ACETYLCHOLINESTERASE INHIBITORS AND MEMANTINE IN BIPOLAR DISORDER: A SYSTEMATIC REVIEW AND BEST EVIDENCE SYNTHESIS OF THE EFFICACY AND SAFETY FOR MULTIPLE DISEASE DIMENSIONS

Nicola Veronese, Marco Solmi, Claudio Luchini, Ru-Band Lu, Brendon Stubbs, Leonardo Zaninotto, Christoph U. Correll

PII: S0165-0327(15)31192-7
DOI: http://dx.doi.org/10.1016/j.jad.2016.03.034
Reference: JAD8121

To appear in: Journal of Affective Disorders

Received date: 31 October 2015
Revised date: 9 February 2016
Accepted date: 9 March 2016

Cite this article as: Nicola Veronese, Marco Solmi, Claudio Luchini, Ru-Band Lu, Brendon Stubbs, Leonardo Zaninotto and Christoph U. Correll ACETYLCHOLINESTERASE INHIBITORS AND MEMANTINE IN BIPOLAR DISORDER: A SYSTEMATIC REVIEW AND BEST EVIDENCE SYNTHESIS OF THE EFFICACY AND SAFETY FOR MULTIPLE DISEASE DIMENSIONS, Journal of Affective Disorders
http://dx.doi.org/10.1016/j.jad.2016.03.034

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ACETYLCHOLINESTERASE INHIBITORS AND MEMANTINE IN BIPOLAR DISORDER: A SYSTEMATIC REVIEW AND BEST EVIDENCE SYNTHESIS OF THE EFFICACY AND SAFETY FOR MULTIPLE DISEASE DIMENSIONS

Nicola Veronese¹¹, Marco Solmi²¹, Claudio Luchini³, Ru-Band Lu⁴, Brendon Stubbs⁵,⁶, Leonardo Zaninotto⁷,⁸, Christoph U. Correll⁹,¹²,*

¹Department of Medicine, DIMED, Geriatrics Division, University of Padova, Padova, Italy.
²Department of Neurosciences, University of Padua, Padua, Italy.
³Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy.
⁴Institute of Behavioral Medicine, Department of Psychiatry, College of Medicine & Hospital, National Cheng-Kung University, Tainan, Taiwan, R.O.C.
⁵Physiotherapy Department, South London and Maudsley NHS Foundation Trust, Denmark Hill, London SE5 8AZ, United Kingdom
⁶Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience King's College London, De Crespigny Park, London, Box SE5 8AF, United Kingdom.
⁷Department of Biomedical and Neuro-Motor Sciences, University of Bologna, Italy
⁸Department of Mental Health, Local Sanitary Unit n. 16 - ULSS 16, Padova, Italy
⁹The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA.
¹⁰Hofstra Northwell School of Medicine, Hempstead, New York, USA.
¹¹The Feinstein Institute for Medical Research, Manhasset, New York, USA.
¹²Albert Einstein College of Medicine, Bronx, New York, USA.

*Correspondence/reprints to. Christoph U. Correll, MD, Department of Psychiatry, The Zucker Hillside Hospital, 75-59 263rd Street, Glen Oaks, NY 11004. Email: CCorrell@nshs.edu

Phone: (718) 470-4812
Fax (718) 343-1659

¹*These Authors equally contributed to this manuscript.
ABSTRACT

Background
Acetylcholinesterase inhibitors (AceI) and memantine might prove useful in bipolar disorder (BD) given their neuroprotective and pro-cognitive effects, as highlighted by several case reports. We aimed to systematically review the efficacy and safety of AceI and memantine across multiple outcome dimensions in BD.

Methods
Systematic PubMed and SCOPUS search until 04/17/2015 without language restrictions. Included were randomized controlled trials (RCTs), open label studies and case series of AceI or memantine in BD patients reporting quantitative data on depression, mania, psychotic symptoms, global functioning, or cognitive performance. We summarized results using a best-evidence based synthesis.

Results
Out of 214 hits, 12 studies (RCTs=5, other designs=7, total n=422) were included. Donepezil (studies=5; treated=102 vs. placebo=21): there was strong evidence for no effect on mania and psychotic symptoms; low evidence indicating no effect on depression. Galantamine (studies=3; treated=21 vs. controls=20) (placebo=10, healthy subjects=10): there was strong evidence for no effect on mania; moderate evidence for no effect on depression; low evidence for no effect on global functioning. Memantine (studies=4; treated=152 vs. placebo=88): there was conflicting evidence regarding efficacy for mania, depression and global functioning.

Limitations
paucity of RCTs; small sample size studies; heterogeneous data and patients characteristics

Conclusion
There is limited but converging evidence of no effect of AceI in BD, and conflicting evidence about memantine in BD. Too few studies of mostly medium/low quality and lacking sufficient numbers of patients in specific mood states, especially mania, contributed data, focusing solely on short-
term/medium-term treatment, necessitating additional high-quality research to yield more definite results.

Keywords: bipolar disorder; acetylcholinesterase inhibitors; memantine; depression; mania; psychosis.

INTRODUCTION

Bipolar disorder (BD) is a chronic mental illness affecting 1-2% of adult population (Weissman et al., 1988), with estimates of up to 4.5% for the spectrum of bipolar disorders (Merikangas et al., 2007). BD seems to be associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes (Soeiro-de-Souza et al., 2012), supporting the concept that BD is a neurodegenerative disease. However, a precise and specific pathophysiologic mechanism underlying BD has not been clarified yet.

Traditional mood stabilizers, namely lithium, carbamazepine and valproate, and antipsychotics are effective for the treatment of acute manic episodes (Cipriani et al., 2013) and for relapse prevention (Miura et al., 2014), while options for bipolar depression are more limited (ME, 2006). Nevertheless, despite approval of these effective medication treatments, unfortunately up to half of patients have an insufficient response to pharmacotherapy (Calabrese and Delucchi, 1990; Freeman et al., 1992; Pope et al., 1991; Small et al., 1991; Swann et al., 1997). Moreover, naturalistic data suggest that patients spend about half of the time ill during the 2 years following a manic index episode (Jann, 2014). These data stress the need to evaluate other pharmacologic agents for the treatment of BD, which may intersect with specific etiologic pathways that are not targetable with available drugs.

Recently, a catecholaminergic-cholinergic hypothesis has been suggested based on neuroimaging, genetic, and psychopharmacological data, indicating increased cholinergic functioning during depressive phases and increased catecholaminergic (particularly, dopaminergic and norepinephrinergic) functioning during manic phases of BD (van Enkhuizen et al., 2015).
Acetylcholinesterase inhibitors (AceI) (donepezil; galantamine; rivastigmine) and memantine, which affect cholinergic transmission among other mechanisms (Drever et al., 2007), are currently used for the treatment of cognitive impairment in Alzheimer’s disease (Birks, 2006). Approximately 30-60% of individuals with BD experience a worsening in occupational and social domains after an initial remission of their mood disorder (Kam et al., 2011). Furthermore, BD has been associated with cognitive dysfunction (Torres et al., 2007). Data in older people with BD showing worse information processing speed and executive functioning than age-matched controls (Gildengers et al., 2007) could suggest that these individuals are at higher risk of cognitive problems particularly during late-life. In this context, the use of memantine might be appropriate since this drug is commonly used in moderate-severe forms of Alzheimer’s disease and seems to have neuroprotective effects (Lopes et al., 2013). Moreover, based on uncontrolled observations and case reports, memantine seems to also have potential anti-manic and mood stabilizing effects (Serra et al., 2014c) making it an interesting intervention for BD.

Until now, evidence suggests use of donepezil in schizophrenia yields no effect (Keefe et al., 2008), while galantamine seems to improve some cognitive domains (Buchanan et al., 2008; Lee et al., 2007; Schubert et al., 2006), particularly in combination with antipsychotics; however evidence is still weak due to the limitations of included studies (Singh et al., 2012). Similarly, a systematic review (Zdanys and Tampi, 2008) did not find conclusive results for the use of memantine in several psychiatric disorders, including depression, schizophrenia, obsessive–compulsive disorder, substance abuse, pervasive developmental disorders, and binge eating disorder. The same authors found limited evidence for memantine in BD although this conclusion was limited to findings from case-reports (Zdanys and Tampi, 2008).

With regards to mood symptoms, AceI could theoretically be promising, particularly during manic phases. As shown from the beginning of 1900, increased cholinergic tone may have a depressant effect on mood in mania. For example, physostigmine leads to a dramatic effect on mania as initially reported by Janowsky (Janowsky et al., 1972). Newer AceI inhibit the degradation of
acetylcholine in the synapses with lower side effects than physostigmine and could be effective for manic symptoms. Moreover, galantamine could further increase the levels of acetylcholine in the brain through the allosteric modulation of \(\alpha_4\beta_2 \), and \(\alpha_7 \) nicotinic receptor, indirectly increasing dopamine and glutamate levels (Samochocki et al., 2003).

In order to test the clinical relevance of these aforementioned pharmacologic considerations and results, we conducted a systematic review of studies including patients with BD treated with AceI and memantine, investigating their effect on depression, mania, global functioning, cognitive performance, psychotic symptoms and relapse prevention.

METHODS

This systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Liberati et al, 2009).

Search Strategy

Two investigators (N.V., M.S.) independently conducted an electronic literature search using PubMed and Scopus, without language restriction, from database inception until 04/17/2015, for clinical studies investigating the effect of AceI and memantine in patients with BD. Any inconsistencies were resolved by consensus. In PubMed, controlled vocabulary terms (MeSH and the following keywords were used) and the following keywords were used: ((bipolar OR mania OR manic) AND ("donepezil" OR "galantamine" OR "rivastigmine" OR "cholinesterase inhibitors" OR "memantine" OR "acetylcholinesterase inhibitors")). Conference abstracts were also considered; at least 4 attempts were made to contact study authors for additional information. Reference lists of included articles and those relevant to the topic were hand-searched for identification of additional, potentially relevant articles.
Study Selection

We included (1) randomized controlled trials (RCTs), open label studies and case series (2) reporting data on AceI or memantine (3) in patients with a clinical or research diagnosis of BD, (4) reporting quantitative data using a validated rating scale to measure symptoms of depression, mania, global functioning, cognitive performance, or psychotic symptoms.

The following studies were excluded: (1) case reports, (2) lacking data about outcome measures, (3) animal or in vitro research, and (4) studies investigating the effect of AceI or memantine with concomitant electroconvulsive therapy (ECT).

Data Extraction

Two authors (N.V., C.L.) independently extracted data from the selected studies into a standardized Microsoft Excel spreadsheet. Any disagreement was resolved by consensus. The following information was extracted: i) study population characteristics (e.g., sample size, demographics, presence of comorbidities), ii) design; iii) study duration, iv) clinical setting in which the study was performed, v) inclusion and exclusion criteria, and vi) quantitative data on depression, mania, global functioning, cognitive performance, psychotic symptoms and adverse effects.

Study quality

The quality of involved studies in this systematic review was evaluated using Jadad scale (Jadad et al., 1996). This scale includes randomization (0–2 points), blinding (0–2 points), and dropouts and withdrawals (0–1 point). The overall score of a study according to this scale ranges from 0-5, with higher scores indicating better quality (Jadad, 2009). Studies with Jadad scores of 0, 1, 2 and ≥ 3 were considered as no, low-, medium- and high-quality, respectively.
Statistical Analysis

The outcomes were the change from baseline to follow-up of rating scale scores measuring depression, mania, global functioning, cognitive performance, and psychotic symptoms as well as the incidence and number of adverse effects.

Due to the limited number of RCTs for each drug and high heterogeneity of the measured outcomes, we summarized the findings of this systematic review using evidence levels instead of using the initially intended meta-analytic approach. Based on prior recommendations (Cao et al., 2013), we used the following grading system. Strong evidence: 2 high-quality studies in agreement about an outcome; moderate: 1 high-quality + 1 medium quality, or 3 medium-quality studies in agreement; low: 1 high quality, or 2 medium-quality, or 3 low studies in agreement; no evidence: 1 medium-quality study, or < 3 studies of low quality studies, or any number of no quality studies in agreement, or no studies at all; conflicting: contrasting findings of low to strong evidence among studies.

RESULTS

The search identified 430 potentially eligible studies, of which 216 duplicates were excluded. After excluding 198 manuscripts through title and abstract review, 16 full text articles were examined. Altogether, 12 studies were included in the systematic review (Figure 1).

Study and Patient Characteristics

Studies and patients characteristics are summarized in Table 1. The 12 included studies (Ae et al., 2006; Anand et al., 2012; Burt et al., 1999; Chen et al., 2013; Ghaemi et al., 2009; Gildengers et al., 2008; Iosifescu et al., 2009; Keck et al., 2009; Koukopoulos et al., 2012; Lee et al., 2014; Schrauwen and Ghaemi, 2006) included a total of 434 participants (treated=275, controls=147) for
an average follow-up period of 20 weeks. All studies focused on the short- or medium-term treatment and none reported results on relapse prevention. Nine studies were conducted in the USA (Ae et al., 2006; Anand et al., 2012; Burt et al., 1999; Ghaemi et al., 2009; Gildengers et al., 2008; Iosifescu et al., 2009; Keck et al., 2009; Kelly, 2008a; Schrauwen and Ghaemi, 2006), 2 in Asia (Chen et al., 2013; Lee et al., 2014) and one in Europe (Koukopoulos et al., 2012). Five studies were RCTs, 2 naturalistic case series, 2 retrospective case series, 2 open label trials without a control group and 1 with a control group. Eight studies included out-patients, 4 only in-patients, and 1 patients from both settings. Three studies reported that no patients had an active diagnosis of psychosis, while this information was not available in the other 9 studies (Table 1).

Participants treated with AceI or memantine had a mean age of 41.8±16.1 years compared to 36.1±13.9 years in the control group. In the treatment groups, 57.5% of patients were females, compared with 55% of the control subjects (Table 1).

Five studies (Ae et al., 2006; Burt et al., 1999; Chen et al., 2013; Gildengers et al., 2008; Keck et al., 2009) explored the effect of donepezil in BD (treated=102; controls=21, all placebo), of which 2 were RCTs (Ae et al., 2006; Chen et al., 2013). Three studies (Ghaemi et al., 2009; Iosifescu et al., 2009; Schrauwen and Ghaemi, 2006) explored the effect of galantamine (treated=21; controls: 20, 10 placebo and 10 healthy subjects), one was a RCT (Ghaemi et al., 2009). Four studies (Anand et al., 2012; Keck et al., 2009; Koukopoulos et al., 2012; Lee et al., 2014) investigated the use of memantine (treated=152; controls=88, all placebo) with 2 studies (Anand et al., 2012; Lee et al., 2014) with a RCT design. No study investigated rivastigmine effects in BD.

Methodological quality of included studies

Quality assessed with the Jadad scale (Table 1; eTable 1) indicated that 4 studies (Burt et al., 1999; Keck et al., 2009; Kelly, 2008b; Schrauwen and Ghaemi, 2006) had no quality (Jadad’s scale=0), 4 (Gildengers et al., 2008; Iosifescu et al., 2009; Keck et al., 2009; Koukopoulos et al., 2012) had low
quality (Jadad’s scale=1), 1 (Iosifescu et al., 2009) had medium quality (Jadad’s scale=2), and 5 (Ae et al., 2006; Anand et al., 2012; Ghaemi et al., 2009; Lee et al., 2014) were of high quality (Jadad’s scale>3). All the studies with high quality were also RCTs, while among the studies with other designs, only 1 (Iosifescu et al., 2009) included a control group, reaching a medium quality.

INSERT TABLE 2 HERE

Donepezil

Among the five studies exploring the effect of donepezil (Table 2), the two RCTs included reported a no significant effect of donepezil regarding the investigated outcomes. Chen et al. showed that in 30 manic patients randomized to donepezil (n=15) or placebo (n=15) donepezil did not significantly improve manic or psychotic symptoms compared to placebo, while 19 mild to moderate side effects in the donepezil group compared with 7 in the control group were reported (Chen et al., 2013). Similar findings about mania, psychosis, and depression were shown in a RCT involving 11 manic patients (6 treated vs. 5 placebo), although 60% of participants included in the placebo group experienced an almost significant improvement in mania. Altogether, 33 side effects were reported with donepezil, and 7 in placebo group. There was poor compliance in 4 out of 6 patients in the donepezil group and one serious adverse effect occurred in one patient (ultra-rapid cycling) (Ae et al., 2006).

Among the studies with other designs, Burt et al. reported that in a retrospective case series that donepezil led to a mean decrease of CGI-S scores of 1.46 and an increase of GAF scores by 11.5 points in 11 patients with all types of BD. However, the significance of these results was not reported, and neither were data about other possible outcomes. In this study, 5 patients reported a side effect, mainly gastrointestinal in nature (Burt et al., 1999). Gildengers et al. reported data on cognitive function in 12 older euthymic people with BD I and II finding no significant effect of donepezil in cognitive function, and reporting gastrointestinal side effects in 3 of them (Gildengers et al., 2008). Finally, Kelly et al. in a naturalistic case-series of 58 patients with BD reported a
significant improvement in global functioning and cognitive performance in BD-II patients, while the opposite effect was observed in BD-I patients. Seven patients stopped the treatment with donepezil due to side effects (Kelly, 2008a).

Galantamine

Only three studies investigated the effect of galantamine in BD (Table 2). A small RCT in 16 participants with BD I and II minimally symptomatic reported that compared to placebo (n=10) galantamine (n=6) showed no significant effect of galantamine on depression, mania, cognitive performance, and global functioning (assessed with GAF) (Ghaemi et al., 2009). Similar findings about depression, mania and cognitive performance were shown by Iosifescu et al. in an open-label trial comparing 11 patients with BD vs. 10 age- and sex-matched healthy controls. In this trial, 2 participants treated with galantamine stopped the treatment due to side effects (Iosifescu et al., 2009). Finally, in a small case series of 4 BD I-II patients, contrasting findings about cognitive status were found, since 2 patients each either showed significant or no improvement compared to baseline. However, 2 patients reported side effects during the follow-up period (Schrauwen and Ghaemi, 2006).

Memantine

Among 4 studies with memantine (Table 2), one RCT of 24 patients with bipolar depression showed that compared to placebo (n=12) treatment with memantine (n=12) significantly improved response and remission rate in 8 patients compared to 4 in the placebo group, although no significant between group difference was reported using the Hamilton Depression Rating Scale (HDRS). No other significant results regarding mania or global functioning were observed. Finally, no significant increased risk of side effect was noted in the treated vs. placebo group (Anand et al., 2012). Conversely, in a large RCT of 157 patients with BD-II in a depressive episode, Lee et al. reported that memantine did not have any significant effect on depression or mania in 81
participants treated with memantine vs. 76 controls taking placebo. Surprisingly, side effects were reported only in the placebo group with one being severe (suicide attempt) (Lee et al., 2014). Also, an open label trial in 40 patients with treatment resistant BD and any type of polarity showed that memantine improved global functioning in the 80% of participants, i.e., 47.5% very much, 25% much and 7.5% minimally improved. During the study, 4 participants discontinued memantine, 1 for side effects (Koukopoulos et al., 2012). Finally, an open label study (Keck et al., 2009) with no control group including manic and mixed patients, suggested a role of memantine in reducing manic symptoms, but results were limited by several limitations acknowledged by authors.

Rivastigmine

No study was found investigating the use of rivastigmine in BD.

Table 3 summarizes the information available about the use of AceI and memantine in BD.

For donepezil there was a strong evidence of no effect on mania and psychosis and a low evidence of no effect on depression and cognitive performance.

Taken together data about galantamine, results suggest strong evidence of no effect on mania, moderate evidence of no effect on depression, low evidence of no effect on global functioning, conflicting evidence on California Verbal Learning Test (CVLT), moderate evidence of no effect on Wisconsin Card Sorting Test (WCST), and no evidence on psychotic symptoms. Finally, conflicting evidence emerged supporting the use of memantine on mania, depression, and global functioning, strong evidence of no effect on mania, and no evidence for effects on cognitive performance and psychotic symptoms.
DISCUSSION

In this systematic review, we summarized the current evidence about the use of Acetylcholinesterase inhibitors (AceI) and memantine in patients with Bipolar Disorder (BD). Twelve studies including 275 patients (102 treated with donepezil, 21 with galantamine and 152 with memantine) with 147 controls (137 treated with placebo and 10 healthy controls) yielded inconclusive findings about the utility of memantine in the short- or medium-term treatment of BD, or where the evidence was stronger, AceI did not seem to improve or worsen any clinical outcome in patients with BD.

Donepezil is an AceI that has been shown to significantly improve cognitive function in patients with Alzheimer’s disease (Birks, 2006). Its mechanism is linked to an increase in acetylcholine concentrations in the brain that have beneficial effects on cognition. As the same mechanism seems to be important to decrease manic symptoms a potential role of donepezil in BD was suggested (Higley and Picciotto, 2014). However, the available data from our systematic review suggest no effect on mania, psychosis or depression. These unexpected findings could be explained by several hypotheses. First, it has been reported that donepezil could paradoxically increase manic symptoms (rebound mania) particularly in subjects without mood stabilizers and during the first days of treatment (Benazzi, 1999). Therefore, it is possible that some subjects initially experiencing these symptoms left the study or that the anti-manic effect of donepezil was counterbalanced by this initial activation. Secondly, the effect of donepezil on cognition in people with other concomitant psychiatric co-morbidities is still debated, mainly due to the low quality of the studies investigating this topic (Stip et al., 2007). However, the global impression is that AceI work less well in the presence of psychiatric diseases with a neurodegenerative basis (Singh et al., 2012; Stip et al., 2007) opening the question if these drugs are really useful in people with an already established severe psychiatric condition. Finally, several methodological issues in the selected studies could also explain the negative findings, including the availability of only few and small RCTs, and the high heterogeneity of the included participants and outcomes. Donepezil was associated with a relatively high incidence of AEs, mainly gastrointestinal and mild to moderate in nature. However, Evins et
al. reported a serious adverse event (ultrarapid cycling) as well as poor compliance in patients treated with donepezil due to side effects (Ae et al., 2006). These results were substantially confirmed by the second RCT with donepezil showing a higher incidence of adverse effects in individuals treated with donepezil vs. placebo (Chen et al., 2013).

Conversely, data about galantamine seem to be more consistent compared to donepezil. Galantamine has a similar mechanism of action compared to donepezil, enhancing acetylcholine levels in the brain. In addition, donepezil modulates nicotinic receptors influencing dopamine and glutamate balance. This second pathway could be important in mnemonic functioning. Altogether, galantamine does not seem to improve any of the studied outcomes, with strong evidence regarding mania, and moderate evidence for no effect on cognition (WCST) and depression. However, these findings should be considered preliminary. In an open label trial, Iosifescu et al. found that cognitive performance was more impaired in BD patients than age-matched healthy controls and that the treatment with galantamine seemed to partially reverse this abnormality in the BD patients (Iosifescu et al., 2009). Conversely, Ghaemi et al. confirmed a substantial improvement at follow-up in some cognitive measures, but not versus the placebo group, possibly due to the small sample included in this RCT (Ghaemi et al., 2009). Therefore, further, larger studies are needed to investigate whether galantamine could be used for the treatment of cognitive impairment in BD and which domains could benefit the most (with different results for CVLT vs WCST). Nevertheless, galantamine did not significantly improve depression or mania. However, this lack of effect could be attributable to the inclusion of BD patients without active manic or depressive symptoms at baseline in almost all of the studies included. Therefore, trials including patients with an active manic or depressive episode could better clarify the role of galantamine in the acute phases of BD (Schrauwen and Ghaemi, 2006). Moreover, in contrast with cross-sectional reports (Budde and Schulze, 2014), other authors (Strejilevich et al., 2015) recently suggested that evidence of a progressively deteriorating course of cognitive function over time in BD is inconsistent. Regarding safety and tolerability, side effects were reported in two of the three included studies. In one of
these studies, two out of 11 patients stopped the treatment due to adverse effects (Iosifescu et al., 2009) and in the other study, half (2 out of 4) of the patients on galantamine developed an adverse effect (Schrauwen and Ghaemi, 2006). Unfortunately, comparative data with the placebo group were not available since the only included RCT did not report detailed adverse effect data with galantamine (Ghaemi et al., 2009).

Regarding memantine, we found conflicting evidence about its effect on mania, depressive and psychotic symptoms. Unfortunately no data were available about cognition. Memantine is commonly used in moderate forms of cognitive impairment in Alzheimer’s disease (Birks, 2006). Its mechanism could be of interest in disorders other than dementia since its neuroprotective effect seems to be stronger than donepezil or galantamine. Moreover memantine acts as a non-competitive NMDA antagonist, with suggested antidepressant and mood stabilizing effects (Lee et al., 2013). Its mechanism of action on NMDA receptors is shared with ketamine, which in turn showed antidepressant properties, but which can also have strong dose-dependent dissociative properties and potential neurotoxic effects (Iadarola et al., 2015). Conversely, these side effects do not occur with memantine, which has a safer profile. Moreover memantine seems to block the development of upregulation of dopamine receptors caused by antidepressants, and the consequent desensitization associated with the depressive-like behavior in animal studies, suggesting a role in the treatment or prevention of mania (Serra et al., 2014c). However, our results indicate that conflicting evidence is available about memantine for manic symptoms, while further studies are needed for depression, psychosis and cognition. These results from randomized controlled trials are in contrast with previous reviews (Sani et al., 2012; Serra et al., 2014c) and several case reports about memantine in BD, which each suggested efficacy of memantine in BD (De Chiara et al.; Serra et al., 2013, 2014a, 2014b). However, the uncontrolled and isolated nature of these reports is at best hypothesis-generating. Furthermore, since all studies focused on short- or medium-term treatment, we were unable to evaluate the effect of AchI or memantine on relapse prevention, for which only case reports (Sani et al., 2012; Serra et al., 2014c) and one mirror image study (Serra et al., 2015) exist,
underscoring the need for additional controlled studies. Additionally, we could not include a 3-year naturalistic trial suggesting memantine’s efficacy for manic symptoms, since it included patients underwent ECT, which we chose to exclude from the evaluated studies (Serra et al., 2015). Further, the need of more studies investigating memantine in mania is highlighted by the fact that participants were mainly depressed at baseline, with a low score on scales assessing mania, which does not allow a meaningful assessment of the anti-manic properties of memantine. Nevertheless, memantine seemed to be associated with less adverse effects than AceI. Anand et al. reported no significant differences between treated and placebo group (Anand et al., 2012), while Lee et al. reported the presence of adverse effects (including one suicide attempt) in the placebo group only (Lee et al., 2014).

Limitations

The findings of our systematic review should be considered within its clear limitations. First, we were not able to meta-analyze any of the outcomes due to the lack of RCTs and paucity and heterogeneity of outcome measures utilized. Second, the included studies were generally small and of short duration. The latter is a crucial limitation, precluding any evidence synthesis about the role of AceI and memantine in the maintenance treatment and relapse prevention in BD. Third, the patients were very heterogeneous across and, even, within studies, which could further explain the observed lack of efficacy and which should stimulate the search for efficacy in particular subgroups of patients. Fourth, data on each of the medication classes across the different phases of bipolar disorder are lacking precluding any conclusions. Finally, no data were published on rivastigmine; however, case reports seemed to be in agreement with the data about lack of effect of AceI in BD (Pavlis et al., 2007; Tseng and Tzeng, 2012).

In conclusion, little but converging evidence of no efficacy is available for AceI in BD, and conflicting evidence is available on a broad range of outcomes for memantine. However, since high
quality studies in patients enriched for the respective outcomes of interest are very scarce, larger
RCTs seem to be necessary to more conclusively evaluate the effectiveness and safety of AceI and
memantine in patients with BD who are either manic, depressed or euthymic, and longer-term
studies are needed to assess their efficacy for maintenance treatment and relapse prevention in BD.

ACKNOWLEDGMENTS

Conflict of interest
Veronese, Solmi, Stubbs, Luchini and Lu declare no potential conflict of interest. Dr. Correll has
been a consultant and/or advisor to or has received honoraria from: AbbVie, Actavis, Actelion,
Alexza, Bristol-Myers Squibb, Cephalon, Eli Lilly, Genentech, GersonLehrman Group,
IntraCellular Therapies, Lundbeck, Medavante, Medscape, Merck, National Institute of Mental
Health, Janssen/J & J, Otsuka, Pfizer, ProPhase, Reviva, Roche, Sunovion, Takeda, Teva, and
Vanda. He has received grant support from BMS, Feinstein Institute for Medical Research,
Janssen/J & J, National Institute of Mental Health (NIMH), National Alliance for Research in
Schizophrenia and Depression (NARSAD), Otsuka and Takeda.

Authors’ role
Data interpretation and analysis: Stubbs, Zaninotto, Veronese, Luchini. Draft of the manuscript:
Solmi, Lu, Correll. Literature search: Veronese, Solmi. Data extraction: Veronese, Luchini. All the
Authors approved the final version of the article.

Funding
none.
REFERENCES

open-label pilot study of donepezil for cognitive functioning and instrumental activities of daily living in late-life bipolar disorder 693–698. doi:10.1002/gps

Keefe, Malhotra, Meltzer, Kane, Buchanan, Murthy, Sovel, Li, Goldman, 2008. Efficacy and safety of donepezil in patients with schizophrenia or schizoaffective disorder: significant placebo/practice effects in a 12-week, randomized, double-blind, placebo-controlled trial. Neuropsychopharmacology 33, 1217–1228. doi:10.1038/sj.npp.1301499

Table 1. Characteristics of identified Studies Investigating Anti-dementia Drugs in Bipolar Disorder

<table>
<thead>
<tr>
<th>Study/Year (Country)</th>
<th>Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Treatment (dose, mg/day)</th>
<th>Duration (weeks)</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Other psychiatric co-morbidities</th>
<th>% with psychosis</th>
<th>Age, mean±SD (range)</th>
<th>Females (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burt, 1999 (USA)</td>
<td>Case series; retrospective</td>
<td>Out-patients</td>
<td>11</td>
<td>DZP (5 mg for the first 4 weeks; after: 10 mg)</td>
<td>4.5 (3 days-6 weeks)</td>
<td>BD I; 4 manic, 5 mixed, 1 hypomanic, 1 depressive episode. Resistant to or intolerant of at least two prior approved treatments for bipolar disorder; partial responders or nonresponders to lithium.</td>
<td>na</td>
<td>81.8% had previous psychotic mood episode; 63.6% alcohol or other drugs dependence</td>
<td>0% (at the time of enrolment)</td>
<td>39.2 (20-54)</td>
<td>63.6%</td>
</tr>
<tr>
<td>Chen, 2013 (China)</td>
<td>RCT</td>
<td>In-patients</td>
<td>15 in the treated and 15 in placebo group</td>
<td>DZP (5 mg for the 1st week and increased to 10 mg) vs. Placebo + Lithium in both groups</td>
<td>4</td>
<td>BD I with acute manic episodes</td>
<td>na</td>
<td>na</td>
<td>33.9±15.8 (treated) vs. 34.6±11.0 (placebo)</td>
<td>40.0% in both groups</td>
<td></td>
</tr>
<tr>
<td>Evins, 2006 (USA)</td>
<td>RCT</td>
<td>Out-patients</td>
<td>6 in the treated and 5 in the placebo group</td>
<td>DZP (5 mg for 4 weeks and increased to)</td>
<td>6</td>
<td>Adult; Resistant BD I, all manic, with a YMRS≥15</td>
<td>na</td>
<td>0% (treated) vs. 36.6±11.2</td>
<td>66.7% in the treated vs. 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study/Year (Country)</td>
<td>Design</td>
<td>Setting</td>
<td>Participants</td>
<td>Treatment (dose, mg/day)</td>
<td>Duration (weeks)</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Other psychiatric co-morbidities</td>
<td>% with psychosis</td>
<td>Age, mean±SD (range)</td>
<td>Females (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Gildengers, 2008 (USA)</td>
<td>Open-label pilot</td>
<td>Out-patients</td>
<td>12</td>
<td>Group 10 mg in the last 2 weeks vs. Placebo</td>
<td>12</td>
<td>Points+ stable serum lithium, valproate, or carbamazepine concentrations</td>
<td>past 2 months; other psychiatric or medical disorders; diseases requiring use of anticholinergic medications or cholinomimetics; pregnancy or lactation</td>
<td>Age 60 ys or older; BD I-II; clinical euthymia (HRSD-17 and YMRS<10); corrected visual ability to read newspaper headlines and hearing capacity adequate to respond to a raised conversational voice; cognitive dysfunction Dementia; neurological diseases; cholinesterase inhibitors; drugs/alcohol dependence</td>
<td>na 0%</td>
<td>74.4±7.9</td>
<td>58.3%</td>
</tr>
<tr>
<td>Kelly, 2007 (USA)</td>
<td>Naturalistic case-series</td>
<td>Out-patients</td>
<td>58</td>
<td>DZP (5 mg; up to 10 in non-responders); Mean (SD) 8.8(2.13)</td>
<td>47.2±32.0</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>42.7±13.7</td>
<td>67.2%</td>
<td></td>
</tr>
<tr>
<td>Study/Year (Country)</td>
<td>Design</td>
<td>Setting</td>
<td>Participants</td>
<td>Treatment (dose, mg/day)</td>
<td>Duration (weeks)</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Other psychiatric co-morbidities</td>
<td>% with psychosis</td>
<td>Age, mean±SD (range)</td>
<td>Females (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Sub-total DZP (means, SDs and percentages are weighted with n values)</td>
<td>RCTs: (N=2); naturalistic case-series (N=1); open-label: (N=1); ase series retrospective: (N=1)</td>
<td>Out-patients (N=4); in-patients (N=1)</td>
<td>Treated with DZP: 102; Controls: 20 (placebo); Start dose: 5 mg, target dose: 10 mg (N=4), 5-10 mg (n=1)</td>
<td>All studies: 20 weeks; RCT: 5 weeks; Other: 21 weeks</td>
<td>BD I all phases (N=1), BD I manic (N=1), resistant BD I manic (N=1), BD I or II euthymic (N=2)</td>
<td>Suicide attempts, cholinergic medications, medical condition and substance abuse (N=3), na (N=2), psychiatric comorbidity (N=1), dementia (N=1)</td>
<td>na (N=3); Psychotic mood episode: 81.8% (N=1)</td>
<td>na (N=3); 0% (N=2)</td>
<td>Treated: 44.7±17.2 years; Controls: 35.2±10.8 years</td>
<td>61.8%; Controls: 57.1%</td>
<td></td>
</tr>
<tr>
<td>Galañtamine (GAL)</td>
<td>RCT</td>
<td>Out-patients</td>
<td>6 in the treated; 10 in the placebo group</td>
<td>GAL SR (8 mg/d for the first 4 weeks; 16 mg/d for the following; 24 mg/d for the last 4 weeks) vs. Placebo Mean (SD)=19.4 (6.8)</td>
<td>12</td>
<td>Age 18-60 years; BD I 60%, BD II 40%, minimally symptomatic, subjective self-reports of cognitive impairments; MRS≤15; MADRS≤10; MMS≥2</td>
<td>Substance abuse in the previous month; psychiatric or medical conditions; active suicidal ideation.</td>
<td>0%</td>
<td>Treated: 46.9±10.9 (treated) vs. placebo: 46.3±9.8</td>
<td>54% in the treated group vs. 33% in the placebo group</td>
<td></td>
</tr>
<tr>
<td>Iosifescu, 2009 (USA)</td>
<td>Open-label with controls</td>
<td>Out-patient</td>
<td>11 completers BP I-II; 10 age-and sex matched healthy controls</td>
<td>GAL-ER (8 mg/day for the first 4 weeks; 5-8 weeks: up to 16 mg/day; 8-16 weeks: up to 24 mg/day) Range 8-24</td>
<td>16</td>
<td>Age 18-65; DSM-IV BD I 75%, BD II 25%, all euthymic in remission; HAM-D 17 and YMRS <10; subjective cognitive deficits</td>
<td>Suicidal ideation; pregnancy; medical conditions; psychosis; mood disorders with psychotic features; active smoking; drugs/alcohol dependence; ECT</td>
<td>0% vs. 0% (healthy controls)</td>
<td>40.7±11.9 (treated) vs. 38.9±10.1 (placebo)</td>
<td>30% in both groups</td>
<td></td>
</tr>
<tr>
<td>Study/Year (Country)</td>
<td>Design</td>
<td>Setting</td>
<td>Participants</td>
<td>Treatment (dose, mg/day)</td>
<td>Duration (weeks)</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Other psychiatric co-morbidities</td>
<td>% with psychosis</td>
<td>Age, mean±SD (range)</td>
<td>Females (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Schrauwen, 2006 (USA)</td>
<td>Retrospective case series</td>
<td>In-patients</td>
<td>4</td>
<td>GAL Mean (SD)=18(12)</td>
<td>38±34</td>
<td>BD I, Manic or hypomanic</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>44.3±11.0</td>
<td>75%</td>
</tr>
<tr>
<td>Sub-total GAL (means, SDs and percentages are weighted with n values)</td>
<td></td>
</tr>
<tr>
<td>RCT: (N=1); open-label: (N=1); retrospective case series: (N=1)</td>
<td></td>
</tr>
<tr>
<td>Treated with GAL: 30 Controls: 20 (10 placebo+10 healthy controls)</td>
<td></td>
</tr>
<tr>
<td>Weeks 1-4: 8 mg/d, weeks 5-8: 16 mg/d, weeks 9-12: 24 mg/d (N=2), mean (SD)=18 (12) mg/d (N=1), 19.4 (6.8) mg/d (N=1); range: 8-24 mg/d.</td>
<td></td>
</tr>
<tr>
<td>All studies: 22 weeks; RCTs: 14 weeks; Other: 27 weeks</td>
<td></td>
</tr>
<tr>
<td>BD I, Manic or hypomanic (N=1), BD I or II minimally symptomatic with subjective cognitive impairment (N=1); BD I or II euthymic in remission (N=1)</td>
<td></td>
</tr>
<tr>
<td>Memantine (MEM)</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Treated: 49.0±13.5 years; Controls: 47.7±13.7 years</td>
<td></td>
</tr>
<tr>
<td>Treated: 42.3%</td>
<td></td>
</tr>
<tr>
<td>Controls: 30%</td>
<td></td>
</tr>
</tbody>
</table>

Exclusion criteria:
- contraindications to MRI;
- patients taking other cholinesterase inhibitors, succinyllcholine, neuromuscular blocking agents, cholinergic agonists (e.g., betanechol), cimetidine, ketoconazole, erythromycin, fluoxetine, and fluvoxamine.

Other psychiatric co-morbidities:
- suicidal ideation, substance abuse, major psychiatric condition, (N=2), plus ECT, cholinergic medications (N=1), na (N=1)
<table>
<thead>
<tr>
<th>Study/Year (Country)</th>
<th>Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Treatment (dose, mg/day)</th>
<th>Duration (weeks)</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Other psychiatric co-morbidities</th>
<th>% with psychosis</th>
<th>Age, mean±SD (range)</th>
<th>Females (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anand, 2012 (USA)</td>
<td>RCT</td>
<td>Out-patients</td>
<td>12 in both groups</td>
<td>MEM (5 mg/d 1st week and increasing 5 mg/d each week until 20 mg/d) vs. Placebo (range: 5-20 mg/d)</td>
<td>8</td>
<td>Age 18–65; DSM-IV-TR BD I (62%); BD II (38%); current depressive episode; lamotrigine inadequate-response; stable dose of other antidepressants, mood stabilizers, or any other psychotropic drugs, if any, for the past four weeks</td>
<td>Suicidal or homicidal risk; medical conditions; pregnancy, planning to be pregnant, or not using adequate contraception; substance dependence within six months prior to the start of the study; any medication with significant known adverse interaction with either memantine or lamotrigine; schizophrenia or schizoaffective disorder</td>
<td>ADHD, OCD, anxiety disorders, substance abuse</td>
<td>0%</td>
<td>38±15 (treated) vs. 41±14 (placebo)</td>
<td>64.3% in the treated vs. 53.3% in the placebo group</td>
</tr>
<tr>
<td>Keck, 2009 (USA)</td>
<td>Open-label, pilot, multicenter</td>
<td>In-patients</td>
<td>19</td>
<td>MEM (20-40 mg/day)</td>
<td>3</td>
<td>BD type I (manic or mixed episode); YMRS>20; 18-65</td>
<td>ADHD; OCD; anxiety disorders; substance abuse</td>
<td>0%</td>
<td>41.2±12.0 (18-66)</td>
<td>54.3%</td>
<td></td>
</tr>
<tr>
<td>Koukopoulos, 2012 (Italy)</td>
<td>Naturalistic open-label</td>
<td>Out-patient</td>
<td>40</td>
<td>MEM (10-30 mg/day)</td>
<td>48</td>
<td>>18 ys; BD I (52.5%), or BD II (47.5%); rapid cyclers (47.5%), long cycles (22.5%),</td>
<td>na</td>
<td>na</td>
<td>47.5%</td>
<td>49.0±16.0</td>
<td>75%</td>
</tr>
<tr>
<td>Study/Year (Country)</td>
<td>Design</td>
<td>Setting</td>
<td>Participants</td>
<td>Treatment (dose, mg/day)</td>
<td>Duration (weeks)</td>
<td>Inclusion criteria</td>
<td>Exclusion criteria</td>
<td>Other psychiatric comorbidities</td>
<td>% with psychosis</td>
<td>Age, mean±SD (range)</td>
<td>Females (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Lee, 2014 (Taiwan)</td>
<td>RCT</td>
<td>Out- and in-patients</td>
<td>81 in the treated vs. 76 in the placebo group</td>
<td>MEM (5 mg/d) vs. placebo + valproate 5 mg/d 1st week and increasing 5 mg/d each week until 20 mg/d, range 5-20 (N=1); range: 20-40 mg/d (N=1); range: 10-30 mg/d (N=1), 5 mg/d + valproate (N=1)</td>
<td>12</td>
<td>BD type II, depressed mood.</td>
<td>Other psychiatric diseases; drugs dependence; taking MEM 1 week before the beginning of the study</td>
<td>0%</td>
<td>32.4±11.8 (treated) vs. 29.8±10.6 (placebo)</td>
<td>48.1% in the treated vs. 61.8% in the placebo group</td>
<td></td>
</tr>
</tbody>
</table>

Sub-total MEM (means, SDs and percentages are weighted with n values)

<table>
<thead>
<tr>
<th>Study/Year (Country)</th>
<th>Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Treatment (dose, mg/day)</th>
<th>Duration (weeks)</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Other psychiatric comorbidities</th>
<th>% with psychosis</th>
<th>Age, mean±SD (range)</th>
<th>Females (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (means, SDs and percentages are weighted with n values)</td>
<td>RCTs: (N=5); Other designs: (N=7)</td>
<td>Out-patients (N=8); In-patients (N=4); Both: (N=1)</td>
<td>Treated: 284; Controls: 128 (118 with placebo)</td>
<td>DZP: 5 studies; Start dose: 5 mg/d, target dose: 10 mg/d (N=4), 5-10 mg/d (N=1)</td>
<td>All studies: 17.8 weeks; RCTs: 10 weeks; Other: 25.5 weeks</td>
<td>BD I or II euthymic</td>
<td>Substance abuse, Psychiatric condition, interacting drugs (N=3); plus suicidal ideation (N=2); or plus HIV and cognitive decline (N=1), na (N=1)</td>
<td>na (N=2); 0% (N=1); ADHD, OCD, anxiety (N=1)</td>
<td>38.3±15.0 years; Controls: 31.3±11.7 years</td>
<td>Treated: 56.6%; Controls: 60.2%</td>
<td></td>
</tr>
</tbody>
</table>

GAL: 4 studies; Start dose: 5 mg/d, target dose: 10 mg/d (N=4), 5-10 mg/d (N=1) | All studies: 20 weeks; RCTs: 9.7 weeks; Other: 28.2 weeks | BD I all phases (N=1); BD I manic (N=1); resistant BD I manic (N=1); BD I manic or hypomanic | Substance abuse (N=8); interacting drugs (N=7); plus suicidal ideation (N=7); other psychiatric condition (N=7), na (N=4), 0% | na (N=10); 0% (N=3) | Treated: 41.8±16.1 years; Controls: 36.1±13.9 years | Treated: 57.5%; Controls: 55.0% |
<table>
<thead>
<tr>
<th>Study/Year (Country)</th>
<th>Design</th>
<th>Setting</th>
<th>Participants</th>
<th>Treatment (dose, mg/day)</th>
<th>Duration (weeks)</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Other psychiatric co-morbidities</th>
<th>% with psychosis</th>
<th>Age, mean±SD (range)</th>
<th>Females (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weeks 1-4: 8 mg/d, weeks 5-8: 16 mg/d, weeks 9-12: 24 mg/d (N=2), mean (SD)=18 (12) mg/d (N=1), 19.4 (6.8) mg/d (N=1), range: 8-24 mg/d, MEM: 4 studies; 5 mg/d 1st week and increasing 5 mg/d each week until 20 mg/d, range: 5-20 mg/d (N=1), 20-40 mg/d (N=1), 10-30 mg/d (N=1), 5 mg/d + valproate (N=1)</td>
<td>(N=1); BD I manic or mixed episode (N=1), BD I or II minimally symptomatic with subjective cognitive impairment (N=1); BD I or II, current depressive episode, BD II depressed mood (N=1); BD I or BD II rapid cyclers, long cyclers, phase na (N=1)</td>
<td>ECT (N=1); medical condition (N=3) and substance abuse (N=3); HIV and cognitive decline (N=2); psychiatric comorbidity (N=1)</td>
<td>(N=1); alcohol or other drugs dependence</td>
<td>63.6% (N=1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: ADHD: Attention-Deficit/Hyperactivity Disorder; BD: bipolar disorder; BPRS: Brief Psychiatric Rating Scale; CVLT-II: California Verbal Learning Test; DKEFS: Delis-Kaplan Executive Functioning System; DZP: donepezil; ECT: Electroconvulsive Therapy; GAF: global assessment of functioning scale; CGI: clinical Global Impression; HAM-D: Hamilton Depression Scale; GAL: galantamine; IADL: instrumental activities of daily living; LIFE-RIFT: the Life Chart Methodology, and the Longitudinal Interval Follow-up Evaluation Range of Impaired Functioning Tool; MADRS: Montgomery Asberg Depression Rating Scale; MEM: memantine; MMSE: mini-mental state examination;
MRS: Mania Rating Scale; N: number of studies; na: not available; OCD: obsessive compulsive disorders; YMRS: Young Mania Rating Scale; WCST: Wisconsin Card Sorting Test.
Table 2. Main Efficacy and Safety Outcomes in Studies Investigating Anti-dementia Drugs in Bipolar Disorder

<table>
<thead>
<tr>
<th>Study/Year (Country)</th>
<th>Participants Characteristics</th>
<th>Depression</th>
<th>Mania</th>
<th>Global</th>
<th>Cognitive</th>
<th>Psychosis</th>
<th>Side effects</th>
<th>Jadad score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burt, 1999 (USA)</td>
<td>11 patients (4 manic, 5 mixed, 1 hypomanic, 1 depressed); All responders at 5, no one at 10 mg</td>
<td>na</td>
<td>na</td>
<td>Mean decrease of CGI-S of 1.46 points; Mean GAF increase of 11.5 points</td>
<td>na</td>
<td>na</td>
<td>5 patients: 2 insomnia, 2 nausea, 2 diarrhea, 1 sedation</td>
<td>0</td>
</tr>
<tr>
<td>Chen, 2013 (China)</td>
<td>All manic. (15 DZP vs. 15 PLB)</td>
<td>YMRS: -18.6±3.2 (DZP) vs. -25.3±5.5 (PLB) P=0.16</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>19 mild to moderate AE (DZP) vs. 7 mild to moderate AE (PLB)</td>
<td>5</td>
</tr>
<tr>
<td>Evins, 2006 (USA)</td>
<td>All manic. (6 DZP vs. 5 PLB)</td>
<td>No clinical response (reduction of YMRS >30% compared to baseline) in DZP; 60% clinical response in PLB group (p=0.06)</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>33 AE in DZP group vs. 7 in PLB; 4/6 of DZP group discontinued the treatment for AE vs. 0/5 in PLB group; 1 serious AE in DZP group (ultrarapid cycling)</td>
<td>4</td>
</tr>
<tr>
<td>Gildengers, 2008 (USA)</td>
<td>12 older BP patients with cognitive</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>No significant effects were observed in</td>
<td>na</td>
<td>1 nausea; 2 manic activation.</td>
<td>1</td>
</tr>
<tr>
<td>Study/ Year (Country)</td>
<td>Participants Characteristics</td>
<td>Depression</td>
<td>Mania</td>
<td>Global</td>
<td>Cognitive</td>
<td>Psychosis</td>
<td>Side effects</td>
<td>Jadad score</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Kelly, 2007 (USA)</td>
<td>58BD patients</td>
<td>na</td>
<td>na</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cognitive performance assessed with digit-span (attention); Trails A+ digit symbol (information processing speed); Trails B+ STROOP (executive function)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ghaemi, 2009 (USA)</td>
<td>16 BD I-II (6 GAL vs. 10 PLB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MADRS: -4.3±10.0 (GAL) vs. -3.5±5.5 (PLB) (p=0.78)</td>
<td>MRS: -2.2±5.1 (GAL) vs. -0.5±4.1 (PLB) (p=0.31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study/Year (Country)</td>
<td>Participants Characteristics</td>
<td>Depression</td>
<td>Mania</td>
<td>Global</td>
<td>Cognitive</td>
<td>Psychosis</td>
<td>Side effects</td>
<td>Jadad score</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(p=0.13)</td>
<td>(p=0.80)</td>
<td>CVLT learning:</td>
<td>na</td>
<td>2</td>
</tr>
<tr>
<td>Iosifescu, 2009 (USA)</td>
<td>11 BD vs. 10 HCs</td>
<td>HDRS-17: 2.9±4.1 (GAL) vs. 0.9±1.7 (HCS) (p=0.20)</td>
<td>YMRS: 2.1±4.4 (GAL) vs. 1.6±4.3 (HCS) (p=0.82)</td>
<td>na</td>
<td>na</td>
<td>2 stopped the treatment in GAL group.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Schrauwen, 2006 (USA)</td>
<td>4 BD I-II</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HDRS: Both groups significantly improved vs. baseline (p<0.0001 for both) without significant differences between groups at final follow-up (p=0.59);</td>
<td>YMRS: No significant differences between groups at follow-up (p=0.56)</td>
<td>na</td>
<td>na</td>
<td>No significant differences of AE between groups; 9/14 stopped the treatment with MEM before the ending</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Anand, 2012 (USA)</td>
<td>All major depressive phase of BD, (14 MEM vs. 15 PLB).</td>
<td>MEM group had a significant higher response rate at week 4</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>2/4 (=50%) reported AEs</td>
<td>0</td>
</tr>
<tr>
<td>Study/Year (Country)</td>
<td>Participants Characteristics</td>
<td>Depression</td>
<td>Mania</td>
<td>Global</td>
<td>Cognitive</td>
<td>Psychosis</td>
<td>Side effects</td>
<td>Jadad score</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Keck, 2009 (USA)</td>
<td>33 manic or mixed BD I patients. Three cohorts: 1: 20-30 mg MEM 2: 30-40 mg MEM 3: 30-50 mg MEM</td>
<td>(p=0.004) and remission rate at week 6 (p=0.004) than PLB group</td>
<td>MADRS: Changes in all cohorts (p=NA)</td>
<td>YMRS: Greatest change at lowest dose of MEM (20 mg); Response=50% reduction in YMRS with lowest and intermediate dose of MEM</td>
<td>CGI-S: Changes in all cohorts (p=NA); CGI-I: Changes in all cohorts (p=NA)</td>
<td>PANSS: Changes in all cohorts (p=NA)</td>
<td>19 (54.3%) with mild to moderate AE</td>
<td>1</td>
</tr>
<tr>
<td>Koukopoulos, 2012 (Italy)</td>
<td>40 BD patients.</td>
<td>na na na na na na</td>
<td>na</td>
<td>na</td>
<td>na</td>
<td>4/40 discontinued MEM, 1/40 for AE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lee, 2014 (Taiwan)</td>
<td>137 depressed BD II (81 MEM vs. 76 PLB)</td>
<td>HDRS: -43.8±61.4% (MEM) vs. -53.1±30.1% (PLB) (p=0.24)</td>
<td>YMRS: -26.5±0.8% (MEM) vs. -30.2±0.6% (PLB) (p=0.74)</td>
<td>na na na na AEs only in PLB group: 1 hair loss, 1 dizziness, 1 suicide attempt</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Best Evidence Synthesis.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Depression Evidence level (Studies (quality) (DZP))</th>
<th>Mania Evidence level (Studies (quality) (GAL))</th>
<th>Global Evidence level</th>
<th>Cognitive Evidence level (Studies (quality) (MEM))</th>
<th>Psychosis Evidence level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies (quality)</td>
<td>Evins (high), 2006: =</td>
<td>Ghaemi (high), 2009: =</td>
<td>Burt (no), 1999: ?</td>
<td>Anand (high), 2012: +</td>
<td>Chen (high), 2013: =</td>
</tr>
<tr>
<td>(DZP)</td>
<td>Evins (high), 2006: =</td>
<td>Ghaemi (high), 2009: =</td>
<td>Gildengers (low), 2008: =</td>
<td>Keck (low), 2009: ?</td>
<td></td>
</tr>
<tr>
<td>Evidence level</td>
<td>Low evidence no effect</td>
<td>Moderate evidence no effect</td>
<td>No evidence</td>
<td>Conflicting evidence CVLT, Moderate evidence no effect</td>
<td>No evidence</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Symbols:
+: significant improvement of drug vs. placebo (RCTs) or vs. control group (open label with control group) or significant improvement at follow-up vs. baseline (other designs);
=: no significant difference between treated vs. placebo (RCTs) or vs. control group (open label with control group) or significant improvement at follow-up vs. baseline (other designs);
- : significant improvement of placebo vs. drug (RCTs) or control group vs. drug (open label with control group) or significant worsening at follow-up vs. baseline (other designs).
?: the study reported data without declaring if significant differences exist.

Quality of the studies:
The quality of involved studies in this systematic review was evaluated using Jadad scale [15]. This scale includes randomization (0–2 points), blinding (0–2 points), and dropouts and withdrawals (0–1 point). The overall score of a study according to this scale varies among 0-5, with greater scores as a measure of better quality [16]. Studies with Jadad scale of 0, 1, 2 and ≥ 3 were considered as no, low-, medium- and high-quality, respectively.

Evidence level:
Strong evidence: 2 high-quality studies in agreement about an outcome;
Moderate evidence: 1 high-quality + 1 medium quality, or 3 medium-quality studies in agreement; Low evidence: 1 high quality, or 2 medium-quality, or 3 low studies in agreement;
No evidence: 1 medium-quality study, or < 3 low quality studies in agreement, or any number of no quality studies in agreement, or no studies at all;
Conflicting evidence: contrasting findings of low to strong evidence among studies.
FIGURE LEGENDS

Figure 1. PRISMA flow-chart

Highlights

- Only few and small studies evaluated donepezil, galantamine or memantine in bipolar disorder.
- Evidence points to no effect of donepezil and galantamine for all aspects of bipolar disorder.
- For memantine, efficacy results are conflicting regarding depression and global functioning.
- There is currently no support for using donepezil, galantamine or memantine in bipolar disorder.
Records identified through database search (n = 430)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 214)

Records screened (n = 214)

Records excluded (n = 198)

Full-text articles assessed for eligibility (n = 16)

Full-text articles excluded, with reasons (n = 4)
- Reviews (n = 2)
- Duplicate data (n = 1)
- Electroconvulsive therapy (n = 1)

Studies included in the qualitative synthesis (n = 12)