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Abstract Advances in medical imaging and image process-
ing are paving the way for personalised cardiac biomechani-
cal modelling. Models provide the capacity to relate kinemat-
ics to dynamics and—through patient-specific modelling—
derived material parameters to underlying cardiac muscle
pathologies. However, for clinical utility to be achieved,
model-based analyses mandate robust model selection and
parameterisation. In this paper, we introduce a patient-
specific biomechanical model for the left ventricle aiming to
balance model fidelity with parameter identifiability. Using
non-invasive data and common clinical surrogates, we illus-
trate unique identifiability of passive and active parameters
over the full cardiac cycle. Identifiability and accuracy of the
estimates in the presence of controlled noise are verified with
a number of in silico datasets. Unique parametrisation is then
obtained for three datasets acquired in vivo. The model pre-
dictions show good agreement with the data extracted from
the images providing a pipeline for personalised biomechan-
ical analysis.
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1 Introduction

Integrated imaging and mathematical modelling hold sig-
nificant potential for augmenting and improving current
clinical practice. The ongoing advancement in computa-
tional modelling enables fast and efficient simulation of
complex physiological systems (Casoni et al. 2014; Gurev
et al. 2015; Lafortune et al. 2012). Biomechanical models
provide the distinct advantage in that they enable clini-
cians and researchers to estimate characteristics of the heart
that are otherwise difficult or impossible to measure in
vivo, such as tissue stiffness and contractility, local strains
and stresses. These model-derived metrics yield additional,
potentially more sensitive, indicators of health and disease.
Consequently, personalised cardiac modelling has generated
significant clinical interest (Ge and Ratcliffe 2009; Sermesant
et al. 2012; Yacoub and Terracciano 2011), actively stimulat-
ing research into model developments (Chabiniok et al. 2012;
Krishnamurthy et al. 2013; Marchesseau et al. 2013; Neal
and Kerckhoffs 2010) that may improve diagnosis, facilitate
prognosis and assist in treatment planning.

Advances in medical imaging and image processing are
paving the way for the use of cardiac biomechanical mod-
elling in clinical applications. Magnetic resonance imaging
(MRI), computed tomography and echocardiography have
advanced to the state where anatomy, motion (kinematics)
and flow can all be routinely imaged in patients. Various types
of cardiac MR sequences, such as high-resolution three-
dimensional (3D) anatomy at multiple cardiac states (Uribe
et al. 2008), cine images of cardiac motion (Uribe et al. 2007;
Usman et al. 2013, 2015), 4D phase contrast MRI (Markl
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et al. 2011) and 3D tagged MRI (Rutz et al. 2008), provide
an extensive set of data for modelling. Motion tracking in
3D tagged images (Chandrashekara et al. 2004) in particular
enables the extraction of three-dimensional displacements
of individual points in the myocardium and can therefore
serve as basis for quantification of the mechanical properties
of cardiac tissue (Mojsejenko et al. 2014; Xi et al. 2013).
Moreover, non-invasive approaches to estimating pressure
from imaging data (Buyens et al. 2005; Donati et al. 2015;
Ebbers et al. 2001; Tyszka et al. 2000) or peripheral cuff mea-
surements (Brett et al. 2012; Chen et al. 1997) are becoming
more advanced and pervasive in clinical assessments.

Leveraging this quantitative data for construction of car-
diac mechanics models, it is essential to provide reliable and
robust models and parameterisation pipelines for processing
patient data to producing results that enable medical interpre-
tation. In this context, model selection is of critical import,
requiring a balance between the objectives of the analysis
and input extractable from the data. This mandates selec-
tion of a model that is inherently a compromise, providing
sufficient richness to represent the physiological processes
of interest (i.e. sufficient model fidelity), while limiting the
number of patient-specific parameters to ensure identifia-
bility. Many modelling approaches have been reported in
the literature (Camara et al. 2015), using a variety of laws
to describe the passive (Costa et al. 2001; Guccione et al.
1995; Holzapfel and Ogden 2009) and active (Chapelle et al.
2012; Kerckhoffs et al. 2003; Niederer et al. 2011) behaviour
of the myocardium. Quantification of mechanical properties
from imaging data has also been pursued (Augenstein et al.
2005; Chabiniok et al. 2012; Chandrashekara et al. 2004;
Gao et al. 2015; Göktepe et al. 2011; Imperiale et al. 2011;
Mojsejenko et al. 2014). However, model complexity often
limits the ability to identify patient-specific parameter values
uniquely (Hadjicharalambous et al. 2014b; Xi et al. 2013),
thus adding uncertainty to the quantitative characterisation
the model can provide.

The aim of this work is to develop a relatively sim-
ple model characterising full-cycle left-ventricular (LV)
mechanics with sufficient accuracy, and an associated pipeline
for reliable estimation of a limited number of patient-specific
parameters, based on a non-invasively acquired dataset
including 3D tagged MRI. Successful implementation of
this pipeline would provide a basis for linking the model-
derived values, such as passive and active parameters, to the
underlying pathophysiology. The computational model and
the associated parametrisation protocol introduced here are
building on our previous work for passive parameter estima-
tion from 3D tagged data (Hadjicharalambous et al. 2014b)
and full-cycle parameter estimation from pressure–volume
data (Asner et al. 2015). A reduction in the Holzapfel–Ogden
material model (Holzapfel and Ogden 2009) is used that was
shown to balance identifiability and model fidelity across

a range of passive behaviours (Hadjicharalambous et al.
2014b). Novel external boundary conditions are applied, so
that deformations are driven by LV volumes and basal long-
axis motion extracted from processed image data. Finally, a
simplified active constitutive law is integrated into the model,
providing an estimate of the active tension in the myocardium
over the cardiac cycle.

In passive parameter estimation, optimal values are
selected based on the L2(Ω0)-norm difference between 3D
motion fields extracted from the data and model predictions.
Active tension through the cardiac cycle is estimated based
on a combined functional incorporating relative L2-norm dis-
placement errors and cavity pressure errors.

Parameter identifiability and model sensitivity are verified
in a series of tests based on in silico data emulating acquired
data and processing errors. These tests provide a useful tool
for evaluating the estimation pipeline under perfect or near-
perfect model fidelity and allow us to assess the errors in the
estimated quantities. With the view of using the process in
patient-specific modelling, we then apply the model and the
parameterisation protocol to three in vivo datasets including
MR images and pressure data as an important verification
step. Model fidelity is reduced for in vivo data, and the fea-
sibility of the estimation process, as well as the reliability
of computed parameter values, needs to be re-evaluated for
potential use in clinical cases. Parameter identifiability is ver-
ified in the in vivo cases, and good agreement between the
data and the model can be observed.

Section 2 gives the details of the full-cycle LV mechanics
model used in the pipeline and describes the datasets and the
process for model personalisation. The results for all of the
in silico and the in vivo tests are presented in Sect. 3. The
outcomes of the testing, along with limitations and future
work, are discussed in Sect. 4.

2 Methods

The specifics of the proposed pipeline for personalisation of
full-cycle LV mechanics models are described below. First,
we present the cardiac mechanics model, including the gov-
erning equations, the passive and active constitutive laws, and
the boundary conditions. A minimal clinical dataset required
is outlined next, and the procedure for personalisation of the
model based on this dataset is described. We also present the
steps involved in generating the in silico datasets.

2.1 Cardiac mechanics model

2.1.1 Governing equations

The equations used to model myocardial deformation over
the cardiac cycle are derived from the basic conservation
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principles (Bonet and Wood 2008). We employ a standard
Galerkin finite element formulation of the solid mechan-
ics problem, while choosing specific constitutive laws and
boundary conditions to ensure good model fidelity and para-
meter identifiability based on the available data. The details
of the model are described below.

Let Ω0 ∈ R3 be the reference configuration of the domain
of interest (the unloaded myocardium) with X denoting the
corresponding reference coordinate. Let also Ωt ∈ R3 be the
deformed domain with x the corresponding physical coor-
dinate at a given time t > 0. The mapping between the
deformed and the reference coordinates is assumed to be
diffeomorphic at all times. At any time t > 0, the displace-
ments of material points u = x − X and the hydrostatic
pressures p together with the Lagrange multiplier vector �
(see Sect. 2.1.3) are found as the saddle point of the energy
potential functional Π (Bonet and Wood 2008):

(u, p, �)(t) : Π(u, p, �) = inf
v

sup
q,µ

Π(v, q, µ), (1)

where (u, p, �)(t) and (v, q, µ)(t) ∈ X × Y × Λ, with X ×
Y × Λ a stable combination of Sobolev spaces for any t ≥ 0
(Brenner and Scott 2008). The solution must coincide with
a critical point of the functional:

D(u,p,�)Π(u, p, �)[v, q, µ] = 0 (2)

for any (v, q, µ)(t) ∈ X × Y × Λ at a given t > 0.
Eq. (2) provides the weak form equations for solving the
solid mechanics problem.

2.1.2 Constitutive relations

The precise form of the energy functional depends on the
choice of models that represent the myocardium. The total
energy can be split into internal and external energy terms:
Π = Π int + Πext. The former is determined solely by the
properties of the material, and the latter comes from the
boundaries where external forces are applied. We assume
that myocardial tissue behaves like an incompressible hyper-
elastic material, where the internal strain energy can be
represented as the sum of the total passive (Wp) and active
(Wa) strain energies of the body and an incompressibility
penalty:

Π int(v, q) =
�

Ω0

�
Wp(v) + Wa(v) + q(Jv − 1)

�
dX . (3)

Jv = det(Fv) is the determinant of the deformation gradient
tensor for a deformation v: Fv = ∇Xv + I .

The constitutive laws defining the strain energy func-
tions are usually derived from experimental data on material

response to different loading conditions. It is established that
the passive stress–strain relationship for the myocardium is
highly nonlinear (Nash and Hunter 2001), and several laws
have been used to model such behaviour (Costa et al. 2001;
Guccione et al. 1995; Holzapfel and Ogden 2009). A good
combination of model fidelity and parameter identifiability in
estimation based on 3D tagged data is observed in the reduced
form (Hadjicharalambous et al. 2014b) of the Holzapfel–
Ogden law (Holzapfel and Ogden 2009):

Wp(v) = a
2b

�
eb(ICv −3) − 1

�
+ a f

2b f

�
eb f (ICv, f −1)2 − 1

�
,

(4)

where a, a f , b and b f are constant parameters, ICv = Cv : I
is the first invariant of the right Cauchy-Green deformation
tensor Cv = FT

v Fv , and ICv, f = Cv : ( f ⊗ f ) with f
denoting the myocardial fibre direction at a specific point in
the domain. The values of the exponents are not estimated,
but instead fixed at b = b f = 5, ensuring good agreement of
the diastolic pressure–volume curve with the experimentally
derived Klotz curve (Hadjicharalambous et al. 2014b; Klotz
et al. 2006).

Similarly, a number of constitutive laws can be used to
model active behaviour of the myocardium (Chapelle et al.
2012; Kerckhoffs et al. 2003; Niederer et al. 2011). We
sought to employ a simple version of these laws that would
limit parameter uncertainties. Prescribing a single time-
dependent active tension α(t) over the whole myocardium
led to non-physiological contractile behaviour of the model,
but incorporating the effect of cell length dependence φiso,
as described in Kerckhoffs et al. (2003), allowed us to
resolve the abnormality while keeping the model sufficiently
simple:

Wa(v) = α(t)φiso(Cv, f ). (5)

2.1.3 Boundary conditions

Any external loading affecting the system can be incorpo-
rated into the model using the Lagrange multiplier method
(Babuska 1973), with individual multipliers representing
pressures on each of the boundaries. We can prescribe bound-
ary conditions on the endocardium and the base of the left
ventricle, so that Πext = Πext

endo + Πext
base. The full Lagrange

multiplier vector combines the endocardial and the base com-
ponents: � = (λendo, �base).

The endocardial energy term penalises deviations of the
model from given LV cavity volumes:

Πext
endo = λendo

�
V (t) − V data(t)

�
, (6)
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where V (t) is the volume of the cavity computed from model
displacements v (Asner et al. 2015), and V data(t) the vol-
ume computed from 3D tagged data, both at a given time t
in the cycle. While it is common to drive cardiac mechan-
ics models with cavity pressures (Nash and Hunter 2001;
Wang et al. 2009; Xi et al. 2013), measuring these pressures
non-invasively over the cardiac cycle is currently impossi-
ble. At the same time, cavity volumes can be easily derived
from the time-resolved images. A volume-driven model
can therefore be more easily personalised using routinely
acquired patient data. Alternatively, a lumped parameter
model can be coupled into the system in order to drive the
cardiac cycle (Sainte-Marie et al. 2006; Kerckhoffs et al.
2007; Krishnamurthy et al. 2013). However, any such model
requires additional personalisation based on the data that
are already available, which is complicated by the 3D–0D
coupling.

The base energy term penalises deviations of the model
from given displacements at the base of the ventricle:

Πext
base =

�

Γ base
0

�base ·
	

v − ubase − 1

2
K b�base



dX, (7)

where �base ∈ R3, ubase are the deformations extracted
from the images, and K b the penalty matrix. By choosing
K b = ε(I − nb(t) ⊗ nb(t)) with 0 < ε � 1, where nb(t)
is the normal vector to the base plane at time t , we enforce
strict adherence to ubase in the nb(t) direction and relaxed
adherence in the base plane controlled by ε. A weak Dirich-
let condition on the base can be applied by setting ε = 0.

2.1.4 Finite element discretisation

A standard Galerkin finite element method is employed to
find a numerical solution to Eq. (2), as described in Asner
et al. (2015), Hadjicharalambous et al. (2014a) and Nash
and Hunter (2001). The domain is discretised to produce a
computational mesh Ωh , and the spaces in the weak form are
substituted for their discrete counterparts:

D(uh ,ph ,�h)Π(uh, ph, �h)[vh, qh, µh] = 0 (8)

for any (vh, qh, µh)(t) ∈ Xh × Y h × Λh at a given t =
tn, n = 0, . . . , N with 0 ≤ t0 < t1 < · · · < tN . The
discrete spaces are quadratic for displacements and linear
for pressures in all tests to preserve stability in the mixed
formulation.

The combination of the governing equations, constitutive
relations and boundary conditions fully defines the cardiac
mechanics model used in this work, with the finite element
method providing a practical tool to solve the model equa-
tions. Personalisation of this model relies on a non-invasively
acquired dataset, which is described below.

2.2 Non-invasive datasets

For a given set of patient-specific parameter values a, a f and
α(t) the data required for simulating cardiac mechanics using
the above model includes the following:

1. reference geometry Ω0,
2. fibre orientations f ,
3. LV cavity volumes over the cycle V data(t),
4. displacements of the LV base plane ubase.

The estimation of a, a f and α(t) relies on additional
information:

5. local displacements throughout the entire LV and
6. LV cavity pressure estimates: a single value or a full-cycle

trace, as discussed below.

Obtaining the reference geometry from image data is a
non-trivial task, since the myocardium is not observed in
its unloaded state during the cardiac cycle. In practice, end-
systolic (Wang et al. 2009) and early (Mojsejenko et al.
2014; Xi et al. 2013), or even end-diastolic (Dokos et al.
2002) geometries have been used as reference for simula-
tion purposes. The LV cavity volume at end systole and
early diastole is normally close to the refence volume esti-
mates. Moreover, passive parameter estimates were shown to
be minimally affected by changing the reference state from
end-systolic to early-diastolic geometries in an idealised LV
in Hadjicharalambous et al. (2014b). At the same time, the
effect of selecting the reference as an early-diastolic motion
state, where the myocardium is known to experience residual
active tension, needs to be quantified.

An alternative approach to obtaining the reference state
is the solution of an inverse mechanics problem (Krishna-
murthy et al. 2013; Xi et al. 2014). However, any such model
is directly dependent on the values of material parameters
estimated in the forward problem, as well as the boundary
tractions, and it is not clear that the coupled problem is well
posed. We investigated the potential for joint estimation of
passive parameters and the reference state in “Appendix 1”
and were unable to obtain satisfactory results for the available
dataset. The observed lack of identifiability was indicative of
strong coupling between the estimated values.

In the present pipeline, the end-systolic geometry was used
as the reference state, ensuring consistent selection of the
reference state between cases and balancing the accuracy of
approximation with resulting parameter identifiability.

A commonly used linear fibre angle distribution between
60◦ on the endocardial and −60◦ on the epicardial surface
(Spotnitz 2000; Streeter et al. 1969) was used in the model. In
practice, it is possible to generate personalised fibres based on
diffusion tensor MRI data (Rohmer et al. 2006; Nagler et al.
2013; Stoeck et al. 2014; Toussaint et al. 2013). However, at
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the moment scan duration as well as spatial resolution and
accuracy of the acquired data is still prohibitive for clinical
use.

The reference displacements of the computational mesh
through the cardiac cycle were obtained by tracking the
motion of the myocardium in 3D tagged images. The
process is based on a non-rigid registration algorithm (Chan-
drashekara et al. 2004; Rueckert et al. 1999; Shi et al. 2012,
2013) and carried out with the Image Registration Toolkit1

(IRTK). The tracking procedure provides a transformation
for each voxel of the image. This can be applied to the vertices
of a computational mesh positioned in the physical coordi-
nates, producing the deformed states at the time points in the
cardiac cycle where 3D tagged frames were available.

As discussed above, the model is driven by LV cavity
volumes, since the corresponding pressure curve cannot be
measured non-invasively. The volumes can be computed with
reasonable accuracy for each deformed state of the compu-
tational mesh, and the pressures λendo are then computed in
the simulations. Due to the linear nature of the chosen para-
metrisation, scaling all of a, a f and α(t) by a constant factor
does not affect the displacements, and scales the pressures
λendo and p by the same factor. In order to recover the cor-
rect absolute values of pressures and parameters, we can use
a single known cavity pressure at a specific time point in
the cardiac cycle. An example would be the peak systolic
LV pressure (SP) estimated from cuff measurements using a
Centron cBP301 device, which transforms acquired periph-
eral pressures to compute central pressures (Brett et al. 2012).
In systole, when the aortic valve is open, the central pressure
estimate can be used as an accurate LV pressure estimate.
Alternatively, an end-diastolic pressure (EDP) estimate can
be obtained from the E/Ea ratio (Nagueh et al. 1997, 2009).
E is the peak early-diastolic flow velocity through the mitral
plane and can be measured in phase contrast MR sequences.
Ea (sometimes denoted by E ′, or e′) is the early-diastolic
velocity of the mitral annulus on the lateral side of the base
and can be computed using the tracked motion of the mesh.

Moreover, both the EDP and the SP estimates, along with
the timings of mitral and aortic valve opening and closing,
can be used to generate a full-cycle patient-specific LV pres-
sure curve from a normalised trace obtained in Russell et al.
(2012), shown to be consistent across a range of cardiac
disorders. Even though the accuracy of such pressure data,
and hence its use as a driving force in the model, is limited
(compared to the accuracy of image-derived cavity volumes),
matching pressures along with displacements in the active
estimation process proves beneficial (see Sect. 4).

The types of clinical data used in the simulation and esti-
mation process in the in vivo tests in Sect. 3.2 were:

1 http://www.doc.ic.ac.uk/~dr/software/.

1. short-axis cine to produce the computational mesh,
2. 3D tags to extract mesh deformations,
3. pressure cuff measurement to estimate the SP,
4. mitral flow velocity to estimate the EDP.

The datasets were acquired as part of the BHF New
Horizons project Integrated Mathematical Modelling and
Imaging for Dilated Cardiomyopathy (DCM). Specifically,
we processed one dataset from a healthy volunteer and two
datasets from patients being treated for moderate DCM-
related heart failure. The cine, 3D tagged and flow images
were acquired on a 1.5T Philips Achieva system with the
following specifications:

– cine bSSFP in retrospective ECG gating, spatial resolu-
tion 2 × 2 × 8 mm, temporal resolution ∼20 ms, FOV
350 × 350 mm.

– 3D tagged MRI in prospective ECG triggering, spa-
tial resolution 3.4 × 7.7 × 7.7 mm, temporal resolution
∼30 ms, FOV 100 × 100 × 100 mm, reconstructed inter-
polated image with spatial resolution 1 × 1 × 1 mm.

– 4D flow2 in prospective ECG triggering using an MRI
breathing navigator, spatial resolution 2.3×2.3×2.3 mm,
temporal resolution ∼35 ms, velocity encoding range
100–150 cm/s.

An end-diastolic LV mesh was created using the CGAL
library3 (The CGAL Project 2015) from a CardioViz3D4

(Toussaint et al. 2008) segmentation of the end-diastolic
frame of the short-axis cine image. The mesh was deformed
using the results of IRTK motion tracking (Shi et al. 2013)
from the 3D tagged image set covering the majority of the
cardiac cycle. The mesh with the lowest LV cavity volume
was used as the reference state for the simulations. The dis-
tances between the deformed meshes and this reference mesh
at all time steps served as reference displacement data.

The end-diastolic pressure was estimated using the E/Ea
ratio: λ0 = 1.9 + 1.24E/Ea (Nagueh et al. 1997), with the
peak early-diastolic flow velocity through the mitral plane
E estimated using GyroTools GTFlow software5 from 4D
flow images, and the early-diastolic velocity Ea computed
at the lateral side of the base from reference displacements
(assumed to be sufficiently close to the mitral annulus). The
peak systolic pressure was estimated from cuff measurements
using a Centron cBP301 device6 (Brett et al. 2012). The full-
cycle pressure curve was obtained by scaling the normalised

2 For the purposes of the present study, flow through mitral plane would
have been sufficient.
3 Computational Geometry Algorithms Library, http://www.cgal.org.
4 http://www-sop.inria.fr/asclepios/software/CardioViz3D.
5 http://www.gyrotools.com/products/gt-flow.html.
6 http://www.centrondiagnostics.com.
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pressure curve between λmax at maximum and λ0 at the time
corresponding to the first frame of the 3D tagged sequence.
The time scaling was based on valve events extracted from
the mesh volume curve, so as to obtain a physiological shape
of the reference P–V loop.

Building the personalised models for the described in vivo
datasets allows us to establish the potential applicability of
the pipeline to clinical data and the feasibility of interpreting
the estimated material parameters as characteristic of tissue
properties, and consequently cardiac health and disease.

2.3 In silico datasets

The evaluation of the proposed pipeline using typical clini-
cal datasets is the ultimate test of its applicability. However,
such evaluation is often obscured by variable data quality.
The lack of ground truth for most computed variables as
well as model parameters means that validation using med-
ical images is somewhat limited in scope. In silico testing,
whereby the datasets are generated using the model, pro-
vides a useful tool for bridging the gap between model and
clinical measurement. In this case, when all of the reference
parameters are known and the model has perfect fidelity, we
can investigate the accuracy of the estimation procedure as
well as its sensitivity, specifically the effects of noise in the
data and motion tracking errors on the quality of parameter
estimates.

An idealised left ventricle was modelled as an ellipsoid
cropped at an angle at the base, as shown in Fig. 1a. This
geometry can be easily generated for testing purposes and
provides a straightforward point for comparison. The ide-
alised fibre field was produced as described for the in vivo
datasets.

The displacement data were produced in three stages, as
illustrated in Fig. 2. First, we obtained clean displacements

(Fig. 2a) by running a full-cycle simulation using a given
volume curve with given reference parameters aref, aref

f and

a given active scaling function αref(t). The input data were
chosen so that the model produced physiological cavity pres-
sures, P–V loop and LV deformations. The mesh underwent
characteristic twist and shortening (Fig. 1d) in systole before
relaxing (Fig. 1e) and inflating (Fig. 1c) in diastole.

Second, random zero-mean uniform noise with a given
standard deviation was added to clean displacements to pro-
duce noisy displacements (Fig. 2b, c). The random nature
of the added noise means that its spatial distribution is not
in any way related to any local geometric features of the
mesh. This ensures that the symmetry of the idealised geom-
etry does not artificially improve parameter identifiability or
the accuracy of estimation. Third, we generated artificial 3D
tagged images (Fig. 2d–f) using clean and noisy displace-
ments and performed motion tracking as described above to
extract processed displacements from the images (Fig. 2g–i).

The full pressure curve was produced as simulation output
together with clean displacements.

2.4 Model personalisation process

The full-cycle estimation process is carried out via the fol-
lowing steps:

1. estimation of the passive parameter ratio from diastolic
displacements,

2. scaling the passive parameters and estimated pressures
using the reference EDP,

3. estimation of the active tension from a combination of
the displacements and LV cavity pressures through the
cycle.

Fig. 1 Idealised geometry in undeformed and deformed states through the cardiac cycle. a Reference geometry, b reference mesh, c end-diastolic
mesh, d mid-systolic mesh, e end-systolic mesh
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Fig. 2 Comparison of in silico datasets in mid-systole (long- and
short-axis views). The surfaces show the domain deformed using clean
displacement data, while the lines crossing the surfaces show the mesh
deformed using the six different datasets produced for testing: clean
unprocessed, unprocessed with noise at 10 and 20% standard devi-
ation, clean processed and processed noisy at 10 and 20% standard

deviation. Surface shading represents the distance between the clean
displacements and the displacement for each of the cases. a Clean,
b noisy, 10% std, c noisy, 20% std, d clean tags, e noisy tags, 10% std,
f noisy tags, 20% std, g processed clean, h processed noisy, 10% std,
i processed noisy, 20% std

The procedure is aimed at finding parameters that pro-
duce simulation results closest to the data, as measured by
objective functions J .

Let uref
n and λref

n , n = 0, . . . , N , be the reference displace-
ments and cavity pressures, respectively, n = 0 correspond-
ing to end diastole and nm to end systole.

Since the passive parameters a and a f are assumed to be
constant in time, the objective function in the passive stage
is defined as the relative total displacement error:

Jp[u] =

�

�����



N�

n=m+1

‖un − uref
n ‖2

N�

n=m+1

‖uref
n ‖2

�

�����
�

1/2

, (9)

with ‖ · ‖ the standard L2(Ω0)-norm. The effect of residual
active tension at the start of diastole is neglected due to our
inability to reliably deduce its presence in vivo. This assump-
tion can be corrected for based on active estimation: if the
active scaling is estimated at a significant positive value in
the initial diastolic frames, then the passive parameters can

be adjusted based on estimation in the remaining diastolic
frames (see Sect. 4).

As discussed above, in volume-driven simulations the
pressure solutions scale together with a and a f , so that dis-
placements alone do not identify both passive parameters,
only the ratio between them γ = a/a f . In practice, a fixed
value of asim

f can be used to find asim which minimises the

objective function.7 The correct absolute values of parame-
ters a and a f , as well as estimated cavity and myocardial
pressures λendo and p, are recovered by scaling the respec-
tive values used or computed in the simulations by the ratio
of the reference to the estimated EDP λref

0 /λsim
0 . In the cur-

rent procedure, this scaling will also be consistent with the
peak systolic pressure, since the personalised full-cycle pres-
sure curve is scaled to both the EDP and the SP. The correct
absolute values of the base pressure �base can be obtained by
running inflation with the correct absolute parameter values.

In the active stage, the parameter α is estimated through
time, or, more precisely, at times when displacement data

7 Near the minimum, the variation of Jp is slower in the a f direc-
tion than in the a direction (Hadjicharalambous et al. 2014b), and it is
therefore preferable to fix a f when estimating the passive parameter
ratio.
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