Deep Sensing for Space-Time Doubly Selective Channels: When a Primary User is Mobile and the Channel is Flat Rayleigh Fading

Bin Li, Jia Hou, Xiaofan Li, Yijiang Nan, A. Nallanathan, Senior Member IEEE, Chenglin Zhao

Abstract—The unrestrained mobility and dynamic spectrum sharing are considered as two key features of next-generation communications. In this paper, spectrum sensing in mobile scenarios is investigated, which faces still great challenges as both the mobile location of primary-user and fading channel will become time-variant. Such two uncertainties would arouse remarkable fluctuations in the strength of received signals, making most existing sensing schemes invalid. To cope with this exceptional difficulty, a novel paradigm, i.e. deep sensing, is designed, which estimates the time-dependent flat-fading gains and primary-user’s mobile positions jointly, at the same time of detecting its emission status. All three hidden states involved by the space-time doubly selective scenario are taken into accounts. A unified dynamic state-space model is established to characterize the dynamic behaviors of unknown states, in which the time-dependent flat fading is modeled as a stochastic discrete-state Markov chain. A Bayesian approach, premised on a formulation of random finite set, is suggested to recursively estimate primary-user’s unknown states accompanying two others link uncer...
For a space-time doubly selective scenario, one has to deal with a more complicated mixed detection and estimation problem. The principal challenge is that the detection process (of PU’s emission status) and the other estimation process (of two related link uncertainties) will be mutually interrupted. Unlike traditional joint estimation and detection problem, the RSS emitted by a PU will disappear randomly attributed to the dynamic switching of its occupancy status, making the acquisition of PU’s moving positions and time-dependent channels even tough. To be specific, an erroneous PU’s state will misguide the inference (or estimation) of its mobile positions accompanying the fading channels, which, in turns, will definitely harass the next round of detection. Most existing schemes, designed either for pure sensing or estimating problems, fail to take such coupling and transitive interruptions into account, which may become less attractive to the spectrum-location awareness application. For example, the Cramér-Rao bound of PU localization is studied [19], which, yet of theoretical significance, didn’t consider the incessant disappearance of PU’s RSS and time-dependent fading channels.

Spectrum sensing under time-dependent fading channels is firstly investigated in [13], where the fixed path-loss (i.e., with a non-mobile PU) is assumed. The sensing algorithm with a mobile PU is then studied [20], which, however, considers only a static Gaussian channel and may be impractical to many applications. In the face of more realistic time-dependent fading, existing schemes will be infeasible due to the further coupling interaction between two unknown link states. For example, a direct application of the method in [20] to the new scenario will lead to significant estimation errors, e.g., when localizing a mobile PU based on inaccurate fading channel, or vice versa. To the best of our knowledge, spectrum sensing, in the context of the space-time doubly selective channels, has not been virtually reported in the open literature. In the investigation, a general deep sensing (DS) framework is suggested for more challenging scenarios. To sum up, the main contributions are summarized to the following three-folds.

1. An extended DS paradigm is proposed for the mixed estimation of PU’s emission states and another two dynamic uncertainties. Differentiated from classical sensing schemes ignoring a mobile PU and the flat-fading effect [7]–[11], or existing localization techniques without considering PU’s switching states and time-variant channels [17], [18], the new framework will take thoroughly the destructive interruption from the PU’s incessant absence into the blind tracking of its positions and time-varying fading channels.

2. A general dynamic state-space model (DSM) is established to characterize the DS process in space-time doubly selective fading channels. In contrast to other traditional sensing formulations or localization models, in the new DSM the time-varying fading channels and PU’s moving positions are treated as two hidden states to be estimated, other than the unknown emission status of PU. The mutually interrupting relationship, as a consequence, will be fully embodied.

3. A recursive algorithm is designed to realize spectrum sensing under both the time-variant fading effect accompanying the PU’s mobility, which, unfortunately, seems to be beyond the capability of other existing schemes [7], [9]. The complex DS process, aiming to acquiring another two informative link uncertainties, is modeled as a Bernoulli random finite set (RFS). A Bayesian approach is then suggested, in which a sequential importance sampling (SIS) method is adopted. The non-analytical posterior densities are approximated numerically, and the PU’s state accompanying two link states are recursively derived. By updating the degree uncertainty, an adaptive horizon expanding (AHE) mechanism is further integrated, which could avoid the mis-tracking despite the incessant disappearance of PU’s signals.

The sensing performance, accompanying the estimation performance of two link uncertainties, are studied based on numerical simulations. It is shown that, no matter what the PU’s state is, both time-varying fading channels and PU’s mobile locations can be tracked. Based on the recovered two informative link states, the promising sensing performance can be achieved in space-time doubly selective fading channels.

The rest of the article is arranged as follows. In section II, a general DSM is formulated to characterize the spectrum-location awareness problem under time-dependent fading conditions. A recursive Bayesian algorithm is designed in section IV, which acquires PU’s emission states by inferring its locations and fading channels simultaneously. A promising AHE is also integrated to avoid the mis-tracking of a mobile PU.

Simulations are provided in Section V. Finally, we conclude this study in Section VI.

The notations used by this work are summarized as follows: the $n \times 1$ dimensional vector is denoted by $x_{n \times 1}$; the $M \times N$ matrix is $X_{M \times N}$; \mathcal{F} denotes a random finite set and $|\mathcal{F}|$ is its cardinality; $\mathbb{A}_{n_x}^n$ denotes a discrete state space of n_x dimensions; $\mathbb{R}^{n_x \times 1}$ is the real-valued space of n_x dimensions; \mathbb{N} is the 1-dimension integer space. $|x|_2^2 = \sum_n x^2(n)$ is the l_2-norm of vector x. $(\cdot)^T$ denotes the transpose. $x_{0:n} \triangleq$
\{x_0, x_1, x_2, \ldots, x_n\} \text{ is the variable trajectory till the } n \text{th time index. } E(\cdot) \text{ denotes the ensemble average, and } V(\cdot) \text{ is the variance.}

II. SYSTEM MODEL AND PROBLEM FORMULATION

For the spectrum-location awareness application, we consider a cooperative sensing scenario. It is assumed that the large-scale path-loss is determined by the geographic distance between a mobile PU and the \(r\)th SU, while the flat-fading is aroused by the superposition of independent reflections, as illustrated by Fig. 1. For simplicity, here R SU nodes are assumed to be located on a 2-D grid. The position of the \(r\)th SU node, denoted by \(x_{n,r} = [x_{n,r}^T, y_{n,r}^T]^T\), is known by the data-center (maybe an outdoor base-station or the indoor access-point) \textit{a priori}.

At the discrete time \(n\), the \(r\)th SU will obtain the local observation \(z_{n,r}\). All R SU nodes will then forward the observations toward to a data center, which will estimate the fading gains and PU’s emission status \(s_n\) accompanying its position \((x_n, y_n)\), relying on the received observation vector \(z_n = [z_{n,1}, z_{n,2}, \ldots, z_{n,R}]^T\).

A. Single Model

A new DSM is formulated to characterize the above spectrum-location awareness scenario, i.e.,

\[
\begin{align*}
 s_n &= S(s_{n-1}), \\
 \alpha_n &= A(\alpha_{n-1}), \\
 v_n &= V(v_{n-1}, u_{n,1}), \\
 \theta_n &= \Theta(v_{n-1}, u_{n,1}), \\
 l_n &= L(l_{n-1}, v_n, \theta_n), \\
 z_{n,r} &= Z(l_n, \alpha_n, s_n, w_{n,r}).
\end{align*}
\]

Here, (1)-(5) are referred to dynamic equations, while (6) accounts for the measurement equation.

1) The first dynamic function \(S(\cdot) : \mathbb{Z}^1 \mapsto \mathbb{Z}^1\), which is non-analytical and specified by a group of transitional probabilities, characterizes the stochastic switching of PU’s emission states \(s_n \in S = \{0, 1\} \subset \mathbb{Z}^1\) from the \((n-1)\)th to \(n\)th time slot.

2) The second dynamic function \(A(\cdot) : \mathbb{R}^{K \times 1} \mapsto \mathbb{R}^{K \times 1}\) depicts the transitions of fading channels \(\alpha_n = [\alpha_{n,1}, \alpha_{n,2}, \ldots, \alpha_{n,R}]^T\). Here, each fading gain \(\alpha_{n,r}\) is assumed to follow a discrete-states Markov chain (DSMC) of one order. Note that, this analysis will focus primarily on the multiplicative time-varying flat-fading, while the frequency-selective multipath effect is ignored.

3) Another two dynamic functions, \(V(\cdot) : \mathbb{R}^1 \mapsto \mathbb{R}^1\) and \(\Theta(\cdot) : \mathbb{R}^1 \mapsto \mathbb{R}^1\), specifies the random evolutions of PU’s moving speed \(v_n\) and orientation \(\theta_n\), which are driven respectively by two random noises \(u_{n,1}\) and \(u_{n,2}\).

4) The dynamic function \(L(\cdot) : \mathbb{R}^2 \mapsto \mathbb{R}^2\) gives the time variations of PU’s locations \(l_n = [x_n, y_n]^T\).

5) The measurement function \(Z(\cdot) : \mathbb{R}^M \mapsto \mathbb{R}^1\) describes the coupling relationship between three hidden states (i.e. \(s_n, \alpha_{n,r}\) and \(l_n\)) and the observation \(z_{n,r} \in \mathbb{R}^1\). The background noise of the \(m\)th sample of the \(n\)th slot, denoted by \(w_{n,m} \subset \mathbb{R}^1\), is assumed to be the independent and identically distributed (i.i.d) zero-mean additive white Gaussian noise (AWGN) with a variance \(\sigma_w^2\), i.e. \(w_{n,m} \sim \mathcal{N}(0, \sigma_w^2)\), which keeps independent of three hidden states (i.e. \(s_n, \alpha_{n,r}\) and \(l_n\)).

Without losing generality, we consider the sensing-transmission slot with a duration of \(T_f = 2\) ms. Assume the relative displacement of a PU device is about 0.008 m among two sensing-transmission slots, then its mobile speed will be \(v = 4\) m/s (e.g. a moving human). Taking the carrier frequency of \(f_c = 2.4\) GHz for example, the maximum Doppler frequency \(f_d = \frac{v \times f_c}{c}\) will be 32 Hz, where \(c = 3 \times 10^8\) m/s is the velocity of light. In this case, the static length of flat-fading channel is about \(L \sim \left[\frac{1}{T_f f_d}\right] = 15\). That is, the fading gain will remain temporarily unchanged in 15 successive sensing-transmission slots, while it may vary in the next L slots. For a smaller mobile speed, e.g. \(v = 1\) m/s, then the static length of flat-fading channel will be even longer, i.e. \(L \approx 62\).

In the following analysis, three assumptions are made to the established DSM.

(1) The PU’s emission state \(s_n\) is assumed to be quasi-static. If \(H_0\) corresponds to a hypothesis in the absence of PU’s signals and \(H_1\) accounts for the presence of PU, then either \(H_1\) or \(H_0\) will be unchanged during one sensing slot \(T_s\).

(2) The slowly varying fading channel is concerned. In this case, each fading gain \(\alpha_{n,r}\) will remain invariant during \(L\) successive slots, but it will changed in the next \(L\) slots. As shown, the static length \(L\) is practically related with the maximum Doppler shift \(f_d\), i.e. \(L T_f \approx 1/f_d\). Besides, it is assumed that \(R\) fading gains of different PU-SU links evolve independently.

(3) The PU is assumed to move slowly (e.g. \(v < 4\) m/s). Thus, the mobile position \(l_n = [x_n, y_n]^T\) will remain invariant within one sensing slot (recall a slot is very short, e.g. 2 ms). In other words, \(l_n\) is independent of different sample index \(m\) of the \(n\)th sensing slot.

Next, we will elaborate on each state/observation equation.

B. PU’s Emission States

The evolution of PU’s emission states is typically characterized by a two-state Markov transition process \(S = \{S_0, S_1\}\) [12], [22]. In practice, the dynamical transitions of PU’s states may keep invariant for a given application in all the time (or, at least, in a long period). So, the transitional probability matrix (TPM) of PU’s emission states is given by:

\[
\Pi = \begin{bmatrix}
(1 - p_s) & p_b \\
(1 - p_b) & p_s
\end{bmatrix},
\]

where the survival probability \(p_s\) is defined as:

\[
p_s := \Pr\{s_{n+1} = 1|s_n = 1\},
\]

and the birth probability \(p_b\) as:

\[
p_b := \Pr\{s_{n+1} = 1|s_n = 0\}.
\]

C. Time-varying Fading

The time-varying flat fading channel, as the common feature of next-generation communications enabling unrestrained mobility [3], [5], is taken into account. The transitional behavior
of time-correlated channel is modeled as a DSMC [12], [23], [25], which is shown to coincide with the dynamic nature of time-varying channel and also match existing statistical models (e.g. Clarke’s model) well [23], [25]. For simplicity, here an indecomposable DSMC is studied.

For the non-coherent RSS observation, it is noteworthy that the channel phase will be insignificant to the DS process [12], (e.g. Clarke’s model) well [23], [25]. For simplicity, here an time-varying channel and also match existing statistical models [25], which is shown to coincide with the dynamic nature of time-correlated channel is modeled as a DSMC [12], [23], [25]. Thus, the time-varying fading channel will be rep-

\[V_r = \{ (v_{0,r}, v_{1,r}), (v_{1,r}, v_{2,r}), \ldots, (v_{K-1,r}, v_{K,r}) \} \]

Thus, the time-varying fading channel will be represented by a group of discrete states, i.e. \(A_r = \{ A_{1,r}, A_{2,r}, \ldots, A_{K,r} \} \). Each gain \(\alpha_{n,r} = A_{k,r} \in A_r \), \(k \in [0, 1, \ldots, K-1] \) is viewed as the output of a specific DSMC [25]. The stationarity probability of the \(r \)th fading gain is denoted by \(\rho_r = [\rho_{0,r}, \rho_{1,r}, \ldots, \rho_{K-1,r}]^T \) with \(\rho_{k,r} \geq \Pr(\alpha_{n,r} = A_{k,r}) \). Then, we have \(\textbf{P}_r \rho_r = \textbf{P}_r \) for the assumed indecomposable DSMC, where \(\textbf{P}_{K \times K,r} = \{ \rho_{k_1 \rightarrow k_2,r}, k_1, k_2 \in [0, 1, \ldots, K-1] \} \) denotes the TPM of fading gains and each element \(\rho_{k_1 \rightarrow k_2,r} \) specifies the transitional probability from the state \(k_1 \) at time \(n-1 \) to the state \(k_2 \) at time \(n \).

\[\rho_{k_1 \rightarrow k_2,r} = \Pr(\alpha_{n',r} = A_{k_2,r} | \alpha_{n'-1,r} = A_{k_1,r}) \]

In practice, the above transitional probabilities are usually ergodic and stationary [12], [23], [26]. That means the prior densities \(\rho_{k_1 \rightarrow k_2,r} \) are independent of the transitional time \(n' = [n/L] \) of fading channels.

Suppose the statistical PDF of the Rayleigh fading is denoted by \(f(\alpha) \), then the steady probabilities of the fading gain \(\alpha_{n,r} \) residing in the \(k \)th region (i.e. \(\textbf{A}_k \)) are:

\[\rho_{k,r} = \int_{v_{k,r}}^{v_{k+1,r}} f(\alpha_{n,r}) d\alpha_{n,r}, \]

\[A_{k,r} = \frac{1}{\rho_{k,r}} \int_{v_{k,r}}^{v_{k+1,r}} \rho_{k,r} f(\alpha_{n,r}) d\alpha_{n,r}. \]

With an equiprobable partition rule, i.e. \(\rho_{k,r} = 1/K, \) the partitioning bounds will be derived via \(v_{k,r} = -2\sigma^2 \times \ln(1-k/K) \) [23]. So, \(\rho_{k_1 \rightarrow k_2,r} \) is evaluated via:

\[\rho_{k_1 \rightarrow k_2,r} = \Pr(\alpha_{n',r} \in [v_{k_1,r}, v_{k_1+1,r}]) | \alpha_{n'-1,r} \in [v_{k_2,r}, v_{k_2+1,r}] \]

\[= \frac{1}{\rho_{k,r}} \int_{v_{k_1,r}}^{v_{k_1+1,r}} f(\alpha_{n'-1,r}, \alpha_{n',r}) d\alpha_{n'-1,r} d\alpha_{n',r}, \]

where \(f(\alpha_{n'-1,r}, \alpha_{n',r}) \) is the bi-variate Rayleigh joint PDF [26].

For simplicity, the 1st-order DSMC is assumed, which is proven to be applicable in most slowly varying flat-fading environments [25]. The current fading state, accordingly, will keep independent of all other past and future fading states with a standoff distance larger than 1, i.e., \(\rho_{k_1 \rightarrow k_2,r} = 0 \) for \(|k_1 - k_2| > 1 \). Thus, the TPM \(\textbf{P}_{K \times K,r} \) of DSMC is simplified to a tridiagonal matrix, i.e., the nonzero elements exist only on the main diagonal and the first diagonal below/above this main diagonal.

For convenience, \(R \) PU-SU links are homogeneous and the fading properties will be the same, i.e., \(\textbf{P}_{K \times K,r} = \textbf{P}_{K \times K} \), and then the sub-script \(r \) may be dropped from the above transitional probabilities. In practice, the transitional probabilities \(\rho_{k_1 \rightarrow k_2} \) will be evaluated by a numerical method [23], [25] premised on the level crossing rate (LCR) \(N_k \), which accounts for the number of times per second that the fading amplitude crosses \(v_k \) in a downward direction. For the assumed Rayleigh fading, we have:

\[N_k = \frac{\sqrt{2\pi} f_D v_k}{\sigma} \times \exp \left(-\frac{v_k^2}{\sigma^2} \right). \]

Relying on the conception of LCR, the transitional probabilities will be approximated by \(\rho_{k_1 \rightarrow k_2} \simeq N_{k_2}/R_{k_1} \). Here, \(R_{k_1} = \rho_{k_1}/T_F \) is the average number of sensing slots per second in the state \(k_1 \), and \(T_F > T_s \) denotes the duration of the sensing-transmitting slot.

D. PU’s Locations

A flexible mobility formulation, i.e., the Gauss-Markov mobility (GMM) model, is studied, which has been widely used in mobile ad-hoc networks [27], [28]. A similar parametric model may be adapted for mobile cellular scenarios [28]. The parameters would be extracted from various application scenarios, e.g. indoor/outdoor, human/vehicle.

Given the updated PU’s speed and orientation, the dynamic positions \(\textbf{I}_n \) will be evolved randomly according to:

\[\textbf{I}_n = \textbf{I}_{n-1} + \Delta(v_n, \theta_n) \]

\[= [x_{n-1}, y_{n-1}]^T + v_n \times [\cos(\theta_n), \sin(\theta_n)]^T, \]

where \(x_n \) and \(y_n \) denote the horizon and vertical positions of a mobile PU at the \(n \)th discrete time.

In order to fully characterize the mobility displacement \(\Delta(v_n, \theta_n) \), the dynamic behaviors of both PU’s moving speed and orientation are assumed to follow the random walking (or Brownian motion). That is, given the speed \(v_{n-1} \) and the moving orientation \(\theta_{n-1} \) of the previous \((n-1) \)th discrete time, then these two random states of time \(n \) will be derived by:

\[v_n = v_{n-1} + u_{n,1}, \quad u_{n,1} \sim \mathcal{N}(0, \sigma^2_v), \]

\[\theta_n = \theta_{n-1} + u_{n,2}, \quad u_{n,2} \sim \mathcal{E}(0, \sigma^2_\theta), \]

where \(\sigma^2_v \) and \(\sigma^2_\theta \) denote two random variances of PU’s speed and orientation, respectively. In the above GMM model, a Gaussian random noise, i.e. \(u_{n,1} \sim \mathcal{N}(0, \sigma^2_v) \), serves as the driven-input of speed; whilst the other exponential noise \(u_{n,2} \sim \mathcal{E}(0, \sigma^2_\theta) \) is adopted as the orientation driven-input. Note that, in practice, however the estimation scheme will be adapted of specific GMM models.
E. Observations

As mentioned, the RSS-based observation is considered, which is easy to implement and, therefore, has been widely suggested [7]–[10], [12]. Traditionally, the sensing procedure is formulated as a two-hypothesis problem:

\[z_{n,r} \triangleq \sum_{m=1}^{M} \left[\alpha_{n,r} \sqrt{E_s b_n(m)} d_{n,r}^{-\epsilon/2} \delta(s_n - S_1) + w_n(m) \right]^2 \]

\[= \begin{cases} \sum_{m=1}^{M} w_n^2(m), & H_0, \text{(18a)} \\ \sum_{m=1}^{M} \left[\alpha_{n,r} \sqrt{E_s b_n(m)} d_{n,r}^{-\epsilon/2} + w_n(m) \right]^2, & H_1, \text{(18b)} \end{cases} \]

where \(z_{n,r} \) represents the RSS of the \(n \)th time from the \(r \)th SU device; \(d_{n,r} = \| I_n - I_r^{SU} \|_2 = \sqrt{(x_n - x_r)^2 + (y_n - y_r)^2} \) denotes the geographic distance between the \(r \)th SU and the PU; \(\epsilon \) is the attenuation constant which is typically larger than 2 and \(d_{n,r} \) thereby gives the path-loss; \(\alpha_{n,r} \) is the fading gain of the \(r \)th SU; \(M \) denotes the samples size. \(b_{n,m} \) represent PU’s information symbols. For simplicity, the real-valued binary phase shift keying (BPSK) signal is assumed, e.g., \(b_{n,m} \in B = \{ +1, -1 \} \). It is shown that, given the RSS-based non-coherent scheme, the generalization to unknown modulated signals (e.g., complex signals) is straightforward [12], [13].

Conditioned on the PU’s state \(s_n \) and two others link states, i.e., the geographic distances \(d_{n,r} \) and the fading gains \(\alpha_{n,r} \), the likelihood function \(\varphi(z_{n,r}|d_{n,r}, \alpha_{n,r}, s_n) \) follows the central chi-square distribution with the degrees of freedom (DoF) of \(M \) under \(H_0 \), and a non-central chi-square distribution with \(M \) degrees under \(H_1 \). The non-central parameter is \(\theta_{n,r} = \sum_{m=1}^{M} \alpha_{n,r} d_{n,r}^{-\epsilon/2} \sigma_w^2 \), where \(\sigma_w^2 = \text{E}(b_{n,m}^2) \triangleq E_s \).

For the i.i.d noise, the likelihoods are approximated by the Gaussian distributions according to the central limit theorem (CLT), when the sample size \(M \) is large (e.g. \(M \geq 50 \)), i.e.,

\[\varphi(z_{n|I_n}, \alpha_n, s_n = 1) = \prod_{r=1}^{R} p(z_{n,r}|d_{n,r}, \alpha_{n,r}, s_n = 1) \]

\[\sim \prod_{r=1}^{R} \mathcal{N}(E(z_{n,r}|I_n, \alpha_{n,r}, s_n = 1), \sigma_{n,r}^2), \quad (19) \]

\[\varphi(z_{n|I_n}, \alpha_n, s_n = 0) = \prod_{r=1}^{R} p(z_{n,r}|s_n = 0) \]

\[\sim \prod_{r=1}^{R} \mathcal{N}(E(z_{n,r}|s_n = 0), \sigma_{n,r}^2), \quad (20) \]

where the means and variances are:

\[E(z_{n,r}|I_n, \alpha_{n,r}, s_n = 1) = M \times \left(E_s \alpha_{n,r}^2 / d_{n,r}^{-\epsilon} + \sigma_w^2 \right) \]

\[V(z_{n,r}|I_n, \alpha_{n,r}, s_n = 1) = M \times \left(E_s \alpha_{n,r}^2 / d_{n,r}^{-\epsilon} + 4 \sigma_w^2 \right) \]

\[E(z_{n,r}|s_n = 0) = M \times \sigma_w^2 \]

\[V(z_{n,r}|s_n = 0) = 4M \times \sigma_w^4 \]

III. DEEP SENSING

A. MAP Estimation

Without taking additional link uncertainties, e.g., unknown PU’s positions and dynamic fading channels, traditionally the spectrum sensing is realized via the well-known Neyman-Pearson (NP) criterion [7]–[11], [29]. In the investigation, a novel Bayesian inference approach is designed, which, in contrast, acquires both PU’s unknown emission states and its moving positions accompanying time-correlated fading gains.

Based on the formulated DSM, the maximum a posteriori (MAP) criterion is applied. That is, the hidden states are estimated by maximizing the joint posterior density, i.e.,

\[(\hat{l}_n, \hat{\alpha}_n, \hat{s}_n) = \arg \max_{l_n \in \mathbb{R}^2, \alpha_n \in \mathbb{R}, s_n \in S} p(l_{1:n}, \alpha_{1:n}, s_{1:n}|z_{1:n}), \]

\[(21) \]

where \(s_{1:n} \triangleq \{ s_1, \cdots, s_n \} \) denotes the trajectory of PU’s emission states until the \(n \)th time slot. Similarly, \(l_{1:n}, \alpha_{1:n} \) and \(z_{1:n} \) denote three trajectories of PU’s positions, time-varying fading gains and RSS observations, respectively.

For convenience, the hidden states are represented by a single state-vector, i.e., \(S_n \triangleq \{ s_n, l_n, \alpha_n \} \in \mathbb{Z}^4 \times \mathbb{R}^2 \times \mathbb{R}^{R+3} \). In order to derive the posterior density sequentially, a two-step Bayesian scheme [30], i.e., first predicting and then updating, is suggested, see Eqs. (22)–(23).

\[p_n|n−1(S_n|z_{1:n−1}) = \int_{S_{n−1}|n−1 \in \mathbb{R}^{R+3}} \phi_n|n−1(S_n|S_{n−1})p_{n−1|n−1}(S_{n−1}|z_{1:n−1})dS_{n−1}, \]

\[(22) \]

\[p_n|n(S_n|z_{1:n}) = \frac{\varphi_n(z_n|S_n)p_{n|n−1}(S_n|z_{1:n−1})}{\int_{S_{n−1}|n \in \mathbb{R}^{R+3}} \varphi_n(z_n|S_n)p_{n−1|n−1}(S_{n−1}|z_{1:n−1})dS_{n−1}}. \]

\[(23) \]

Here, \(p_n|n−1(S_{n−1}|z_{1:n−1}) \) denotes the a posteriori density of the time \(n−1 \). The initial distribution \(p(S_0) \) is assumed to be known as a priori. The one-step prediction \(p_{n|n−1}(S_n|z_{1:n−1}) \), as in eq. (22), is obtained via the Chapman-Kolmogorov equation. Then, the updated posterior density, as in (23), is recursively computed on new measurements \(z_n \) via the Bayesian rule.

Although providing a conceptional framework of statistical inference, the existing Bayesian approach of Eqs. (23)–(24) may be infeasible in the mixed sensing and positioning problem. This is attributed to the mutual interruptions between the detecting of PU emission states and the tracking of two link uncertainties. 1) In dynamic CR scenarios, as indicated, the PU’s emission signals will be disappearing incessantly. Both the dynamic distance \(d_{n,r} \) and fading gains \(\alpha_{n,r} \) will vanish from the observation \(z_{n,r} \) when a PU turns off (i.e., \(H_0 \)), leading to the likelihood dispersion problem which renders the Bayesian estimation/inference (of either PU’s positions or time-varying fading channels) a very tough work. 2) Without deterministic PU’s positions and fading gains, the detection of PU states, as a coupling result, may be also erroneous due to the resulting uncertainties.
B. Bernoulli Random Finite Set

With a mixed objective of simultaneous detection and estimation, traditional formulations (i.e., two hypothesis-test) may become inadequate in the context of DS. In this analysis, the dynamic behavior of all hidden states \(s_n, l_n \) and \(\alpha_n \) will be characterized by one unified random process \(\mathcal{F} \), i.e. RFS [31]-[33].

1) Cardinality of RFS: An RFS is a special set containing many random variables, and its cardinality (i.e. the number of variables) will change also with time [32]. For an RFS, the random cardinality distribution \(\kappa(D) = P(\{\mathcal{F} = D\} | D \in \mathbb{N}) \) is usually vital. For the DS scenario with a mobile PU, the cardinality will be binary (i.e. \(D = 0 \) or \(D = 1 \)), indicating the absence or existence of PU’s signal. Thus, we have \(\{\mathcal{F}\} \in \{0,1\} \) and \(\kappa(D) \) is a Bernoulli distribution, i.e.,

\[
\kappa(D) = \begin{cases}
1 - q, & \text{if } |\mathcal{F}| = 0 \text{ or } H_0, \\
q, & \text{if } |\mathcal{F}| = 1 \text{ or } H_1.
\end{cases} \tag{24a}
\]

That is, the formulated Bernoulli RFS will either be empty in the event of \(H_1 \), i.e. \(\mathcal{F}_n = \varnothing \), or have a single element \(\mathcal{F}_n = \{l_n, \alpha_n\} \) in the case of \(H_1 \). From eq. (24), the prior probabilities of two events are given by \(1 - q \) and \(q \), respectively. In the presence of PU’s signal, i.e. \(|\mathcal{F}_n| = 1 \), the associative random state is \(\{l_n, \alpha_n\} \in \mathbb{R}^2 \times \mathcal{A}^R \in \mathbb{R}^{2+R} \).

2) PDF of RFS: According to the Mahler’s theorem [31], for a general RFS \(\mathcal{F}_n = D \) with a group of joint distributions \(p(x_1, \cdots, x_d) (x_D \in \mathbb{R}^{2+R}) \), a statistical PDF is defined as:

\[
p(\mathcal{F}_n = \{x_1, \cdots, x_D\}) = D!\kappa(D)p(x_1, \cdots, x_D). \tag{25}\]

Obviously, \(p(\mathcal{F}_n) \) can be treated as a PDF, as the set integration on \(\mathcal{F}_n \) (note that rather than the distribution marginalization) results in \(\int_{\mathcal{F}_n} p(\mathcal{F}_n) \delta \mathcal{F}_n = 1 \).

As seen, the state associated with the active PU, i.e. \(|\mathcal{F}_n| = D = 1 \), will involve two terms, i.e. the PU’s moving position \(l_n \) and the time-varying fading state \(\alpha_n \). Replacing Eq. (24) into Eq. (25), the FISST PDF will be re-formatted as:

\[
p(\mathcal{F}_n) = \begin{cases}
1 - q, & \text{if } \mathcal{F}_n = \varnothing, \\
q \times p_n(\{l_n, \alpha_n\}), & \text{if } |\mathcal{F}_n| = 1.
\end{cases} \tag{26a}
\]

It is noteworthy that, for this Bernoulli RFS, we have \(p(\mathcal{F}_n) = 0 \) if the cardinality \(D \) is larger than 1.

3) Dynamics of RFS: It follows from Eqs. (11) and (15) that, involving two independent hidden sub-states \(l_n \) and \(\alpha_n \), the RFS \(\mathcal{F}_n \) follows a 1st-order Markov process and the prior transitional probabilities are given by:

\[
\phi_{n|n-1}(\mathcal{F}_n|\varnothing) = \begin{cases}
1 - p_b, & \text{if } \mathcal{F}_n = \varnothing, \\
p_b\varphi_{n|n-1}(l_n, \alpha_n), & \text{if } \mathcal{F}_n = \{l_n, \alpha_n\},
\end{cases} \tag{27a}
\]

and

\[
\phi_{n|n-1}(\mathcal{F}_n|l_n, \alpha_n) = \begin{cases}
1 - p_s, & \text{if } \mathcal{F}_n = \varnothing, \\
p_s\varphi_{n|n-1}(l_n, \alpha_n|l_{n-1}, \alpha_{n-1}), & \text{if } \mathcal{F}_n = \{l_n, \alpha_n\},
\end{cases} \tag{28a}
\]

respectively.

In Eq. (27-b), the birth density \(b_{n|n-1}(\{l_n, \alpha_n\}) \) specifies the initial distribution of a singleton state \(\{l_n, \alpha_n\} \) after the PU is re-emitted or re-appeared, i.e.,

\[
b_{n|n-1}(\{l_n, \alpha_n\}) = p_{n|n-1}(\{l_n, \alpha_n\}|q_n = 1, q_{n-1} = 0),
\]

which will be discussed in subsequent Section III-E-4. Another prior transitional probability in Eq. (28-b) is:

\[
\varphi_{n|n-1}(\{l_n, \alpha_n\}|l_{n-1}-1, \alpha_{n-1}) = \varphi_{n|n-1}(l_n|l_{n-1}) \times \varphi_{n|n-1}(\alpha_n|\alpha_{n-1}). \tag{29}
\]

Recall the previous Eqs. (15)-(17), the transitional density of PU’s mobile positions will be specified by:

\[
\varphi_{n|n-1}(l_n|l_{n-1}) = \frac{1}{\sqrt{2\pi\sigma_q}} \exp \left(-\frac{|l_n-l_{n-1}|^2}{2\sigma_q^2}\right) \times \frac{1}{\sqrt{2\pi\sigma_\theta}} \exp \left(-\frac{|\text{ang}(l_n)-\text{ang}(l_{n-1})|^2}{2\sigma_\theta^2}\right), \tag{30}
\]

where \(\text{ang}(\cdot) \) gives the angle of a displacement vector. The other prior transitional density in Eq. (29) is given by:

\[
\varphi_{n|n-1}(\alpha_n|\alpha_{n-1}) = \prod_{r=1}^{R} \rho_{k_1(n,r), k_2(n,r)}, \tag{31}
\]

where \(k_1(n,r) \in \{0,1,2,\cdots,K-1\} \) and \(k_2(n,r) \in \{0,1,2,\cdots,K-1\} \) denotes two indexes of the \(r \)th PU-SU link at time \(n \) under a constraint \(k_1(n,r) < k_2(n,r) \leq 1 \).

4) Estimations of RFS: It is seen from Eq. (26) that the FISST PDF \(p_{n|n}(\mathcal{F}_n|\mathbf{z}_{1:n}) \) depends primarily on two terms, i.e. the posterior density of PU’s existence (i.e. \(q_{n|n} \)) and the a posteriori spatial PDF of hidden link states \(\{l_n, \alpha_n\} \). Here, the posterior density of PU’s existence is:

\[
q_{n|n} = \Pr(|\mathcal{F}_n| = 1|\mathbf{z}_{1:n}), \tag{32}
\]

and the other posterior spatial PDF of \(\mathcal{F}_n = \{l_n, \alpha_n\} \) is:

\[
p_{n|n}(\mathcal{F}_n = \{l_n, \alpha_n\}) = \Pr(\{l_n, \alpha_n\}|\mathbf{z}_{1:n}). \tag{33}
\]

C. Bernoulli Filtering for BRFS

Relying on the formulated DSM and measurements \(\mathbf{z}_{1:n} \), the posterior densities of RFS will be estimated recursively. Given a priori transitional densities in Eqs. (29)-(30) and the likelihood densities of Eqs. (19)-(20), a generalized two-stage recursive scheme will be applied to derive the posterior distribution of \(\mathcal{F}_n \), i.e.,

\[
p_{n|n-1}(\mathcal{F}_n|\mathbf{z}_{1:n-1}) = \int_{\mathcal{F}_{n-1}} \phi_{n|n-1}(\mathcal{F}_n|\mathcal{F}_{n-1}) p_{n-1|n-1}(\mathcal{F}_{n-1}|\mathbf{z}_{1:n-1}) \delta \mathcal{F}_{n-1}, \tag{33}
\]

and

\[
p_{n|n}(\mathcal{F}_n|\mathbf{z}_{1:n}) = \frac{\phi_{n}(\mathbf{z}_n|\mathcal{F}_n) p_{n|n-1}(\mathcal{F}_n|\mathbf{z}_{1:n-1})}{\int_{\mathcal{F}_n} \phi_{n}(\mathbf{z}_n|\mathcal{F}_n) p_{n|n-1}(\mathcal{F}_n|\mathbf{z}_{1:n-1}) \delta \mathcal{F}_n}. \tag{34}
\]

A major difference between the above generalized estimation of RFS and traditional Bayesian inference in Eqs. (23)-(24) is that, rather than the distribution integration, here a set integration (i.e. \(\delta \mathcal{F}_n \)) will be taken [32]-[34].
1) Prediction stage: During the 1st stage, two predict densities, i.e. \(q_{n|n-1} \) and \(p_{n|n-1}(\{l_n, \alpha_{n-1}\}) \), are derived. One may refer to [32], [33] for details.

Remark 1. The predicted existence density and spatial density will be propagated via:

\[
q_{n|n-1} = p_b \times (1 - q_{n|n-1}) + p_s \times q_{n|n-1},
\]

and Eq. (36), respectively.

It is noteworthy that, from Eqs. (35) and (36), both the predicted existence density \(q_{n|n-1} \) and the spatial density \(p_{n|n-1}(\{l_n, \alpha_{n-1}\}) \) will contain two complementary terms, i.e. the birth component and the survival component. A logical evolution structure of these two predicted densities is illustrated by Fig. 2.

2) Update stage: During the 2nd stage, the above two predicted densities will be updated based on the new observation \(z_n \), see [32], [33].

Remark 2. The existence density \(q_{n|n} \) and the spatial density \(p_{n|n}(\{l_n, \alpha_n\}) \) are updated via:

\[
q_{n|n} = q_{n|n-1} \int_{z_n \in \mathbb{R}^2} r_n(z_n|l_n, \alpha_n) p_{n|n-1}(\{l_n, \alpha_n\}) d\alpha_n d\alpha_n
\]

\[
(1 - q_{n|n-1}) + \int_{z_n \in \mathbb{R}^2} r_n(z_n|l_n, \alpha_n) p_{n|n-1}(\{l_n, \alpha_n\}) d\alpha_n d\alpha_n
\]

and

\[
p_{n|n}(\{l_n, \alpha_n\}) = \frac{r_n(z_n|l_n, \alpha_n)p_{n|n-1}(\{l_n, \alpha_n\})}{\int r_n(z_n|l_n, \alpha_n)p_{n|n-1}(\{l_n, \alpha_n\}) d\alpha_n d\alpha_n},
\]

respectively. Here, the term \(r_n(z_n|l_n, \alpha_n) \) accounts for a ratio between the likelihoods of two hypothesis, i.e.,

\[
r_n(z_n|l_n, \alpha_n) \triangleq \varphi_n(z_n|l_n, \alpha_n) / \varphi_n(z_n|\emptyset).
\]

Based on the generalized Bayesian inference, the estimation of two posterior densities, i.e. the existence probability \(q_{n|n} \) and the spatial PDF \(p_{n|n}(\{l_n, \alpha_n\}) \), will be obtained.

D. Refinement Mechanisms

Considering the slowly-varying fading channel \(\alpha_n \) remain quasi-static in \(L \) successive slots, we further suggest two improving mechanisms to maximize the functioning of the recursive estimation scheme.

1) The first mechanism is referred to observation accumulation. As the fading state \(\alpha_n \) will be unchanged in a short period, after its transition has occurred at a switching time \(n' = \lfloor n/L \rfloor \), the innovation observations of the subsequent \(L \) slots will be used to promote the estimation accuracy of \(\alpha_n \). That is, in the time slot \(n = Ln' + l (0 < l < L) \), part of previous observations (i.e. in the case of \(s_n = 1 \)) will be cumulated, and a new observation is re-defined as:

\[
z_{n'+l,t,r} = z_{n',L,r} + \sum_{t=1}^{l} z_{n'+l,t,r}.
\]

Here, \(l \leq l \) accounts for the number of occurrences of PU’s active state (i.e. \(H_1 \)) in the previous \(l \) slots, i.e. \(n'/L, \cdots , n'/L + l \). As the summation of independent Gaussian variables (i.e. \(z_{n'+l,t,r} \) is also Gaussian distributed, the accumulated observation \(z_{n'+l,t,r} \) will also follow the Gaussian distributions, i.e.,

\[
\varphi(z_{n'+l,t,r}|s_n = 0) \sim \mathcal{N}(l_1 M \sigma_w^2, 4l_1 M \sigma_y^2),
\]

\[
\varphi(z_{n'+l,t,r}|s_n = 1) \sim \mathcal{N} \left(M \sum_{t=1}^{l_1} \left(\frac{E_s \sigma_n^2}{d_{n'+l,t,r}^2} + \sigma_w^2 \right) M \sum_{t=1}^{l_1} \left(\frac{E_s \sigma_n^2}{d_{n'+l,t,r}^2} + 4 \sigma_y^2 \right) \right)
\]

Note that, the accumulated observation and its likelihood are applied only to refine \(\alpha_n \) and \(s_n \), after deriving the PU’s position \(l_n \) and the rough estimations of \(\alpha_n \) and \(s_n \) premised on the current observation \(z_n \). The underlying principle of the accumulation mechanism is that, with more likelihood
information exploited, the estimation of fading gains α_n accompanying unknown PU states will be reinforced.

2) The second mechanism is referred to **homologous estimation**. The main motivation is that the predicting/updating procedure should be implemented in accordance with the quasi-static transitions of the fading states with a static length L. Different from the inference of classical RFS [32], [34], in the suggested scheme now the predicting and updating procedures utilize the previous densities $p_{n|n-1}^c L_n|L_{n-1}(\mathbf{x}_n^c L_{n-1})$ and $p_{n|L_n|L_{n-1}}(\alpha_n)$, respectively.

Conditioned on the accumulated observation in Eq. (39), it is supposed that the spatial distribution of the $(L n^t − 1)\text{th}$ time has probably become very accurate, after combining the former $1 < l < L$ historical observations. The predicting of fading states in Eq. (36), therefore, will rely on the spatial density of time $L (n^t − 1) + L − 1 = L n^t − 1$ other than the previous time $(n − 1)$, see Eq. (42). Here, the prior density can be further simplified to $\omega_{n|n-1}(\mathbf{y}_n^c | \mathbf{x}_{n-1}, \alpha_{n-1}) = \omega_{n|n-1}(\mathbf{y}_n^c | \mathbf{x}_{n-1}) \times \omega_{n|L_{n-1}^c}^c (\alpha_n | \alpha_{n-1}^c L_{n-1})$.

E. PF-based Implementation

Noted from Eq. (36) that the derivation of a predicted spatial density $p_{n|n-1}(\mathbf{x}_n | \mathbf{x}_{n-1}, \alpha_n)$ relies on the marginalization of continuous distributions. As far as the integration on the $(2 + R)$-dimensional density is concerned, the implementation will be computationally intractable. To cope with the difficulty, a numerical approach, i.e., the SIS based PF, is suggested to alleviate the complexity of Bayesian inference.

1) **PF**: In essence, PF belongs to a simulated numerical method, which approximates the complex distribution via a group of random discrete measures (i.e., particles) \mathbf{x}_n^i with the evolving probability masses (or weights) w_n^i ($i = 1, 2, \cdots, I$) [35], i.e., $p_n(x) \simeq \sum_{i=0}^{I} \delta (x - x_n^i) \times w_n^i$. Usually, PF consists of two steps. Firstly, a proposal density $\xi_n(\mathbf{x}_n^i | \mathbf{z}_{1:n-1})$ that is related with the target density $p_n(x)$ is designed, from which total I simulated particles are drawn, i.e., $\mathbf{x}_n^i \sim \xi_n(\mathbf{x}_n^i | \mathbf{z}_{1:n-1})$. Secondly, the associated importance weights w_n^i are updated via:

$$w_n^i = w_n^i \times \frac{\varphi_n(z_n | x_n^i) \times \omega_{n|n-1}(x_n^i | x_{n-1}^i)}{\xi_n(x_n^i | x_{n-1}^i, \mathbf{z}_{1:n-1})}. \quad (43)$$

In practice, a re-sample procedure will be adopted in order to eliminate particles with negligible weights [35].

2) **Bernoulli PF**: For the DS application, the PF is used to approximate the predicted spatial density $p_{n|n-1}(\mathbf{x}^i)$, i.e., $\hat{p}_{n|n-1}(\mathbf{x}) \simeq I \sum_{i=1}^{I} w_n^i \delta (x - x_n^i). \quad (44)$

For clarity, here $\mathbf{x}_{n|n-1}^i = \{x_{l,n|n-1}, x_{\alpha,n|n-1}\}$ denotes the mixture hidden particles. As seen from Eq. (36), $p_{n|n-1}(\mathbf{x})$ is composed of two parts, i.e. a survival component and the other birth component. A proposal distribution of two pieces is thereby designed to simulate to the mixture particles $\{x_{n|n-1}^i, w_{n|n-1}^i\}$, i.e.,

$$x_{n|n-1}^i \sim \begin{cases} \beta_n(x_{n|n-1}^i | \mathbf{z}_{1:n-1}, \alpha_n), & i = 1, 2, \cdots, B, \\ \xi_n(x_{n|n-1}^i | x_{n-1|n-1}^i, \mathbf{z}_{1:n-1}), & i = B + 1, \cdots, I. \end{cases} \quad (45a)$$

If collating Eq. (45) with (36), the first birth term is approximated by B particles, while the second survival term is simulated via the later $(I - B)$ particles. Given total I simulated measures $x_{n|n-1}^i$, the weights are updated by [32]:

$$w_{n|n-1}^i \sim \begin{cases} \frac{p_n(1 - q_{n|n})}{q_n(1 - 1)} \times b_{n|n-1}(x_{n|n-1}^i | x_{n-1|n}^i) \times \frac{1}{B}, & i = 1, 2, \cdots, B, \\ \frac{p_n q_{n-1|n-1}}{q_n(1 - 1)} \times \omega_{n-1|n}(x_{n|n-1}^i | x_{n-1|n-1}^i) \times w_{n-1|n-1}^i, & i = B + 1, \cdots, I. \end{cases} \quad (46a)$$

Once the proposal birth density $\beta_n(x_{n|n-1} | \mathbf{z}_{1:n-1})$ and the other proposal survival density $\xi_n(x_{n|n-1}^i | x_{n-1|n-1}^i, \mathbf{z}_{1:n-1})$ are specified properly, then the Bayesian inference will be realized, and $p_{n|n-1}(\mathbf{x})$ can be numerically evaluated.

3) **Proposal survival-density**: In practice, the proposal survival density is simple to obtain. First, with $(I - B)$ predicted particle and their weights $\{x_{n|n-1}^i, w_{n|n-1}^i\}$, the posterior density of time $(n - 1)$ will be estimated and the corresponding particle weights are updated via:

$$w_{n|n-1|n-1}^i \propto \varphi_n(z_{n-1|n|n-1} | \mathbf{z}_{n-1|n|n-1}^i) \times w_{n|n-1}^i. \quad (47)$$

Second, $(I - B)$ discrete particles are drawn from $\hat{p}_{n|n-1}(\mathbf{x}) = \sum_{i=0}^{I} w_{n|n-1}^i \times \delta (\mathbf{x} - x_{n|n-1}^i)$. The $(I - B)$ new particles are survival and further reserved for the subsequent time n [32].

4) **Proposal birth-density**: As far as two independent link states \mathbf{l}_n and α_n are concerned, a compound proposal birth density should be designed, i.e.,

$$\beta_n(x_{n|n-1} | \mathbf{z}_{1:n-1}, \alpha_n) = b_{n|n-1}(\mathbf{l}_n | \alpha_n) \times b_{n|n-1}(\alpha_n | \alpha_{n-1}). \quad (48)$$

(a) For the sub-density of birth particles corresponding to the time-varying fading state, i.e. $b_{n|n-1}(\alpha_n)$, we suggest an adaptive birth density, which is determined jointly by the prior transitional density $\omega_{n|L_{n-1}^c}^c(\alpha_n | \alpha_{n-1})$ and the accumulated measurement $z_{n|L_{n-1}}$. Further combining the homologous estimation of fading channels, it is specified as:

$$b_{n|n-1}(\alpha_n) \triangleq \int \omega_{n|L_{n-1}^c}^c(\alpha_n | \alpha_{n-1}) b_{n|L_{n-1}^c}(\alpha_n | \alpha_{n-1}) \sum_{\alpha_{n-1}} \omega_{n|L_{n-1}^c}(\alpha_{n-1}) \delta d\alpha_{n|L_{n-1}}. \quad (49)$$
where the intermediate birth density \(b_{n'|L-1}(\hat{\alpha}_{n'|L-1}|z_{n'|L-1}) \) is given by \(\prod_{i=1}^{R} b_{n'|L-1}(\hat{\alpha}_{n'|L-1,i}|z_{n'|L-1,i}) \). In the consideration of the 1st-order DSFCM model, the posterior component in Eq. (49) are given by:

\[
\begin{align*}
\begin{cases}
\frac{1}{3}, & \text{if } \hat{\alpha}_{n'|L-1,i}|z_{n'|L-1,i} \to \bar{A}_i, \quad |i-j| \leq 1, \\
0, & \text{if } \hat{\alpha}_{n'|L-1,i}|z_{n'|L-1,i} \to \bar{A}_i, \quad |i-j| > 1.
\end{cases}
\end{align*}
\]

Note that, here the intermediate state \(\hat{\alpha}_{n'|L-1} \) is generated to increase the diversity of birthed particles \(\alpha_n \), which, to some extent, may avoid the local solution aroused by the erroneous estimations \(\{\hat{\alpha}_{n'|L-1,i}\}_{i=1}^{R} \).

(b) For the other birth sub-density, i.e. \(b_{n|n-1}(\mathbf{x}_n|a_n) \), the major challenge is how to address the aforementioned likelihood dispersion problem aroused by the sudden cease of PU’s emission (i.e. \(s_n = 0 \)). If this happens, there is no likelihood information can be utilized. To tackle the difficult problem, we design a flexible sub-density by integrating a promising AHE mechanism. The principle is that, when the PU jumped into the silent state at time \(n-J \), its positions of subsequent times will be predicted, premised on the previously estimated speed and orientation. At the same time, the uncertainty introduced by the predicted positions will be updated when simulating new birth particles (corresponding to \(\mathbf{d} \)) once this PU re-emits.

For clarity, the lasting length of \(s_{n-1} = 0 \) is denoted by \(J \), i.e., \(s_{n-1} - \tau = 0 \) for \(0 < \tau < J \) and \(s_{n-1} - J = 1 \). To sum up, the AHE involves essentially two stages, i.e. the position predicting and the uncertainty updating.

1) If the PU enters to \(H_0 \) at time \((n-J) \), then in subsequent time \(n-J+\tau \) (\(0 < \tau < J \)), its unknown positions will be predicted based on the previously estimated speed \(\hat{v}_{n-J} \) and moving orientation \(\hat{\theta}_{n-J} \) [20], as well as the tracked position of time \((n-J) \), i.e.,

\[
\hat{\mathbf{i}}_{n-J+\tau} = \left[\hat{x}_{n-J}, \hat{y}_{n-J} \right]^T + \tau \hat{v}_{n-J} \times \left[\cos(\hat{\theta}_{n-J}) \sin(\hat{\theta}_{n-J}) \right]^T. \tag{51}
\]

In practice, \(\hat{v}_{n-J} \) and \(\hat{\theta}_{n-J} \) will be derived from the trajectory of previously tracked positions, i.e. \(\{\mathbf{i}_{n-J-L}, \ldots, \mathbf{i}_{n-J}\} \). Note from Eq. (51) that the estimated velocity will be of great significance to AHE. Thus, an autoregressive (AR) model is suggested to suppress the estimation bias of \(\hat{v}_{n-J} \) and \(\hat{\theta}_{n-J} \), i.e.,

\[
\begin{align*}
\hat{v}_{n-J} &= \sum_{i=1}^{L_0} \varepsilon^i \mathbf{L}_h^{-i} \times \left[||\mathbf{i}_{n-J-i} - \hat{\mathbf{i}}_{n-J-i-1}||_2 \right]^2, \tag{52}
\hat{\theta}_{n-J} &= \sum_{i=1}^{L_0} \varepsilon^i \mathbf{L}_h^{-i} \times \arccos(\mathbf{i}_{n-J-i} - \hat{\mathbf{i}}_{n-J-i-1}). \tag{53}
\end{align*}
\]

Here, \(\varepsilon \) denotes a weighting parameter, which may be set empirically to 0.5~0.8; \(L_0 \in [1, 10] \) denotes a back-tracking length.

2) Assume the PU re-emits at the time \(n \) after residing in the silence state for successive \(J \) slots. Thus, the PU’s position should be re-birthed within an enlarged range, by fully utilizing the \textit{a priori} information of the mobility model. To do so, a birth sub-density is specified as:

\[
b_{n|n-1}(\mathbf{x}) = f_\nu(v_n|\eta J) \times f_\theta(\theta_n|J), \tag{54}
\]

where the speed density \(f_\nu(v_n|\eta J) \) and the orientation density \(f_\theta(\theta_n|J) \) jointly designate a 2-dimensional space.

\[
f_\nu(v_n|\eta J) \sim \mathcal{N}(\eta J \hat{v}_{n-J}, \eta J \sigma_v^2), \quad f_\theta(\theta_n|J) \sim \mathcal{E}(\hat{\theta}_{n-J}, J \sigma_\theta^2). \tag{55}
\]

Here, \(\eta > 1 \) accounts for the allowance factor which is employed to address the additional uncertainty (or error) of the estimated fading states \(\alpha_{n-1} \), which in practice can be determined by:

\[
\eta = \sqrt{\max(1/A_{k_2}^2 - 1/A_{k_1}^2)}, \quad 1 \leq k_1, k_2 \leq K. \tag{56}
\]

It is expected from Eqs. (54)-(56) that, with the increase of \(J \), the horizon (or cover area) of the birth sub-density \(b_{n|n-1}(\mathbf{x}) \) will be expanded accordingly, as illustrated by Fig. 3. Thus, the PU’s mobile positions would be tracked by the above uncertainty adaption strategy, even after a long suspending of PU’s emission. Notice that, in the following emission slots \(n + J \), the uncertainty of the birth sub-density will be reset to 1 in the case of \(s_{n+J} = 1 \).

With the designed survival-density and birth-density, total \(I \) discrete particles can be drawn from a unified proposal distribution, i.e., \(\mathbf{x}_{n,J}^{(i)} \sim \mathcal{N} \left(\mathbf{x}_{n,J}^{(i)} | \mathbf{x}_{n,J-1}^{(i)}, \mathbf{z}_{n,J-1}^{(i)} \right) \), for \(i = 1, \ldots, B, B + 1, \ldots, I \) [32]. Then, the importance weights of new particles will be updated via Eq. (46).

5) \textbf{Simplified Implementations:} In order to cover the 2-dimensional continuous mobile region and another \(R \)-dimensional discrete states-space, the required number of particles will be considerably huge. In practice, we adopt a simplified implementation scheme. To be specific, each
position particle (i.e. \mathbf{x}_n) carries only one possible fading state, i.e., the 1st-order prior transitions from \mathbf{a}_{n-1}. Then, B position particles (i.e. \mathbf{x}_n) are drawn from the sub-birth density of $b_{n|n-1}(\mathbf{x}_n)$, and finally, a predicted particle \mathbf{x}_n will be appended to construct the mixture particles \mathbf{x}_n.

As the proposal birth density is premised on the prior transitions, the weights of birthed particles will be updated by:

$$w_n^{(i)} = \frac{p_b(1 - q_n|1 - 1)}{q_n} \times \frac{1}{B}, \quad i = 1, \ldots, I. \quad (58)$$

Thus, the predicted spatial density $p_{n|n-1}(\{\mathbf{l}_n, \mathbf{a}_n\})$ will be derived approximately, with the marginalization replaced by the summation by using $\langle \mathbf{x}_n^{(i)}, w_n^{(i)} \rangle$.

Moving on, we can obtain \mathbf{q}_n and estimate PU’s state via:

$$\hat{s}_n = \begin{cases}
1, & \text{if } \hat{q}_n \geq \gamma, \\
0, & \text{if } \hat{q}_n < \gamma,
\end{cases} \quad (59a)$$

$$\hat{\mathbf{l}}_n = \arg\max_{\mathbf{l}_n \in \mathbb{R}^2, \mathbf{a}_n \in \mathcal{A}} \hat{p}_{n|n}(\{\mathbf{l}_n, \mathbf{a}_n\}) \quad (60)$$

where γ is configured to 0.5 under a Bayesian criterion. Similarly, the PU’s positions and fading states will be estimated by maximizing the approximated spatial density, i.e.,

$$\langle \mathbf{l}_n, \mathbf{a}_n \rangle = \arg\max_{\mathbf{l}_n \in \mathbb{R}^2, \mathbf{a}_n \in \mathcal{A}} \hat{p}_{n|n}(\{\mathbf{l}_n, \mathbf{a}_n\}). \quad (60)$$

6) Algorithm Flow: A schematic structure of the proposed algorithm is plotted in Fig. 4. First, two predicted densities $q_{n|n-1}$ and $p_{n|n-1}(\mathbf{x})$ will be estimated. Then, they will be updated by utilizing the new observation \mathbf{z}_n. Finally, in the case of $q_{n|n} < \gamma$ and $J > 1$, the designed AHE will be applied. In order to realize AHE, a counter J is employed, which is of practical use to update the uncertainty of the birth uncertainty.

7) Complexity: The algorithm complexity is roughly measured by the total number of multiplications. First, in order to obtain RSS observations, $O(RM)$ multiplications are required. Second, the number of multiplications required by the Bayesian estimation is proportional to the size of simulated particles (i.e. I) in PF. Here, the computation of each related likelihood densities is basically measured by ϑ, where ϑ is related with the representative precision of numbers and various adopted algorithms [36]. To sum up, the total complexity of the new algorithm will be given by $O(RM + I\vartheta)$.

IV. NUMERICAL SIMULATIONS

In the following simulations, the performance of the new DS scheme will be evaluated. Three performance metrics, i.e. the sensing accuracy of PU’s status, the localization errors and the channel estimation errors, will be studied numerically.

(1) Sensing Metric: As a Bayesian approach, unlike the classical NP criterion [7], [8], a total correct probability is used as the sensing performance metric, as in [12], [13], [37].

$$P_D = 1 - P(H_1)P_m - P(H_0)P_f, \quad (61)$$

where the false alarm P_f confines the utilization of vacant spectrum, while a missed detection probability P_m controls the interferences caused to PU. Note that, the new compound metric remains quite different from that of a classical NP criterion, in which the objective is either to minimize P_m for a target P_f, or to minimize the P_f for a target P_m.

In following analysis, rather than focusing on a single P_d by prescribing P_f, we will evaluate the total correct probability P_D. It is suggested that, with the new metric, the spectral utilization of unused PU’s spectrum and the potential interference to PU will be jointly considered [20], [37], [38]. Note that, unlike an NP criterion, now the P_f cannot be fixed under an MAP criterion. To be specific, when imposing a threshold to fix P_f as in classical ED, the estimations of fading channels and PU’s locations would not be utilized. The new metric P_D, therefore, is more suitable to evaluate the designed Bayesian scheme. It is demonstrated that, by exploiting the informative hidden states and an MAP criterion, in the proposed Bayesian approach an improved P_D will also result in the promotion of both P_d and P_f compared to an NP criterion [13].

(2) Localization Metric: For the localization of a mobile PU, as a commonly used metric, the root mean square error (RMSE) of estimated locations is investigated, i.e.,

$$\text{MSE} \triangleq \mathbb{E} \left\{ \frac{1}{N} \sum_{n=1}^{N} \| \hat{\mathbf{l}}_n - \hat{\mathbf{l}}_n \|^2 \right\}. \quad (62)$$

(3) Channel Estimation Metric: When it comes to the estimation of time-correlated fading channels, a similar MSE performance will be used, i.e.,

$$\text{RMSE} \triangleq \mathbb{E} \left\{ \frac{1}{R} \sum_{r=1}^{R} \frac{1}{N} \sum_{n=1}^{N} \| \hat{\mathbf{a}}_{n,r} - \mathbf{a}_{n,r} \|^2 \right\}. \quad (63)$$

A. Simulation configurations

In the simulations, $R = 4$ SUs are deployed on the vertexes of a square (maybe an indoor office or an outdoor square, etc.), while the PU is moving randomly within the grid region with a side length of 100m. The prior locations of 4 SU nodes are (0, 0), (0, 100), (100, 0), (100, 100). Without losing generality, in the assumed GMM model the initial speed is
performance analysis, which is set to σ of Rayleigh distribution may be basically insignificant to the K number of discrete representative states is $K=8$. The transitional probability of PU states is set to $(p_b, p_s) = (0.8, 0.8)$.

B. Different Static Length L

In the first experiment, the effect of different fading rates (or the static length L) is investigated. The size of discrete particles are $I = 500$ and the number of birth particles are $B = 250$. Total 80 trajectories have been simulated and, in each independent realization, 5000 sensing-transmission slots are evaluated with a new generated fading channel.

In Fig. 5, the localization RMSE of the mobile PU is plotted. As we have indicated before, the static length ranges from 10 to 60. So, in the analysis two realistic static lengths are studied, i.e. $L=20$ and $L=50$. For convenience, assume the static length L is normalized by T_F, thus f_d will be approximately proportional to $1/L$. The sample size is $M=100$. It is seen from numerical results that, given the high SNRs, the PU’s mobile locations will be tracked accurately even its emission is shut off intermittently. When the SNR is configured to 15dB, the RMSE may approach 1.32m with a static length of $L=50$. Meanwhile, it is also noted that the localization RMSE, given the discontinuity of PU’s emissions and time-varying fading channels, will be basically converged under two static lengths ($L = 20, 50$) when SNR >15dB. Also, we find the RMSE of $L=50$ will be slightly superior to that of $L=20$. This is mainly because, with the observation accumulation mechanism, the more profound refinement on channel estimations will be achieved by a larger L.

A similar trend in Fig. 6 further verifies the above analysis, in which the channel estimation MSE of $L=50$ is much smaller than that of $L=20$. For example, if SNR is configured to 10dB, the numerically derived MSE is about 0.027 for a static length of $L=50$, while it will be increased to 0.1 given a faster fading channel of $L=20$.

The total correct probability P_D is shown by Fig. 7. We note that, for both $L=20$ and $L=50$, the total correct probability P_D will approach 1 when the SNR surpasses 4dB and the sample size is $M=100$. It is also observed that the total correct probability P_D of $L=50$ will be superior to that of $L=20$. Combined with Figures 5 and 6, it may be further concluded that, in the presence of a mobile PU and time-dependent fading channels, the reliable spectrum sensing (e.g. $P_D=100\%$) requires an RMSE smaller than 20m and a channel estimation MSE less than 0.1.

C. Different Sample Size M

In the second experiment, the effects from different sample sizes on the sensing and localization performance are studied. First, we note from Fig. 8 that the localization RMSE of a mobile PU will be promoted by increasing the sample size M. For example, when an SNR=15dB is concerned, the RMSE of $P_D=100\%$ requires an RMSE smaller than 20m and a channel estimation MSE less than 0.1.
Fig. 8. Localization RMSE of PU under different sample size M.

Fig. 9. Channel estimation MSE of the PU-SU link under different sample size M.

Fig. 10. Total correct probability under different sample sizes M.

Fig. 11. Total correct probability with unknown PU’s positions and the time-varying fading channels. Here, we configure $f_d=0.05$.

The total correct probability P_D of the new DS scheme with different M is demonstrated by Fig. 10. It is seen from numerical results that the correct probability P_D will be promoted with the increasing of the sample size M. When the sample size is increased from $M=50$ to $M=100$, a rough detection gain of 2.5dB may be achieved. Note that, however, an increased sample size M indicates a prolonged sensing time and also a higher complexity. As a consequence, the compromise should be made in the realistic designing.

D. Comparative Analysis

We firstly investigate the common ED scheme without tracking PU’s mobile positions and time-correlated flat fading channels. In the experiment, the PU’s locations change dynamically with time, yet we may only know its expected location $I = E\{I_n\}$. For the varying flat-fading channels, we can also obtain the expectations of K fading gains, i.e., $\bar{\alpha}_r = E\{\alpha_{n,r}\} = \int_0^1 \alpha_{n,r} f(\alpha_{n,r}) d\alpha_{n,r} \approx \sum_{r=0}^{K-1} \rho_{r,r} \bar{\alpha}_{k,r}$. Thus, the likelihood densities $p(z_n|\{\bar{\alpha}_r\}, I, s_n)$ will be evaluated and the MAP decision is made. It is found from Fig. 11 that, when these two link states become unknown to SUs, the sensing performance will be dramatically deteriorated by the resulting information uncertainty. Although the expectations of unknown link states lead to more robust sensing performance in low SNRs (e.g. <0dB), the total correct detection probability can only be converged to 0.88, which is known as the SNR wall. Thus, the motivation of our suggested sensing algorithm can be demonstrated. I.e., it is of significance to acquire PU’s mobile positions and time-varying fading gains when detecting the availability of spectrum.

In order to investigate the robustness of the DS scheme, we further obtain the sensing performance in time-invariant channels. Simulation results are shown by Fig. 12. By assuming the prior knowledge on the expectation of PU’s location, i.e. $I = E\{I_n\}$, a benchmark method is studied in the absence of the time-varying fading, which similarly relies on the non-coherent energy observation and the likelihood densities $p(z_n|I, s_n)$. We can see from the numerical results
that, due to the additional information uncertainty introduced by the time-varying fading channels, the spectrum sensing process will be affected significantly. Compared with the time-invariant scenarios, the sensing performance may be degraded by about 7dB under variant fading channel. Meanwhile, the advantage of the proposed DS scheme is fully demonstrated whether the flat-fading channel is time-varying or not. It can indeed promote the sensing performance remarkably and avoid the SNR wall of the sensing performance by acquiring the dynamic locations of a mobile PU.

V. CONCLUSIONS

The user mobility and the resulting time-varying fading are two main stumbling-blocks for spectrum sensing of the DSS-based next-generation communications, which renders the path-loss and fading gains time-dependent and, therefore, poses great difficulties to existing non-coherent sensing techniques. The DS scheme, which is designed to address a mixed detection and estimation problem, provides a promising approach to spectrum sensing in more challenging space-time doubly selective fading scenarios. Relying on a Bayesian MAP criterion, the new DS algorithm is implemented recursively and a simplified numerical scheme is suggested to alleviate the complexity. Some adaptive mechanisms are integrated to further enhance the performance, e.g., the observation accumulation and the AHE. It is demonstrated from numerical simulations that the proposed algorithm will track PU’s locations and time-varying fading gains accurately. Such acquired link states information, which has been utilized to realize the spectrum sensing effectively, may be of also significance to further performance enhancement (e.g. power control and spatial transmissions of SUs). Future works may include the experimental validations. The new DSM and the proposed DS scheme can be extended to other scenarios, which, therefore, put an insight into spectrum sensing and provide a brand-new idea for future spectrum awareness communications.

ACKNOWLEDGMENT

This work is supported by Natural Science Foundation of China (NSFC) under Grants 61471061 and the Fundamental Research Funds for the Central Universities under Grant 2014RC0101.

REFERENCES

[39] Yijiang Nan received his B.S. degree in Communication Engineering from Tianjin University in 2013, China. He is currently pursuing the masters degree at Beijing University of Posts and Telecommunications (BUPT). His research interests include cognitive radios and statistical signal processing.

Xiaofan Li (M’10) is the Deputy Chief Engineer of the State Radio monitoring center and Testing Center (SRTC) Shenzhen Lab, received her B.S. degree and Ph.D degree from Beijing University of Posts and Telecommunication (BUPT) in 2007 and 2012. From 2010 to 2011, she was a visiting Ph.D student in University of Washington. She has involved in nearly 10 national foundation projects. Her research interests include interference analysis among different radio systems, testing method and technology on radio equipments, cooperative transmission, cognitive radio, internet of things, radio management policy, etc.

Bin Li received the Bachelor’s degree in electrical information engineering from Beijing University of Chemical Technology (BUCT) in 2007, the Ph.D. degree in communication and information engineering from Beijing University of Posts and Telecommunications (BUPT) in 2013. He joined BUPT since 2013, as a lecture of the School of Information and Communication Engineering (SCIE). His current research interests are focused on statistical signal processing and wireless communications, e.g., ultra-wideband (UWB), wireless sensor networks, millimeter-wave (mm-Wave) communications and cognitive radios (CRs). He has published more than 60 journal and conference papers. He received 2011 ChinaCom Best Paper Award, 2010 and 2011 BUPT Excellent Ph.D Student Award Foundation. He serves as the Co-Chair of the Technical program Committee of the Signal Processing for Communications Symposium of the 2016 IEEE International Conference on Computing, Networking and Communications (IEEE-ICNC’16).
Arumugam Nallanathan (S’97-M’00- SM’05) received the B.Sc. degree (Hons.) from the University of Peradeniya, Sri-Lanka, in 1991, the CPGS from the Cambridge University, U.K., in 1994, and the Ph.D. degree from the University of Hong Kong, Hong Kong, in 2000, all in electrical engineering. He is the Head of Graduate Studies at the School of Natural and Mathematical Sciences and a Reader in Communications at King’s College London, London, U.K. From August 2000 to December 2007, he was an Assistant Professor with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore. His research interests include smart grid, cognitive radio, and relay networks. He has authored nearly 200 journal and conference papers.

Chenglin Zhao received the Bachelor’s degree in radio-technology from Tianjin University in 1986, and the Master’s degree in circuits and systems from Beijing University of Posts and Telecommunications (BUPT) in 1993, and the Ph.D. degree in communication and information system from Beijing University of Posts and Telecommunications, in 1997. At present, he serves as a Professor in Beijing University of Posts and Telecommunications, Beijing, China. His research is focused on emerging technologies of short-range wireless communication, cognitive radios, 60GHz millimeter-wave communications.