Design of Polynomial Fuzzy Observer-Controller with Sampled-Output Measurements for Nonlinear Systems Considering Unmeasurable Premise Variables

Chuang Liu, and H.K. Lam, Senior Member, IEEE

Abstract—In this paper, we propose a polynomial fuzzy observer-controller for nonlinear systems where the design is achieved through the stability analysis of polynomial-fuzzy-model-based (PFMB) observer-control system. The polynomial fuzzy observer estimates the system states using estimated premise variables. The estimated states are then employed by the polynomial fuzzy controller for the feedback control of nonlinear systems represented by the polynomial fuzzy model. The system stability of the PFMB observer-control system is analyzed based on the Lyapunov stability theory. Although using estimated premise variables in polynomial fuzzy observer can handle a wider class of nonlinear systems, it leads to a significant drawback that the stability conditions obtained are non-convex. Matrix decoupling technique is employed to achieve convex stability conditions in the form of sum of squares (SOS). We further extend the design and analysis to polynomial fuzzy observer-controller using sampled-data technique for nonlinear systems where only sampled-output measurements are available. Simulation examples are presented to demonstrate the feasibility and validity of the design and analysis results.

Index Terms—Polynomial fuzzy controller, polynomial fuzzy observer, sampled-output measurements, unmeasurable premise variables, sum of square (SOS).

I. INTRODUCTION

TAKAGI-SUGENO (T-S) fuzzy model [1], [2] has been widely used as a modeling tool for nonlinear systems. It represents nonlinear systems as a combination of local linear subsystems weighted by membership functions. This particular modeling structure allows analysis techniques and control methods used for linear systems to be applied. Recently, polynomial fuzzy model [3], [4] was proposed to generalize the T-S fuzzy model. The modeling process is achieved by the T-S or polynomial fuzzy model, Lyapunov stability theory [7] was employed as a mathematical tool to analyze the system stability. Stability conditions in terms of linear matrix inequalities (LMIs) [5], [8] and sum of squares (SOS) approach [9] are employed for T-S and polynomial fuzzy models, respectively, which can be numerically solved by convex programming techniques. Together with stability analysis, control synthesis can be achieved by the concept of parallel distributed compensation (PDC) [3], [7] and solving LMIs or SOS conditions rather than by predefining the feedback gains using trial-and-error or other design techniques (for example, pole placement).

Following the basic framework of fuzzy-model-based (FMB) stability analysis, three major research directions have been extensively investigated [10], [11]. The first direction is reducing the conservativeness of stability conditions by investigating the fuzzy summations. Due to the abandon of membership functions during the analysis, stability conditions are only sufficient but not necessary. To relax the stability conditions, the fuzzy summation was investigated in [12], [13] and further generalized by Pólya’s theory in [14], [15]. The second direction is the variation of Lyapunov function candidates, for instance, quadratic Lyapunov function [7], switching Lyapunov function [16]–[18], fuzzy Lyapunov function [19]–[21], piecewise linear Lyapunov function [22], [23] and polynomial Lyapunov function [18], [20], [24]. The third direction is the membership-function-dependent analysis which brings the information of membership functions into stability analysis such as using symbolic variables [6], [25], [26], polynomial constraints [27], approximated membership functions [28], [29], and other techniques [21], [30]–[32]. Slack matrices are employed to carry the information of membership functions to stability conditions through S-procedure [33] at the expense of computational demand.

Based on the development of relaxed stability conditions, FMB control strategy is extended to control problems such as uncertainty [34], sampled-data system [35], [36] and output feedback [37]. Observer, being used in one of the output feedback control schemes, is exploited to estimate the states of systems when the output is only available for measuring. Fuzzy observer was proposed in [8] for the nonlinear system represented by the T-S fuzzy model. Under the restriction that the fuzzy model and fuzzy observer share the same set of premise membership functions depending on measurable premise system states, separation principle [38] can be applied to design the fuzzy controller and fuzzy observer independently. To widen the applicability of the fuzzy observer, the case that fuzzy observer with premise membership functions depending on estimated premise system states was considered in [39]. However, a two-step procedure was needed to solve the

The work described in this paper was partly supported by King’s College London and China Scholarship Council.

C. Liu and H.K. Lam are with the Department of Informatics, King’s College London, Strand, London, WC2R 2LC, United Kingdom. e-mail: [chuang.liu, hak-keung.lam]@kcl.ac.uk.

Manuscript received 2014.
II. PRELIMINARY

A. Notation

The following notation is employed throughout this paper [9]. A monomial in $x(t) = [x_1(t), x_2(t), \ldots, x_n(t)]^T$ is a function of the form $x_1^d_1(t)x_2^d_2(t) \cdots x_n^d_n(t)$, where $d_i \geq 0, i = 1, 2, \ldots, n$, are integers. The degree of a monomial is $d = \sum_{i=1}^{n} d_i$. A polynomial $p(x(t))$ is a finite linear combination of monomials with real coefficients. A polynomial $p(x(t))$ is an SOS if it can be written as $p(x(t)) = \sum_{j=1}^{m} q_j(x(t))^2$, where $q_j(x(t))$ is a polynomial and m is a nonnegative integer. It can be concluded that if $p(x(t))$ is an SOS, then $p(x(t)) \geq 0$. The expressions of $M > 0, M \geq 0, M < 0$, and $M \leq 0$ denote the positive, semi-positive, negative, and semi-negative definite matrices M, respectively. The symbol “$*$” in a matrix represents the transposed element in the corresponding position.

B. Polynomial Fuzzy Model

The i^{th} rule of the polynomial fuzzy model for the nonlinear system is presented as follows [3]:

Rule i: IF $f_1(x(t)) \text{ is } M^i_1 \text{ AND } \cdots \text{ AND } f_\Psi(x(t)) \text{ is } M^i_\Psi$, THEN $x(t) = A_i(x(t))x(t) + B_i(x(t))u(t)$,
$$y(t) = C_i(x(t))x(t),$$
where $x(t) = [x_1(t), x_2(t), \ldots, x_n(t)]^T$ is the state vector, and n is the dimension of the nonlinear system; $f_i(x(t))$ is the premise variable corresponding to its fuzzy term M^i_η in rule $i, \eta = 1, 2, \ldots, \Psi, \Psi$ is a positive integer; $A_i(x(t)) \in \mathbb{R}^{n \times N}$ and $B_i(x(t)) \in \mathbb{R}^{n \times m}$ are the known polynomial system and input matrices, respectively; $u(t) \in \mathbb{R}^m$ is the control input vector; $y(t) \in \mathbb{R}^l$ is the output vector; $C_i(x(t)) \in \mathbb{R}^{l \times N}$ is the polynomial output matrix. The dynamics of the nonlinear system is given by

$$\dot{x}(t) = \sum_{i=1}^{P} w_i(x(t))(A_i(x(t))x(t) + B_i(x(t))u(t)),$$
$$y(t) = \sum_{i=1}^{P} w_i(x(t))C_i(x(t))x(t),$$
where p is the number of rules in the polynomial fuzzy model; $w_i(x(t))$ is the normalized grade of membership, $w_i(x(t)) = \prod_{\eta=1}^{\Psi} \mu_{M^i_\eta}(f_\eta(x(t)))$,
$$\sum_{\eta=1}^{\Psi} \prod_{\eta=1}^{\Psi} \mu_{M^i_\eta}(f_\eta(x(t))) = 1; \mu_{M^i_\eta}(f_\eta(x(t))), \eta = 1, 2, \ldots, \Psi, \Psi \text{ are grades of membership corresponding to the fuzzy term } M^i_\eta.$$

C. Polynomial Fuzzy Observer

For brevity, time t is dropped from now. Considering premise variable $f_\eta(x)$ depending on unmeasurable states x, we apply the following polynomial fuzzy observer to estimate the states in (1). The i^{th} rule of the polynomial fuzzy observer is described as follows:

Rule i: IF $f_1(\hat{x}) \text{ is } M^i_1 \text{ AND } \cdots \text{ AND } f_\Psi(\hat{x}) \text{ is } M^i_\Psi$, THEN
$$\dot{\hat{x}} = A_i(\hat{x})\hat{x} + B_i(\hat{x})u + L_i(\hat{x})(y - \hat{y}),$$
$$\hat{y} = C_i(\hat{x})\hat{x},$$
where $\hat{x} \in \mathbb{R}^n$ is the estimated state x; $\hat{y} \in \mathbb{R}^l$ is the estimated output y; $L_i(\hat{x}) \in \mathbb{R}^{N \times l}$ is the polynomial observer gain. The polynomial fuzzy observer is given by

$$
\dot{\hat{x}} = \sum_{i=1}^{p} w_i(\hat{x}) \left(A_i(\hat{x}) \hat{x} + B_i(\hat{x}) u + L_i(\hat{x})(y - \hat{y}) \right),
$$

$$
\hat{y} = \sum_{i=1}^{p} w_i(\hat{x}) C_i(\hat{x}) \hat{x}.
$$

(2)

It can be seen from (2) that the membership functions of polynomial fuzzy observer depend on estimated system states \hat{x} rather than original system states x.

D. Polynomial Fuzzy Controller

With PDC design approach [3], [7], the i^{th} rule of the polynomial fuzzy controller is described as follows:

Rule i : IF $f_1(\hat{x})$ is M_1 AND ... AND $f_p(\hat{x})$ is M_p,

THEN $u = G_i(\hat{x}) \hat{x}$,

where $G_i(\hat{x}) \in \mathbb{R}^{m \times N}$ is the polynomial controller gain. The polynomial fuzzy controller is given by

$$
u = \sum_{i=1}^{p} w_i(\hat{x}) G_i(\hat{x}) \hat{x}.
$$

(3)

Note that in (3) both the premise variable and the controller gain depend on estimated states \hat{x}.

E. Useful Lemmas

The following lemmas are employed in this paper.

Lemma 1: With X, Y of appropriate dimension and $\beta > 0$, the following inequality holds [59]:

$$
X^T Y + Y^T X \leq \beta X^T X + \frac{1}{\beta} Y^T Y.
$$

Lemma 2: With P, Q of appropriate dimension, $Q > 0$ and a scalar γ, the following inequality holds [59]:

$$
- PQ^{-1} P \leq \gamma^2 Q - 2 \gamma (P^T + P).
$$

Lemma 3 (Jensen’s inequality): With $x(t), Q$ of appropriate dimension, $Q > 0$ and $h > 0$, the following inequality holds [60]:

$$
- h \int_{t-h}^{t} \dot{x}(\varphi)^T Q \dot{x}(\varphi) d\varphi \leq - (x(t) - x(t - h))^T Q (x(t) - x(t - h)).
$$

III. Stability Analysis

In this section, the stability analysis is carried out for PFMB observer-control systems. The formulation of closed-loop PFMB observer-control systems are provided first. Then based on Lyapunov stability theory, stability conditions are obtained in terms of SOS. Matrix decoupling technique is employed to obtain convex SOS-based stability conditions. Finally, using similar techniques, we extend the stability analysis to systems with sampled-output measurement.

A. Polynomial Fuzzy Controller and Observer

The estimation error is defined as $e = x - \hat{x}$, and then we have the closed-loop system (shown in Fig. 1) consisting of the polynomial fuzzy model (1), the polynomial fuzzy controller (3) and the polynomial fuzzy observer (2) as follows:

$$
\dot{\hat{x}} = \sum_{i=1}^{p} \sum_{j=1}^{p} w_i(\hat{x}) w_j(\hat{x}) \left((A_i(x) + B_i(x) G_j(x)) \hat{x} + A_i(x) \epsilon \right),
$$

$$
\hat{y} = \sum_{i=1}^{p} \sum_{j=1}^{p} w_i(\hat{x}) w_j(\hat{x}) \left((A_i(x) + B_i(x) G_j(x)) \hat{x} + L_i(x) (C_i(x) - C_k(x))) \hat{x} + L_j(x) C_i(x) \epsilon \right),
$$

$$
\hat{e} = \sum_{i=1}^{p} \sum_{j=1}^{p} w_i(\hat{x}) w_j(\hat{x}) \left((A_i(x) - A_j(x)) \hat{x} + (B_i(x) - B_j(x)) G_k(x) - L_j(x) (C_i(x) - C_k(x))) \hat{x} + (A_i(x) - L_j(x) C_i(x)) \epsilon \right).
$$

(4)

(5)

(6)

Fig. 1. A block diagram of PFMB observer-control systems.

The control objective is to make the augmented observer-control system ((5) and (6)) asymptotically stable, i.e., $\hat{x} \to 0$ and $\epsilon \to 0$ as time $t \to \infty$, by determining the polynomial controller gain $G_k(x)$ and polynomial observer gain $L_j(x)$.

Theorem 1: The augmented PFMB observer-control system (formed by (5) and (6)) is guaranteed to be asymptotically stable if there exist matrices $X \in \mathbb{R}^{N \times N}, Y \in \mathbb{R}^{N \times N}, N_i(\hat{x}) \in \mathbb{R}^{m \times N}, M_j(\hat{x}) \in \mathbb{R}^{N \times l}$, $k = 1, 2, \ldots, p$, $j = 1, 2, \ldots, p$, and predefined scalars $\alpha_1 > 0, \alpha_2 > 0, \beta > 0$ such that the following SOS-based conditions are satisfied:

$$
u^T (X - \varepsilon_1 I) \nu \text{ is SOS};
$$

$$
u^T (Y - \varepsilon_2 I) \nu \text{ is SOS};
$$

$$- \nu^T (\Phi_{ijk}(x, \hat{x}) + \Phi_{ikj}(x, \hat{x}) + \varepsilon_3(x, \hat{x}) I) \nu \text{ is SOS}
$$

$$\forall i, j \leq k;
$$

$$- \nu^T (\Theta_{ijk}(x, \hat{x}) + \Theta_{ikj}(x, \hat{x}) + \varepsilon_4(x, \hat{x}) I) \nu \text{ is SOS}
$$

$$\forall i, j \leq k;
$$

where

$$
\Phi_{ijk}(x, \hat{x}) = \begin{bmatrix}
\Gamma_{ijk}(x, \hat{x}) & \Phi_{12}(x, \hat{x}) \\
* & -\frac{1}{\alpha_2} Y & 0 \\
* & * & -\frac{1}{\beta} I
\end{bmatrix},
$$

$$
\Theta_{ijk}(x, \hat{x}) = \begin{bmatrix}
\Lambda_{ijk}(x, \hat{x}) & \Theta_{12}(x, \hat{x}) & \Phi_{13}(x, \hat{x}) \\
* & -\frac{1}{\alpha_2} I & 0 \\
* & * & -\beta I
\end{bmatrix},
$$

(11)

(12)
\(\dot{\Gamma}_{ijk}(x, \bar{x}) = \left[\begin{array}{c}
\Xi_{kk}^{(1)}(\bar{x}) + \Xi_{kk}^{(1)}(\bar{x})^T \\
\Xi_{kk}^{(2)}(x, \bar{x}) + \Xi_{kk}^{(2)}(x, \bar{x})^T
\end{array} \right], \hspace{1cm} \gamma \Omega_{ijk}(x, \bar{x}) = \left[\begin{array}{c}
-\alpha_1 \bar{Y} \\
\Xi_{ij}^{(12)}(x, \bar{x}) + \Xi_{ij}^{(22)}(x, \bar{x})^T
\end{array} \right], \hspace{1cm} (13)\)

where \(P = \begin{bmatrix} X^{-1} & 0 \\ 0 & Y \end{bmatrix}, X > 0, Y > 0, \) and thus \(P > 0.\) The time derivative of Lyapunov function is

\[\dot{V}(z) = \sum_{i,j,k=1}^p \tilde{w}_{ijk}z^T(P\Xi_{ijk}(x, \bar{x}) + \Xi_{ijk}(x, \bar{x})^TP)z.\]

Therefore, \(\dot{V}(z) < 0\) holds if

\[\sum_{i,j,k=1}^p \tilde{w}_{ijk}(P\Xi_{ijk}(x, \bar{x}) + \Xi_{ijk}(x, \bar{x})^TP) < 0.\]

Remark 1: The augmented PFMB observer-control system (24) is guaranteed to be asymptotically stable if \(V(z) > 0\) by satisfying \(P > 0\) and \(\dot{V}(z) < 0\) by satisfying (33) excluding \(x = 0.\) It should be noted that the condition (33) is not convex. If the condition (33) is applied, the polynomial fuzzy controller gain \(G_k(\bar{x})\) and polynomial fuzzy observer gain \(L_j(\bar{x})\) are needed to be pre-determined.

In the following, we apply congruence transformation and matrix decoupling technique to obtain convex SOS stability conditions such that the polynomial fuzzy controller gain \(G_k(\bar{x})\) and polynomial fuzzy observer gain \(L_j(\bar{x})\) can be obtained using convex programming techniques.

Performing congruence transformation to (33) by pre-multiplying and post-multiplying \(P^{-1} = \begin{bmatrix} X & 0 \\ 0 & Y^{-1} \end{bmatrix}\) to both sides and denoting \(N_k(\bar{x}) = G_k(\bar{x})X,\) we have

\[\sum_{i,j,k=1}^p \tilde{w}_{ijk}(\hat{\Xi}_{ijk}(x, \bar{x}) + \Xi_{ijk}(x, \bar{x})^TP) < 0,\]

where

\[\begin{align*}
\hat{\Xi}_{ijk}(x, \bar{x}) &= \begin{array}{c}
\Xi_{ij}^{(11)}(\bar{x}) + H_{ijk}(x, \bar{x}) \\
\Xi_{ij}^{(21)}(x, \bar{x}) - H_{ijk}(x, \bar{x}) \\
\Xi_{ij}^{(12)}(x, \bar{x}) \\
\Xi_{ij}^{(22)}(x, \bar{x})
\end{array}, \\
\Xi_{ijk}(x, \bar{x}) &= \begin{array}{c}
\Xi_{ij}^{(11)}(\bar{x}) + H_{ijk}(x, \bar{x})X \\
\Xi_{ij}^{(21)}(x, \bar{x}) - H_{ijk}(x, \bar{x})X \\
\Xi_{ij}^{(12)}(x, \bar{x}) \\
\Xi_{ij}^{(22)}(x, \bar{x})
\end{array},
\end{align*}\]

(35)

(36)

(37)

Applying Lemma 1, we have

\[\sum_{i,j,k=1}^p \tilde{w}_{ijk}(\hat{\Xi}_{ijk}(x, \bar{x}) + \Xi_{ijk}(x, \bar{x})^TP) \leq \sum_{i,j,k=1}^p \tilde{w}_{ijk}(\Xi_{ijk}(x, \bar{x}) + \beta \Phi^{(13)}(\Phi^{(13)})^T) + \frac{1}{\beta} \left(\sum_{i,j,k=1}^p \tilde{w}_{ijk} \Phi^{(13)}(x, \bar{x}) \right) \left(\sum_{i,j,k=1}^p \tilde{w}_{ijk} \Phi^{(13)}(x, \bar{x}) \right)^T,\]

(38)
Polynomial fuzzy controller gain (43) is related to the polynomial fuzzy observer gain (44) as follows:

\[
\Phi_{ijk}(x, \bar{x}) = \left[\hat{\Theta}_{ij}(x, \bar{x}) - \bar{H}_{ijk}(x, \bar{x}) \right]^T,
\]

where \(\bar{H}_{ijk}(x, \bar{x}) \) is defined in (16).

Using matrix decoupling technique [40] to further separate decision variables in order to obtain convex SOS stability conditions, we rewrite \(\bar{Y}_{ijk}(x, \bar{x}) \) as follows:

\[
\bar{Y}_{ijk}(x, \bar{x}) = \bar{Y}_{ijk}(x, \bar{x}) + \bar{A}_{ij}(x, \bar{x}),
\]

where

\[
\bar{Y}_{ijk}(x, \bar{x}) = \left[\hat{\Theta}_{ij}(x, \bar{x})^+ + \alpha_1 \bar{Y}^{-1} \hat{\Theta}_{ij}(x, \bar{x})^+ - \alpha_2 \bar{I} \right],
\]

\[
\bar{A}_{ij}(x, \bar{x}) = \left[-\alpha_1 \bar{Y}^{-1} \hat{\Theta}_{ij}(x, \bar{x})^+ + \alpha_2 \bar{I} \right].
\]

Remark 2: The decoupled matrix in (42) is related to the polynomial fuzzy controller gain \(G_k(\bar{x}) \) while the one in (43) is related to the polynomial fuzzy observer gain \(L_j(\bar{x}) \). In this case, more arrangement can be imposed on (43) without affecting (42) which is already a convex problem. Other techniques such as completing squares (Lemma 1 and Lemma 2) [41] and Finsler’s lemma [42] can also be used to further separate decision variables instead of matrix decoupling technique [40]. However, they increase the dimension of matrices or increase the number of decision variables resulting in higher computational demand. In contrast, using matrix decoupling technique leads to smaller dimension of matrices or less number of decision variables at the expense of larger number of stability conditions.

Hence, \(\dot{V}(z) < 0 \) holds if

\[
\sum_{i,j,k=1}^{p} \bar{w}_{ijk} \left(\bar{Y}_{ijk}(x, \bar{x}) + \beta \Phi_{ijk}(x, \bar{x}) \right)^T < 0,
\]

\[
\sum_{i,j,k=1}^{p} \bar{w}_{ijk} \bar{A}_{ij}(x, \bar{x}) + \frac{1}{\beta} \left(\sum_{i,j,k=1}^{p} \bar{w}_{ijk} \bar{\Theta}_{ijk}(x, \bar{x}) \right) \times \left(\sum_{i,j,k=1}^{p} \bar{w}_{ijk} \Phi_{ijk}(x, \bar{x}) \right) ^T < 0.
\]

Performing congruence transformation to (45) by pre-multiplying and post-multiplying diag\{\(Y, \bar{Y} \)\} to both sides, denoting \(M_j(\bar{x}) = YL_j(\bar{x}) \), and then applying Schur Complement to both (44) and (45), we obtain

\[
\sum_{i,j,k=1}^{p} \bar{w}_{ijk} \Phi_{ijk}(x, \bar{x}) < 0,
\]

\[
\sum_{i,j,k=1}^{p} \bar{w}_{ijk} \bar{\Theta}_{ijk}(x, \bar{x}) < 0.
\]

where \(\Phi_{ijk}(x, \bar{x}) \) and \(\bar{\Theta}_{ijk}(x, \bar{x}) \) are defined in (11) and (12), respectively. By grouping terms with same membership functions, \(\dot{V}(z) < 0 \) can be achieved by satisfying conditions (9) and (10). The proof is completed.

B. Polynomial Fuzzy Controller and Observer with Sampled-Output Measurement

Considering premise variable \(f_i(x) \) depending on unmeasurable system states \(x \) and output matrix \(C_i \) not depending on system states \(x \), we denote sampled output \(y_s \) as \(y_s = y(t_k) \), \(t_k, \tilde{t} = 1, 2, \ldots, \infty \), is the sampling time and \(t_{k+1} - t_k \leq h \). The input-delay approach [47] is employed to represent the sampling behavior. Denoting \(\tau(t) = t - \tau(t) \) for \(t_k \leq t < t_{k+1} \), the sampled output vector can be written as \(y_s = y(t - \tau(t)) \). Similarly, the sampled system state vector can be written as \(x_s = x(t - \tau(t)) \).

Remark 3: In case using sampled-output measurements, the output matrix \(C_i \) does not depend on system states \(x \). If \(C_i(x) \) is considered to be a polynomial matrix of \(x \), \(C_i(x_s) \) and \(C_i(x_s) \) will exist in the stability analysis which is more difficult to be handled. Therefore, constant output matrix \(C_i \) is considered in this paper to ease the design and analysis.

We apply the following polynomial fuzzy observer to estimate the system states in (1):

\[
\dot{x} = \sum_{j=1}^{p} w_j(x) \left(A_j(x) \hat{x} + B_j(x) u + L_j(x)(y_s - \hat{y}_s) \right),
\]

\[
y_s = \sum_{i=1}^{p} w_i(x_s) C_i x_s,
\]

\[
\hat{y}_s = \sum_{i=1}^{p} w_i(x_s) C_i x_s,
\]

where \(x_s \in \mathbb{R}^n \) and \(\hat{y}_s \in \mathbb{R}^d \) are the estimated sampled system states and output, respectively.

With the PDC design approach [3], [7], the polynomial fuzzy controller is given in (3). Recalling that the estimation error is defined as \(e = x - \hat{x} \), we define the sampled estimation error as \(e_s = x_s - \hat{x}_s \), and then we have the closed-loop system (shown in Fig. 2) consisting of the polynomial fuzzy model (1), the polynomial fuzzy controller (3) and the polynomial fuzzy observer (48) as follows:

\[
\hat{x} = \sum_{i=1}^{p} \sum_{j=1}^{p} w_i(x_s) w_j(x_s) w_k(x_s) \left(A_j(x) \right) + B_j(x) G_k(x) \hat{x}
\]

\[
+ B_j(x) G_k(x) \hat{x} + L_j(x)(C_i - C_i) x_s
\]

\[
+ L_j(x) C_i e_s,
\]

\[
\dot{x} = \sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{k=1}^{p} \sum_{l=1}^{p} \sum_{m=1}^{p} w_i(x_s) w_j(x_s) w_k(x_s) w_m(x_s) \left(A_m(x) - A_j(x) + (B_m(x) - B_j(x)) G_k(x) \right) \hat{x}
\]
\[+ A_m(x)e - L_j(x)(C_i - C_l)\dot{x}_s - L_j(x)C_t e_s \] (51)

The control objective is to make the augmented observer-control system ((50) and (51)) asymptotically stable, i.e., \(\dot{x} \rightarrow 0 \) and \(e \rightarrow 0 \) as time \(t \rightarrow \infty \), by determining the polynomial controller gain \(G_k(\bar{x}) \) and polynomial observer gain \(L_j(\bar{x}) \).

Theorem 2: The augmented PFMB observer-control system (formed by (50) and (51)) is guaranteed to be asymptotically stable if there exist matrices \(X \in \mathbb{R}^{N \times N}, Y \in \mathbb{R}^{N \times N}, \bar{Q} \in \mathbb{R}^{N \times 2N}, N_i(\bar{x}) \in \mathbb{R}^{m \times N}, M_j(\bar{x}) \in \mathbb{R}^{N \times l}, k = 1, 2, \ldots, p, j = 1, 2, \ldots, p, \) and predefined scalars \(\alpha_1 > 0, \alpha_2 > 0, \alpha_3 > 0, \alpha_4 > 0, \beta > 0 \) and \(\gamma \) such that the following SOS-based conditions are satisfied:

\[
\begin{align*}
\nu^T(X - \varepsilon_1I)\nu &\text{ is SOS;} \\
\nu^T(Y - \varepsilon_2I)\nu &\text{ is SOS;} \\
\nu^T(\bar{Q} - \varepsilon_3I)\nu &\text{ is SOS;} \\
-\nu^T(\Phi_{jkm}(x, \bar{x}) + \Phi_{kjm}(x, \bar{x}) + \varepsilon_4(x, \bar{x})I)\nu &\text{ is SOS} \\
\forall m, j \leq k; \\
-\nu^T(\Theta_{ijlm}(x, \bar{x}) + \varepsilon_5(x, \bar{x})I)\nu &\text{ is SOS} \quad \forall i, j, l, m; \\
\end{align*}
\] (52) (53) (54) (55) (56)

where

\[
\Phi_{jkm}(x, \bar{x}) = \begin{pmatrix} \tilde{\Gamma}_{jkm}(x, \bar{x}) & \tilde{\Phi}_{12} & \tilde{\Phi}_{13} \\ * & -\frac{\alpha_2}{\beta}I & 0 \\ * & * & -\frac{\alpha_3}{\alpha_2}Y \end{pmatrix},
\]

\[
\Theta_{ijlm}(x, \bar{x}) = \begin{pmatrix} \hat{\Lambda}_{ijm}(x, \bar{x}) & \Theta_{12} & \Theta_{13} & \Theta_{14} \\ * & -\frac{1}{\alpha_1}I & 0 & 0 \\ * & * & -\frac{1}{\alpha_4}I & 0 \\ * & * & * & -\frac{\alpha_3}{\alpha_4}I \\ * & * & * & * & -\beta I \end{pmatrix},
\]

\[
\tilde{\Gamma}_{jkm}(x, \bar{x}) = \begin{pmatrix} \Gamma_{11}(x, \bar{x}) & \Gamma_{12}(x, \bar{x}) & \Gamma_{13}(x, \bar{x}) \\ * & -\alpha_4I & 0 \\ * & * & \Gamma_{44}(I) \end{pmatrix},
\]

\[
\tilde{\Phi}_{12} = [0_{N \times 2N} X 0_{N \times 2N}]^T,
\]

\[
\tilde{\Phi}_{13} = [0_{N \times 3N} I 0_{N \times N}]^T,
\]

\[
\hat{\Lambda}_{ijm}(x, \bar{x}) = \begin{pmatrix} \hat{\Lambda}_{11}(x) - Q & \hat{\Lambda}_{12}(x) + Q & 0 \\ * & -2Q & \hat{\Lambda}_{14}(x) \\ * & * & -Q \end{pmatrix},
\]

\[
\Gamma_{11}(x, \bar{x}) = \begin{pmatrix} \Theta_{12} & \Theta_{13} & \Theta_{14} & \Theta_{15} \\ * & -\frac{1}{\alpha_1}I & 0 & 0 \\ * & * & -\frac{1}{\alpha_4}I & 0 \\ * & * & * & -\beta I \end{pmatrix},
\]

\[
\Theta_{12} = [0_{N \times N} Y 0_{N \times 6N}]^T,
\]

\[
\Theta_{13} = [0_{N \times 2N} Y 0_{N \times 5N}]^T,
\]

\[
\Theta_{14} = [0_{N \times 7N} Y]^T,
\]

\[
\hat{\Theta}_{ij}(x) = \begin{pmatrix} \hat{H}_{ij}(x)^T - \hat{H}_{ij}(x)^T & 0_{N \times 4N} \\ h\hat{H}_{ij}(x)^T & h\hat{H}_{ij}(x)^T \end{pmatrix},
\]

\[
\Gamma_{11}(x, \bar{x}) = \begin{pmatrix} \tilde{\Xi}_{jk}(x) + \tilde{\Xi}_{jk}(x)^T & \tilde{\Xi}_{jkm}(x, \bar{x})^T \\ * & -\alpha_1I \end{pmatrix},
\]

\[
\Gamma_{14}(x, \bar{x}) = \begin{pmatrix} h\tilde{\Xi}_{jk}(x)^T & h\tilde{\Xi}_{jkm}(x, \bar{x})^T \\ 0 & 0 \end{pmatrix},
\]

\[
\Gamma_{44}(x, \bar{x}) = \begin{pmatrix} -2\gamma I & 0 \\ 0 & -\alpha_3I \end{pmatrix},
\]

\[
\hat{\Lambda}_{11}(x) = \begin{pmatrix} 0 & \hat{\Xi}_{22}(x) + \hat{\Xi}_{22}(x)^T \\ 0 & K_{ij}(x) \\ 0 & -K_{ij}(x) \end{pmatrix},
\]

\[
\hat{\Lambda}_{12}(x) = \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Xi}_{22}(x)^T \end{pmatrix},
\]

\[
\hat{\Lambda}_{14}(x) = \begin{pmatrix} 0 & 0 \\ 0 & \hat{\Xi}_{22}(x)^T \end{pmatrix},
\]

\[
\hat{\Lambda}_{ij}(x) = \begin{pmatrix} 0 & 0 \\ 0 & \hat{K}_{ij}(x)^T \end{pmatrix},
\]

\[
\hat{\Lambda}_{24}(x) = \begin{pmatrix} 0 & 0 \\ 0 & -2\gamma I \end{pmatrix},
\]

\[
\hat{\Xi}_{jk}(x) = \begin{pmatrix} A_j(x)X + B_j(x)N_k(x) \\ B_m(x) - B_j(x)N_k(x) \end{pmatrix},
\]

\[
\hat{\Xi}_{jkm}(x, \bar{x}) = \begin{pmatrix} A_m(x) - A_j(x)X + B_m(x) \bar{x} \\ Y_{ijm}(x, \bar{x}) \end{pmatrix},
\]

\[
\hat{\Xi}_{22}(x) = Y_A(m, x),
\]

\[
\hat{K}_{ij}(x) = M_j(x)C_i,
\]

\[
H_{ij}(x) = M_j(x)(C_i - C_l);
\]

\[\nu \] is an arbitrary vector independent of \(x \) with appropriate dimensions; \(\varepsilon_1 > 0, \varepsilon_2 > 0, \varepsilon_3 > 0, \varepsilon_4(x, \bar{x}) > 0 \) and \(\varepsilon_5(x, \bar{x}) > 0 \) are predefined scalar polynomials; and the polynomial controller and polynomial observer gains are given by \(G_k(\bar{x}) = N_k(\bar{x})X^{-1} \) and \(L_j(\bar{x}) = Y^{-1}M_j(\bar{x}) \), respectively.

Proof: Defining the augmented vectors \(z = [\tilde{x}^T \quad e^T]^T, z_s = [\tilde{x}_s^T \quad e_s^T]^T, \) and the summation term \(\sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm} = \sum_{i,j,k,l,m=1}^p \sum_{i,j,k,l,m=1}^p \sum_{i,j,k,l,m=1}^p \sum_{i,j,k,l,m=1}^p \sum_{i,j,k,l,m=1}^p w_{i,j,k,l,m} \tilde{x}_i(\bar{x})w_{j,k,l,m}(x)w_{i,j,k,l,m}(\bar{x})w_{i,j,k,l,m}(x)w_{i,j,k,l,m}(\bar{x}) \), the augmented system becomes

\[
\dot{z} = \sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm}(\tilde{\Lambda}_{jkm}(x, \bar{x})z + \bar{B}_{ij}(\bar{x})z_s),
\]

\[
\tilde{\Lambda}_{jkm}(x, \bar{x}) = \begin{pmatrix} \Xi_{11}(x) & 0 \\ \Xi_{jkm}(x, \bar{x}) \end{pmatrix},
\]

\[
\bar{B}_{ij}(\bar{x}) = \begin{pmatrix} H_{ij}(\bar{x}) & K_{ij}(\bar{x}) \\ -H_{ij}(\bar{x}) & -K_{ij}(\bar{x}) \end{pmatrix},
\]

\[
\Xi_{11}(x) = A_j(x) + B_j(x)G_k(\bar{x}),
\]
where \(Q > 0, P = \begin{bmatrix} X^{-1} & 0 & Y \end{bmatrix}, X > 0, Y > 0, \) and thus \(P > 0. \) The time derivative of \(V(z) \) is obtained as follows:

\[
\dot{V}(z) = z^T P \dot{z} + h \int_{-h}^0 \dot{z}(\varphi)^T Q \dot{z}(\varphi) d\varphi.
\]

Denoting augmented vectors \(z_h = [\dot{x}(t-h)^T \; e(t-h)^T]^T, Z = [z^T \; z_h^T \; z_h^T]^T, \) and using Lemma 3, we obtain

\[
- h \int_{-h}^t \dot{z}(\varphi)^T Q \dot{z}(\varphi) d\varphi \leq -(z - z_h)^T Q(z - z_h) - (z - z_h)^T Q(z - z_h).
\]

Then \(\dot{V}(z) \) becomes

\[
\dot{V}(z) \leq Z^T \left(\sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm} Y_{ijklm}(x, \bar{x}) \right)
+ \left(\sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm} Y_{ijklm}(x, \bar{x}) \right) P^{-1} Q P^{-1}
\times \left(\sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm} Y_{ijklm}(x, \bar{x}) \right)^T Z.
\]

Applying Lemma 2 to the term \(-PQ^{-1}P\) and then performing congruence transformation to (95) by pre-multiplying and post-multiplying diag\{\(P^{-1}, P^{-1}, P^{-1}\)}, we have

\[
\sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm} \tilde{Y}_{ijklm}(x, \bar{x}) < 0,
\]

where

\[
\tilde{Y}_{ijklm}(x, \bar{x}) = \begin{bmatrix}
\Xi_{ijklm}^{(1)}(x, \bar{x}) & \Xi_{ijklm}^{(2)}(x, \bar{x}) & \tilde{\Xi}_{ijklm}(x, \bar{x}) & \tilde{Q} & \tilde{Y}_{ijklm}^{(24)}(x, \bar{x}) \\
0 & -2\bar{Q} & \bar{Q} & 0 & \bar{Y}_{ijklm}^{(44)}(x, \bar{x}) \\
* & * & * & * & \gamma^2 \bar{Q} + \bar{Y}_{ijklm}^{(44)}(x, \bar{x})
\end{bmatrix},
\]

\[
\Xi_{ijklm}^{(1)}(x, \bar{x}) = \begin{bmatrix}
\Omega(x, \bar{x}) & P \hat{B}_{ijl}(x, \bar{x}) + Q & 0 & -2\bar{Q} & \bar{Q}
\end{bmatrix},
\]

\[
\Omega(x, \bar{x}) = PA_{jkld}(x, \bar{x}) + \hat{A}_{jkld}(x, \bar{x})^T P - Q,
\]

\[
\Xi_{ijklm}^{(2)}(x, \bar{x}) = [hP \hat{A}_{jkld}(x, \bar{x}) + hP \hat{B}_{ijl}(x, \bar{x}) 0]^T.
\]

Using Schur Complement, \(\dot{V}(z) < 0 \) holds if

\[
\sum_{i,j,k,l,m=1}^p \bar{w}_{ijklm} \tilde{Y}_{ijklm}(x, \bar{x}) < 0,
\]

where

\[
\tilde{Y}_{ijklm}(x, \bar{x}) = \begin{bmatrix}
\Xi_{ijklm}^{(1)}(x, \bar{x}) & \Xi_{ijklm}^{(2)}(x, \bar{x}) & \tilde{\Xi}_{ijklm}(x, \bar{x}) & \tilde{Q} & \tilde{Y}_{ijklm}^{(24)}(x, \bar{x}) \\
0 & -2\bar{Q} & \bar{Q} & 0 & \bar{Y}_{ijklm}^{(44)}(x, \bar{x})
\end{bmatrix}.
\]
\[
\Gamma_{jkm}(\mathbf{x}, \mathbf{\hat{x}}) = \begin{bmatrix}
\Gamma^{(11)}_{jkm}(\mathbf{x}, \mathbf{\hat{x}}) & 0 & 0 & \Gamma^{(14)}_{jkm}(\mathbf{x}, \mathbf{\hat{x}}) \\
0 & \Gamma^{(22)} & 0 & 0 \\
0 & 0 & \Gamma^{(44)} & 0 \\
0 & 0 & 0 & \Gamma^{(44)}
\end{bmatrix},
\]

where \(\hat{\mathbf{Q}} = \begin{bmatrix} \mathbf{Y} & 0 \\ 0 & \mathbf{Y} \end{bmatrix}, \Phi_{jkm}(\mathbf{x}, \mathbf{\hat{x}}) \) and \(\Theta_{ijlm}(\mathbf{x}, \mathbf{\hat{x}}) \) are defined in (57) and (58), respectively. By grouping terms with same membership functions, \(\hat{V}(\mathbf{z}) < 0 \) if conditions (55) and (56) hold. The proof is completed.

IV. Simulation Examples

In this section, three simulation examples are provided to validate the proposed stability conditions. In the first example, we consider the stabilization control problem for an inverted pendulum using the proposed PFMB observer-controller. In the second example, sampled-output measurements are considered for the same control problem. In the third example, a nonlinear mass-spring-damper system is also stabilized by the designed PFMB observer-controller.

A. Inverted Pendulum

In this example, we consider an inverted pendulum on a cart [7] in the following state space form:

\[
\dot{\mathbf{x}} = \begin{bmatrix} x_1, x_2 \end{bmatrix}^T
\]

\[
\ddot{x}_2 = \frac{g \sin(x_1) - am_p L x_2^2 \sin(x_1) \cos(x_1)}{4L/3 - am_p L \cos^2(x_1)} - \frac{a \cos(x_1)}{4L/3 - am_p L \cos^2(x_1)},
\]

where \(x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \) is the state vector; \(g = 9.8 \text{m/s}^2 \) is the acceleration of gravity; \(m_p = 2 \text{kg} \) and \(M_r = 8 \text{kg} \) are the mass of the pendulum and the cart, respectively; \(a = 1/(m_p + M_r); 2L = 1 \text{m} \) is the length of the pendulum and \(u(t) \) is the control input force imposed on the cart.

Defining the region of interest as \(x_1 \in [-70\pi/180, 70\pi/180] \), the nonlinear term \(f_1(x_1) = \frac{4L/3 - am_p L \cos^2(x_1)}{\cos(x_1)} \) is represented by sector nonlinearity technique [6] as follows: \(f_1(x_1) = \mu_{M_1}(x_1) f_{l_{1\text{min}}} + \mu_{M_2}(x_1) f_{l_{1\text{max}}} \), where \(\mu_{M_1}(x_1) = f_1(x_1) - f_{l_{1\text{min}}}, \mu_{M_2}(x_1) = 1 - \mu_{M_1}(x_1), f_{l_{1\text{min}}} = 0.5222, f_{l_{1\text{max}}} = 1.7047 \). To reduce computational burden, other nonlinear terms \(\sin(x_1) \) and \(\tan(x_1) \) are approximated by polynomials: \(\sin(x_1) \approx s_1 x_1 \) and \(\tan(x_1) \approx t_1 x_1 \), where \(s_1 = 0.8578 \) and \(t_1 = 1.5534 \). As a result, the inverted pendulum is described by a 2-rule polynomial fuzzy model. The system and input matrices in each rule are given by \(A_1(x_2) = \begin{bmatrix} 0 & 1 \\ -a_1(x_2) & 0 \end{bmatrix}, A_2(x_2) = \begin{bmatrix} 0 & 1 \\ a_2(x_2) & 0 \end{bmatrix}, B_1 = [0 - f_{l_{1\text{min}}} a_1^T]^T, \) and \(B_2 = [0 - f_{l_{1\text{max}}} a_1^T]^T \), where \(a_1(x_2) = f_{l_{1\text{min}}} (gt_1 - am_p/L x_2^2 s_1), a_2(x_2) = f_{l_{1\text{max}}} (gt_1 - am_p/L x_2^2 s_1) \). The measurement of output provided by sensors may be affected by some physical influence such as the angular velocity of the inverted pendulum. Therefore, similar to the example in [40], we suppose the output is a function of system states: \(y = x_1 + 0.01 x_2 \). Then the output matrices are \(C_1(x_2) = C_2(x_2) = [1 + 0.01 x_2 \ 0] \). The membership functions are \(w_1(x_1) = \mu_{M_1}(x_1) \) and \(w_2(x_1) = \mu_{M_2}(x_1) \). It is assumed that both system states \(x_1 \) and \(x_2 \) are unmeasurable.

It can be seen that the premise variable \(f_1(x_1) \) and the output matrix \(C_i(x_2) \) all depend on unmeasurable system states \(x_1 \) or \(x_2 \), and thus Theorem 1 is employed to obtain a
PFMB observer-controller to stabilize the inverted pendulum. We choose \(\alpha_1 = 1 \times 10^3, \alpha_2 = 1 \times 10^6, \beta = 1 \times 10^{-2}, \)
\(N_k(\tilde{x}_2) \) of degree 0 and 2, \(M_j(\tilde{x}_2) \) of degree 0 and 1, \(\varepsilon_1 = \varepsilon_2 = 1 \times 10^{-3}, \) and \(\varepsilon_3 = \varepsilon_4 = 1 \times 10^{-7}. \) The polynomial controller gains are obtained as \(G_1(\tilde{x}_2) = [-1.1023 \times 10^{-2} \tilde{x}_2^2 + 1.5144 \times 10^3, 2.5661 \times 10^{-2} \tilde{x}_2^2 + 1.6857 \times 10^2] \)
and \(G_2(\tilde{x}_2) = [-1.2124 \times 10^{-1} \tilde{x}_2^2 + 7.7898 \times 10^2, 2.7568 \times 10^{-2} \tilde{x}_2^2 + 1.0284 \times 10^2], \) and the polynomial observer gains are obtained as \(L_1(\tilde{x}_2) = [-6.0760 \times 10^{-2} \tilde{x}_2 + 1.1223 \times 10^{-2} \tilde{x}_2^2 + 1.2580 \times 10^2] \) and \(L_2(\tilde{x}_2) = [-6.0760 \times 10^{-2} \tilde{x}_2 + 1.1223 \times 10^{-2} \tilde{x}_2^2 + 1.2580 \times 10^2]. \)

We apply the above polynomial controller gains and polynomial observer gains to the original dynamic system of the inverted pendulum (124). Considering 4 different initial conditions, the inverted pendulum is successfully stabilized when the time response of system states are shown in Fig. 3. To demonstrate the estimated system states offered by the polynomial fuzzy observer-controller to stabilize the inverted pendulum. Considering 4 different initial conditions, the estimated system states are shown in Fig. 7. The corresponding control input is shown in Fig. 5. It can be seen that the proposed polynomial fuzzy observer is an effective tool for nonlinear systems to observe unmeasurable states.

B. Inverted Pendulum with Sampled-Output Measurements

In this example, we consider the same inverted pendulum in (124). In addition, sampled-output measurements are employed for the design of PFMB observer-controller where the sampling interval is chosen to be \(h = 0.05 \) seconds. The output is assumed to be a function of system states: \(y = -0.161 f_1(x_1) + 1.1841. \) Consequently, the output matrices are \(C_1 = [1.1 \ 0] \) and \(C_2 = [0.9 \ 0]. \) The membership functions are the same as the first example.

Theorem 2 is employed for the design of PFMB observer-controller. We choose \(\alpha_1 = 1 \times 10^6, \alpha_2 = 1 \times 10^5, \alpha_3 = 1 \times 10^3, \alpha_4 = 1 \times 10^2, \beta = 1 \times 10^{-2}, \gamma = 1 \times 10^{-1}, \)
\(N_k(\tilde{x}_2) \) of degree 0 and 2, \(M_j(\tilde{x}_2) \) of degree 0 and 2, \(\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1 \times 10^{-3}, \) and \(\varepsilon_4 = \varepsilon_5 = 1 \times 10^{-7}. \) The polynomial controller gains are obtained as \(G_1(\tilde{x}_2) = [-2.1745 \times 10^{-1} \tilde{x}_2^2 + 1.1463 \times 10^3, 3.8649 \times 10^{-2} \tilde{x}_2^2 + 4.6925 \times 10^2] \) and \(G_2(\tilde{x}_2) = [-2.6277 \times 10^{-1} \tilde{x}_2^2 + 5.6804 \times 10^2, 7.7914 \times 10^{-2} \tilde{x}_2^2 + 1.9794 \times 10^2], \) and the polynomial observer gains are obtained as \(L_1(\tilde{x}_2) = [8.3334 \times 10^{-13} \tilde{x}_2^2 + 1.5901 \times 10^2, 1.8529 \times 10^{-11} \tilde{x}_2^2 + 2.3319 \times 10^2] \) and \(L_2(\tilde{x}_2) = [6.6685 \times 10^{-12} \tilde{x}_2^2 + 1.5901 \times 10^3, 3.0865 \times 10^{-11} \tilde{x}_2^2 + 2.3319 \times 10^3]. \)

The above polynomial controller gains and polynomial observer gains are applied to the original dynamic system of the inverted pendulum (124). Considering 4 different initial conditions, the time response of system states are shown in Fig. 6 which shows that the inverted pendulum can be successfully stabilized. Choosing initiation conditions \(x(0) = [\frac{70\pi}{180} \ 0]^T \) and \(\dot{x}(0) = [\frac{35\pi}{180} \ 0]^T \) for demonstration purposes and the estimated system states are shown in Fig. 4. The corresponding control input is shown in Fig. 5. It can be seen that the proposed polynomial fuzzy observer is an effective tool for nonlinear systems to observe unmeasurable states.
provide more freedom for designing polynomial fuzzy model than measurable premise variables in [44]. Furthermore, one step design of the observer-controller is achieved instead of two steps [44] or iterative procedure [50]. The controller is allowed to be polynomial and the output matrix C is allowed to be different in each fuzzy rule, both of which are more general than [53]. Additionally, the maximum sampling interval 0.018 seconds achieved in [50] for the inverted pendulum is exceeded in this paper benefited from the continuous-time polynomial fuzzy observer.

The computational time for checking the SOS conditions of Theorems 1 and 2 for the inverted pendulum are 57.236 seconds and 1994.563 seconds, respectively. The computational time for higher dimensional system may be more than the above values.

C. Nonlinear Mass-Spring-Damper System

We follow the same control strategy in previous examples to stabilize a nonlinear mass-spring-damper system whose dynamics is given by [61] and stated as follows:

$$M \ddot{x}(t) + g(x(t), \dot{x}(t)) + f(x(t)) = \phi(\dot{x}(t))u(t), \tag{125}$$

where \(M \) is the mass; \(g(x(t), \dot{x}(t)) = D(c_1x(t) + c_2\dot{x}(t)^3 + c_3\dot{x}(t)\dot{x}(t)) \), \(f(x(t)) = K(c_4x(t) + c_5\dot{x}(t)^3 + c_6\dot{x}(t)) \); \(\phi(\dot{x}(t)) = 1.4387 + c_7\dot{x}(t)^2 + c_8\cos(5\dot{x}(t)) \) are the damper nonlinearity, the spring nonlinearity and the input nonlinearity, respectively; \(M = D = K = 1, c_1 = 0, c_2 = 1, c_3 = -0.3, c_4 = 0.01, c_5 = 0.1, c_6 = 0.3, c_7 = -0.03, c_8 = 0.2; \) and \(u(t) \) is the force.

Time \(t \) is dropped from now for simplicity. Denoting \(x_1 \) and \(x_2 \) as \(x \) and \(\dot{x} \), respectively, and \(x = [x_1 x_2]^T \), we obtain the following state space form:

$$\dot{x}_1 = x_2,$$

$$\dot{x}_2 = \frac{1}{M}(-g(x_1, x_2) - f(x_1) + \phi(x_2))u. \tag{126}$$

The nonlinear term \(f_1(x_2) = \cos(5x_2) \) is represented by sector nonlinearity technique [6] as follows:

$$f_1(x_2) = \mu_{M1}(x_2)f_{1_{min}} + \mu_{M2}(x_2)f_{1_{max}}, \text{ where } \mu_{M1}(x_2) = \frac{f_1(x_2) - f_{1_{min}}}{f_{1_{max}} - f_{1_{min}}}, \mu_{M2}(x_2) = 1 - \mu_{M1}(x_2), f_{1_{min}} = -1, f_{1_{max}} = 1. \text{ As a result, the nonlinear mass-spring-damper system is described by a 2-rule polynomial fuzzy model. The system and input matrices in each rule are given by } A_1(x) = A_2(x) = \begin{bmatrix} 0 & 1 \\ a_1(x_1) & a_2(x_2) \end{bmatrix}, B_1(x_2) = [0 \ b_1(x_2)]^T, \text{ and } B_2(x_2) = [0 \ b_2(x_2)]^T, \text{ where } a_1(x_1) = -\frac{1}{M}(Dc_1 + K(c_4 + c_5) + Kc_5x_1^2), a_2(x_2) = -\frac{1}{M}(DC_3 + Dc_2x_2^2), b_1(x_2) = \frac{1}{M}(1.4387 + c_7x_2^2 + c_8f_{1_{min}}), b_2(x_2) = \frac{1}{M}(1.4387 + c_7x_2^2 + c_8f_{1_{max}}). \text{ In addition, the output matrices are } C_1 = C_2 = [1 \ 0]. \text{ The membership functions are } w_1(x_2) = \mu_{M1}(x_2) \text{ and } w_2(x_2) = \mu_{M2}(x_2).

It can be seen that the premise variable \(f_1(x_2) \) depends on unmeasurable system state \(x_2 \), and thus Theorem 1 is employed to design a PFMB observer-controller to stabilize the nonlinear mass-spring-damper system. We choose \(N_k(x_1) \) of degree 0 and 2, \(M_j(\dot{x}_1) \) of degree 0 and 2, and keep other settings the same as Section IV-A. The polynomial controller gains are obtained as \(G_1(\dot{x}_1) = [-1.4754 \times 10^{-5}\dot{x}_1^2 \ -0.0447 \times 10^{-4}\dot{x}_1^2 0 - 4.0874 \times 10^{-2}\dot{x}_1^2 - 3.3439 \times 10^{-5}\dot{x}_1^2] \), and \(G_2(\dot{x}_1) = [-6.4731 \times 10^{-5}\dot{x}_1^2 - 9.8315 \times 10^{-5}\dot{x}_1^2 - 3.3442 \times 10^{-5}\dot{x}_1^2 - 3.3442 \times 10^{-5}\dot{x}_1^2] \), and the polynomial observer gains are obtained as \(L_1(\dot{x}_2) = [4.1689 \times 10^{-3}\dot{x}_1^2 + 9.2052 \times 10^{5} 4.1692 \times 10^{-3}\dot{x}_1^2 + 1.0648 \times 10^{5}] \), and \(L_2(\dot{x}_2) = [4.1689 \times 10^{-3}\dot{x}_1^2 + 9.2052 \times 10^{5} 4.1692 \times 10^{-3}\dot{x}_1^2 + 1.0648 \times 10^{5}] \).

Considering 4 different initial conditions, the time response of system states are shown in Fig. 9 which shows that the nonlinear mass-spring-damper system can be stabilized by the designed polynomial fuzzy observer-controller. Choosing initiation conditions \(x(0) = [1 \ 0]^T \) and \(\dot{x}(0) = [0 \ 0]^T \) as an example, the estimated system states are shown in Fig. 10. Consequently, it is feasible to apply the proposed PFMB observer-control strategy for stabilization of nonlinear systems.

The MATLAB codes for these simulation examples can be downloaded by the following link: http://www.inf.kcl.ac.uk/
Fig. 10. Time response of system states and estimated states for $x(0) = [1, 0]$. "Time response of system states and estimated states for fuzzy observer-controllers."

V. CONCLUSION

In this paper, the stability of PFMB observer-control system has been investigated. Two classes of PFMB observer-controllers have been considered. The first class considers continuous system output in the design while the second class considers the sampled-output measurements. In both classes, the polynomial controller gains and polynomial observer gains are allowed to be a function of estimated states. Moreover, the premise variables are allowed to be unmeasurable which complicates the stability analysis but enhances the applicability of the proposed PFMB observer-control scheme. Matrix decoupling technique has been employed in the stability analysis to obtain convex SOS stability conditions. Simulation examples have been presented to verify the stability analysis results and demonstrate the effectiveness of the proposed PFMB observer-control scheme.

REFERENCES

