state or appearance related descriptors. Due to the main results being null, it is important to consider this research as an introductory investigation of VR environments in BID research. The groups differed significantly with their appraisals of social evaluative scrutiny whilst in the VR with dieters rating themselves significantly more aware of such scrutiny. These findings, in conjunction with participant feedback, indicate that VR may have a role in the study of body image and requires continued refinement to reach that potential. It is possible that had a group of women with eating disorders been included that greater differences may have emerged, particularly as other studies have found greater effects in individuals with eating disorders compared to non-eating disorder controls\(^\text{15}\). A more plausible explanation, however, may relate to representational and behavioural fidelity of the avatars. In the post VR interview, many participants commented on how ‘real’ their sense of the bus and the town was. However, when asked about the avatars, participants commented that because the avatars did not make eye contact, they felt invisible. Applying VR to social situations is complex\(^\text{14}\) and this may be exaggerated when body image is the focus. Further, the virtual environment was originally developed for a different, unrelated study. Of the seven avatars, only two were female and only one of these in her twenties (the average age of participants). Some participants stated that if there had been more avatars ‘like me’ they thought they would be more concerned. Finally, many participants commented that the virtual bus was very real and that ‘everyone was ignoring everyone’ as they do on a typical urban bus. Thus, it appears that being on a bus in ‘real-life’ was not associated with high levels of body scrutiny for participants. Although the virtual bus was chosen as a ‘neutral’ scenario, it may be that a scenario that elicits greater social evaluative concerns in
real life would be more effective. This supported by the finding in another study that only the
swimming pool environment increased anxiety in student controls15.

Future studies are recommended to use emotionally charged VR environments that
emphasise body scrutiny (e.g., swimming pool, nightclub, highly attractive avatars). One
option may be to develop avatars that can interact with the participants, for example by
commenting on a physical attribute of the participant (‘your hair looks nice’) or another avatar
(‘she looks so pretty’). Improving eye contact would add to sense of interaction. Levels of
BID may also be experimentally manipulated by asking participants to wear different
clothing. An eye tracking component would also contribute to future research. Of course, as
VR exposure is developed into treatment, more neutral environments are advised in order to
develop a graded hierarchy for the patient.

Strengths of this pilot study include good sample size and experimental design. Due to the
small-scale nature of the study, it was not possible to double-blind the procedure. In order to
reduce bias, the experimenter followed a script and self-report quantitative measures were
used. Another limitation is that the VR conditions were not compared to other variables (e.g.
a non-immersive movie; a blank period); therefore we cannot ascertain what the use of VR
added. A ‘non-social’ control scenario would also enable investigation of differing levels of
social-evaluative concerns and the presence or absence of avatars. It is not possible from
this pilot study to comment on treatment effects. A further limitation is the significant
difference in BMI between the two groups, however it is perhaps expected that those in the
dieting group had a higher BMI. Although the main hypothesis was not supported, this
introductory study allows further understanding into the complexities of virtual reality and
body image. As technology advances, so experimental paradigms can be enhanced.

Acknowledgments
This paper represents independent research part funded by the National Institute for Health
Research (NIHR) Biomedical Research Centre (BRC) at South London and Maudsley NHS
Foundation Trust and King's College London and NIHR/Wellcome Trust King's Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, NIHR or the Department of Health.

Author Disclosure Statement

VM, LV – No competing financial interests exist

KT- No conflict of interest in relation to this study, currently receiving funding from Swiss Anorexia Foundation.

References

