Citation for published version (APA):
A microwave-assisted multicomponent protocol for the synthesis of benzofuran-2-carboxamides

Paolo Vincetti, Anna Brianza, Nicolò Scalacci, Gabriele Costantino, Daniele Castagnolo, Marco Radi

PII: S0040-4039(16)30177-0
DOI: http://dx.doi.org/10.1016/j.tetlet.2016.02.068
Reference: TETL 47343

To appear in: Tetrahedron Letters

Received Date: 17 November 2015
Revised Date: 12 February 2016
Accepted Date: 17 February 2016

Please cite this article as: Vincetti, P., Brianza, A., Scalacci, N., Costantino, G., Castagnolo, D., Radi, M., A microwave-assisted multicomponent protocol for the synthesis of benzofuran-2-carboxamides, Tetrahedron Letters (2016), doi: http://dx.doi.org/10.1016/j.tetlet.2016.02.068

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A Microwave-Assisted Multicomponent Protocol for the Synthesis of Benzofuran-2-Carboxamides
Paolo Vincetti, Anna Brianza, Nicolò Scalacci, Gabriele Costantino, Daniele Castagnolo, and Marco Radi *
A microwave-assisted multicomponent protocol for the synthesis of benzofuran-2-carboxamides

Paolo Vincettia, Anna Brianzaa, Nicol\`o Scalaccib,c, Gabriele Costantinoa, Daniele Castagnolob,c and Marco Radia,*

a P4T Group, Universit\`a degli Studi di Parma, Dipartimento di Farmacia, Viale delle Scienze, 27/A, 43124 Parma, Italy
b Institute of Pharmaceutical Science, King’s College London, 150 Stamford Street, SE1 9NH London, United Kingdom
c Northumbria University Newcastle, Department of Applied Sciences, Ellison Place, NE1 8ST Newcastle upon Tyne, United Kingdom

* Corresponding author. Tel.: +39 0521 906080; fax: +39 0521 905006; e-mail: marco.radi@unipr.it

\begin{abstract}
A fast, versatile and practical microwave-assisted multicomponent protocol for the synthesis of substituted benzofuran-2-carboxamides has been developed. The present method proved to be effective on a series of commercially available amines, 2'-hydroxyacetophenones, aldehydes and benzonitriles and could be exploited in drug-discovery campaigns for the rapid identification of biologically active hit compounds.
\end{abstract}

2009 Elsevier Ltd. All rights reserved.

\textbf{Keywords:}
Multicomponent reaction
Benzofuran
Microwave
Combinatorial chemistry

\section*{Introduction}

The availability of rapid and versatile chemical approaches to produce highly functionalized molecules represents an essential medicinal chemistry tool for drug-discovery campaigns. Most of the new small molecule first-in-class drugs approved in the last 10 years came in fact from phenotypic screening of compound’s libraries rather than from targetted approaches.1 The exploration of the chemical space around a privileged scaffold (privileged diversity-oriented synthesis; pDOS) is therefore considered an efficient strategy to increase the molecular diversity and discover new chemical probes for drug discovery.2 Among the many privileged scaffold identified so far, benzofuran exhibits biological activity on a surprisingly high number of targets.3 It is present in numerous bioactive natural products, polymers and pharmaceuticals.4 Drugs containing benzofuran rings are in clinical use for the treatment of cardiac arrhythmias (Amiodarone, Dronedarone), urinary incontinence (Darifenacin), moderate Alzheimer disease (Galantamine), opioids overdose (Naloxone, Naltrexone), tuberculosis infections (Rifampicin, Rifapentin, Rifabutin), hypertension and heart failure (Saprisartan), jet-lag syndrome (Ramelteon).5 Benzofurans are reported active as plant growth regulators,6 insecticides,7 herbicides,8 anti-inflammatory,9 anticancer,10 antifungi,11 antibacterial,12 antimalarial13 and antiviral agents,14 MAO,15 TACE,16 aromatase,17 HDAC17 and GSK-3 inhibitors.18 Benzofuran represents also a privileged scaffold often found in

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{benzofuran.png}
\caption{Representative benzofuran-based bioactive compounds}
\end{figure}

GPCRs-targeting ligands, like Vilazodone (5-HT\textsubscript{1A} partial agonist) and antagonists on Endothelin (1),19 H\textsubscript{1} (2),20 Melatonin (3),21 Neurokinin-1 (4)22 and Adenosine A\textsubscript{2A} receptors (5)23 (Figure 1). Due to the extraordinary wide range of possible...
applications it is not surprising that many efforts have been directed at the development of convenient synthetic strategies. Common synthetic approaches to substituted benzo[1,2-b:4,3-b']furans include the modification of various arenes,23-25 with carbon-oxygen bond formation26-27 or through transition-metal catalysts.28-35 One of the most used synthetic strategies, is represented by a three step synthesis starting from amines 6 that are reacted with chloroacetyl chloride to give the chloroacetamide derivatives 7, which are used in the O-alkylation of α-hydroxy aryl ketones to give the intermediates 9 that are finally cyclized to benzo[1,2-b:4,3-b']furans 10. (Scheme 1).34

These methodologies, although somehow valuable, normally require multiple steps/purification and are often affected by drawbacks such as long reaction times, low versatility due to limited availability of the starting materials and, in some cases, the need for expensive transition metal-containing reactants.26,29 Such characteristics are not particularly suitable for libraries generation in hit/drug discovery campaigns: the ideal synthetic approach should be fast, versatile, time and step economic and should be suitable, as far as possible, for combinatorial and parallel chemistry applications.3 As a continuation of our interest in the development of microwave-assisted and multicomponent strategies for the synthesis of biologically active probes,36-38 we wanted to develop a new microwave-assisted procedure for the synthesis of substituted benzo[1,2-b:4,3-b']furans in a one-pot fashion, since an efficient multicomponent approach to the synthesis of the benzo[1,2-b:4,3-b']furans is still elusive. We report herein the first microwave-assisted one-pot three-component catalyst-free procedure for the synthesis of highly functionalized benzo[1,2-b:4,3-b']furans-2-carboxamides directly from commercially available building blocks in extremely short reaction times.

Results and Discussion

As reported in Scheme 1, the standard conditions for the synthesis of α-halogen carboxamides normally requires that α-halogenacetyl chloride and an amine react in a polar aprotic solvent (like DMF) or in an apolar solvent in presence of a base (usually NEt₃) at room temperature for hours.39-43 We tried to speed up the synthesis of 7a by microwave irradiation, heating 6a and chloroacetyl chloride at 100 °C in DMF; after 5 minutes the reaction was completed and the resulting product 7a was directly reacted with 2'-hydroxyacetophenone 8a under the reaction conditions reported by Xie et al. (Scheme 2).44 A complex reaction mixture was obtained and only traces of the product 10a (3%) were isolated. Different reaction conditions were then tested to optimize the above protocol, changing the temperatures (50-150 °C), base (NEt₃) and solvents (dioxane, THF, EtOH, DMF), but they all gave a mixture with many decomposition products and a low amount of the desired compound 10a (<5%).

Scheme 1. Reagents and conditions: i. K₂CO₃, DCM, 0 °C-rt; ii. K₂CO₃, MeCN, reflux; iii. Cs₂CO₃, DMF, 110 °C.

Figure 2. Hypothesized reaction mechanism.

As a practical observation, we noticed that at room temperature in dry DMF, without the addition of any base, the reaction between aniline 6a and α-chloroacetyl chloride was occurring even in the presence of the 2'-hydroxyacetophenone. At this point, due to the high reactivity of the involved intermediates, we decided to combine all the building blocks (aniline, α-chloroacetetyl chloride and 2'-hydroxyacetophenone) in a multicomponent fashion, using different solvents, bases, temperatures, and irradiation times (Table 1). As shown by the results summarized in Table 1, the desired benzofuran derivative 10a was already obtained at 80 °C after 5 minutes of irradiation (Table 1, Entry 1) and its yield was increased with longer reactions times (Table 1, Entries 2-3). Higher reaction temperatures, up to 140 °C, allowed to reduce the irradiation time and also to increase the yields (Table 1, Entries 4-6). However, rising the temperature over 140 °C caused substantial decomposition and reduced yield of 10a (Table 1, Entry 7). Using different solvents (EtOH, H₂O, THF, dioxane) (Table 1, Entry 9,10, 11, 12, 13) or a different base (K₂CO₃, EtN) (Table 1, Entry 8,10,14) caused a drastic drop in the yields.
In summary, the optimal reaction conditions for the microwave-assisted multicomponent synthesis of benzofuran-2-carboxamides required the addition of anilines, α-chloroacetyl chloride and 2'-hydroxyacetophenones at 0 °C in dry DMF and subsequent irradiation at 140 °C for 5 minutes, in presence of Cs2CO3 as a base (Table 1, Entry 6). To verify the versatility and efficiency of the optimized microwave-assisted multicomponent protocol, a series of commercially available 2'-hydroxyacetophenones (8a-d) or benzaldehyde (8e) or benzonitrile (8f), α-chloroacetyl chloride and amines (6a-j) were used as building blocks to quickly generate a small collection of functionalized benzofuran-2-carboxamides 10a-o (Table 2).

From the results reported in Table 2 it is possible to observe that electron-donating substituents on the α-hydroxyacetophenone ring (Entries 9-11) cause a drop of yield (products 10i-k) compared to unsubstituted 2'-hydroxyacetophenones (Entry 1, product 10a), probably because they deactivate the ketone moiety disfavoring the intramolecular cyclization. Salicylaldehyde (8e) or 2-hydroxybenzoinitritile (8f) can also be used in place of 2'-hydroxyacetophenones 8a-d, giving benzofuran-2-carboxamides (10n,o; Entries 14-15) with a different substituent in position C3 (R3 = H, NH2). Strong para electron-withdrawing groups on the aniline (Entries 4,6) led to low yields of the corresponding benzofurans 10d,f: this effect is probably due to a competing deprotonation of the NH-proton rather than the α-position of the amide intermediate 9 before heterocyclization. Mild para electron-donating substituents on the aniline slightly increase the reaction yields (Entry 5), while meta electron-withdrawing groups cause a drop in the yields (Entries 7-8). Strong electron-donating substituents cause an increase in the yields (Entry 12). Secondary amines are also well tolerated and gave the corresponding benzofuran-2-carboxamides in good yields (Entry 2). Aliphatic amines (e.g. morpholine) also gave the desired product 10m after a little longer reaction time (Entry 13).

| Table 1. Optimization of the multicomponent protocol |

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Base</th>
<th>Temp (°C)</th>
<th>Time (min)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>80</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>80</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>80</td>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>100</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>120</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>140</td>
<td>5</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>DMF</td>
<td>Cs2CO3</td>
<td>160</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>DMF</td>
<td>K2CO3</td>
<td>140</td>
<td>5</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>EtOH</td>
<td>K2CO3</td>
<td>140</td>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>EtOH</td>
<td>K2CO3</td>
<td>140</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>H2O</td>
<td>Cs2CO3</td>
<td>140</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>THF</td>
<td>Cs2CO3</td>
<td>140</td>
<td>5</td>
<td>17</td>
</tr>
<tr>
<td>13</td>
<td>Dioxane</td>
<td>Cs2CO3</td>
<td>140</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>DMF</td>
<td>NEt3</td>
<td>140</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>

*isolated yield

Conclusions

In conclusion we have developed a practical, versatile, fast and transition metal-free microwave-assisted multicomponent procedure for the synthesis of benzofuran-2-carboxamides starting from commercially available and cheap building blocks. This methodology allowed us to generate highly functionalized 3-alkylbenzofurans (Entries 1-13), 3-aminobenzofurans (Entry 15) and 3-unsubstituted benzofurans (Entry 14) in a short reaction time and acceptable yields. Further exploitation of the approach herein reported may allow to quickly generate libraries of substituted benzofurans for drug-discovery campaigns.

Acknowledgment

We are grateful to the University of Parma for financial support. We also thank the European Cooperation in Science and Technology for COST Action CM1207 GLISTEN.

Supplementary Material

Supplementary data (synthetic procedures, 1H and 13C NMR spectra) associated with this article can be found, in the online version, at
Highlights

- Microwave-assisted synthesis of highly functionalized benzofuran-2-carboxamides.
- Compounds are obtained in a one-pot multicomponent reaction after 5 minutes.
- A simple and versatile metal-free approach incorporating commercial synthons.