Citation for published version (APA):
Citation for published version (APA):
Abstract: Introduction: In Parkinson's disease (PD), neuropsychiatric symptoms (NPS) can be particularly burdensome for caregivers. The main goal of this study was to assess the impact of NPS, assessed by means of a new specific scale, on caregiver burden. Methods: A sample of 584 pairs of PD patients and their primary caregivers was studied. Patients’ NPS were measured with the Scale for Evaluation of Neuropsychiatric Disorders in PD (SEND-PD), and the Zarit Caregiver Burden Inventory was used to quantify caregiver burden. Three linear regression models were built to check factors associated with caregiver burden, one for the total sample and two for subgroups stratified by the presence of dementia. Results: The most prevalent SEND-PD dimensions were mood/apathy (87.4%), followed by psychotic symptoms (48.5%) and impulse control disorders (26.5%). Patients with dementia (n=94; 16.15% of sample) consistently presented more NPS than patients without dementia (p<0.001). On linear regression models, the main determinants of caregiver burden (for the total sample and the sample of patients without dementia) were SEND-PD dimensions mood/apathy and psychosis, PD-related disability and disease duration. For patients with dementia, the only significant caregiver burden determinants were SEND-PD psychosis and mood/apathy subscale scores. Conclusions: NPS in PD are highly associated with and are determinants of caregiver burden, and are more prevalent and burdensome in patients with dementia. Detailed assessment and specific interventions aimed at NPS could alleviate caregiver burden.
Author Declaration

Parkinsonism & Related Disorders is committed to proper scientific conduct and the protection of animal and human research subjects. Submission of this manuscript implies compliance with the following ethical requirements. Please affirm that you are representing all of the authors in stating compliance with these policies by checking the box at the end of this section.

1. Studies with human subjects must have been conducted in accordance with the Declaration of Helsinki. All persons must have provided informed consent prior to being included in the study.

2. Studies with animal subjects must have been conducted in accordance with the Guide for the Care and Use of Laboratory Subjects as adopted by the US National Institutes of Health and/or according to the requirements of all applicable local, national and international standards.

3. Protocols with animal or human subjects must have been approved by the relevant local committee(s) charged with ensuring subject protection. Studies that entail pain or distress will be assessed in terms of the balance between the distress inflicted and the likelihood of benefit.

4. The authors declare that the manuscript is original, that it is not being considered for publication elsewhere, and that it will not be submitted elsewhere while still under consideration for Parkinsonism & Related Disorders or after it has been accepted by Parkinsonism & Related Disorders.

5. All authors have seen and approved the manuscript in the form submitted to the journal. The authors declare that they have conformed to the highest standards of ethical conduct in the submission of accurate data and that they acknowledge the work of others when applicable.

6. All sources of financial support for the work have been declared in the Acknowledgements section of the manuscript. Any additional conflicts of interest must also be declared. Please include declarations of any consultancy or research funding received from relevant companies from three years prior to performance of the research until the time of manuscript submission. If the research is supported by internal funds, that should be stated as well.

To indicate compliance with the preceding declaration and that you have obtained agreement from all of the authors of this paper to declare their compliance as well, please place an x here: X

In cases of uncertainty please contact an editor for advice.

[Signature]
Prof. Pfeiffer and Prof. Wszolek
Editors-in-Chief
Parkinsonism and Related Disorders

November 6th, 2014

Dear Professors,

Please, find attached our manuscript “Neuropsychiatric symptoms and caregiver’s burden in Parkinson’s disease” to be considered for publication as a full length article in the prestigious journal that you head.

As first and corresponding author, I declare that all authors expressed their conformity with the current version, this is an original paper that has not been published previously, and it is not in consideration by any other journal.

Yours sincerely,

Dr Pablo Martinez-Martin
On behalf of all co-authors
Highlights

- In Parkinson’s disease (PD), neuropsychiatric symptoms (NPS) notably increase caregiver burden.
- In this study, NPS were assessed with the Scale for Evaluation of Neuropsychiatric Disorders in PD.
- PD patients with dementia experience more NPS, a fact adding extra burden to caregivers.
- NPS were the main determinant of caregiver burden, both in PD patients with and without dementia.
Neuropsychiatric symptoms and caregiver’s burden in Parkinson’s disease

Pablo Martinez-Martín1, Carmen Rodríguez-Blazquez1, Maria João Forjaz2, Belén Frades-Payo3, Luis Agüera-Ortiz3,4, Daniel Weintraub5, Ana Riesco3, Monica M. Kurtis6, Kallol Ray Chaudhuri7

1. National Center of Epidemiology and CIBERNED, Carlos III Institute of Health. Madrid, Spain
2. National School of Public Health and REDISSEC, Carlos III Institute of Health. Madrid, Spain
3. Research Unit, Alzheimer Center Reina Sofia Foundation, Carlos III Institute of Health. Madrid, Spain
4. CIBERSAM, Carlos III Institute of Health. Madrid, Spain
5. Departments of Psychiatry and Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, USA
6. Department of Neurology, Hospital Ruber Internacional. Madrid, Spain
7. National Parkinson Foundation Centre of Excellence, Department of Neurology, King’s College Hospital, and Kings Health Partners, London, UK

Corresponding author:
Pablo Martínez-Martín
National Centre of Epidemiology
Av. Monforte de Lemos, 3
28029 Madrid, Spain
pmartinez@isciii.es

Word count: 2381

Running title: PD neuropsychiatric symptoms and caregiver’s burden

Disclosure: Authors declare no conflict of interest.
Abstract

Introduction: In Parkinson’s disease (PD), neuropsychiatric symptoms (NPS) can be particularly burdensome for caregivers. The main goal of this study was to assess the impact of NPS, assessed by means of a new specific scale, on caregiver burden.

Methods: A sample of 584 pairs of PD patients and their primary caregivers was studied. Patients’ NPS were measured with the Scale for Evaluation of Neuropsychiatric Disorders in PD (SEND-PD), and the Zarit Caregiver Burden Inventory was used to quantify caregiver burden. Three linear regression models were built to check factors associated with caregiver burden, one for the total sample and two for subgroups stratified by the presence of dementia.

Results: The most prevalent SEND-PD dimensions were mood/apathy (87.4%), followed by psychotic symptoms (48.5%) and impulse control disorders (26.5%). Patients with dementia (n=94; 16.15% of sample) consistently presented more NPS than patients without dementia (p<0.001). On linear regression models, the main determinants of caregiver burden (for the total sample and the sample of patients without dementia) were SEND-PD dimensions mood/apathy and psychosis, PD-related disability and disease duration. For patients with dementia, the only significant caregiver burden determinants were SEND-PD psychosis and mood/apathy subscale scores.

Conclusions: NPS in PD are highly associated with and are determinants of caregiver burden, and are more prevalent and burdensome in patients with dementia. Detailed assessment and specific interventions aimed at NPS could alleviate caregiver burden.

Keywords: Parkinson’s disease, caregiver burden, neuropsychiatric symptoms
Highlights

- In Parkinson’s disease (PD), neuropsychiatric symptoms (NPS) notably increase caregiver burden
- In this study, NPS were assessed with the Scale for Evaluation of Neuropsychiatric Disorders in PD
- PD patients with dementia experience more NPS, a fact adding extra burden to caregivers
- NPS were the main determinant of caregiver burden, both in PD patients with and without dementia
INTRODUCTION

Parkinson’s disease (PD) is a chronic, neurodegenerative condition that significantly impacts on patients and on those who look after them on a daily basis. As their health status deteriorates, patients need progressively more assistance to perform their activities of daily living. Caregiving is time consuming and demanding. Its negative impact on the caregiver’s health, social life and financial situation is summarized in the construct of “caregiver burden” [1].

Factors influencing caregiver burden are related to caregiver and patient characteristics, including PD manifestations and consequences [2]. Patients differ substantially on their degree of disability, motor and non-motor symptom profiles, and complications of therapy [3], all of which may have a differential impact on caregiver burden. Neuropsychiatric symptoms (NPS), such as anxiety, depression, apathy, mental fatigue, psychosis, and impulse control disorders (ICDs) are highly prevalent, affecting up to 60-80% of patients with PD [4]. Although NPS can occur in PD patients without dementia [5], cognitive impairment is a correlate of most of these disturbances and, as a whole, NPS are more frequent in patients with dementia. Their co-occurrence highly increases caregivers burden [6–8]. Both, presence and severity of NPS are associated with increased caregiver burden [6,9] and, by modality, psychotic symptoms are especially important. They are disruptive, significantly increase caregiver burden [6,9] and can lead to institutionalization of PD patients [10,11].

The present study aims to assess how NPS, measured with the disease-specific Scale for Evaluation of Neuropsychiatric Disorders in PD (SEND-PD) [12], impact on caregiver burden. We hypothesized that: 1) There is a significant relationship between caregiver burden and NPS; 2) PD patients with dementia present more NPS than PD patients without dementia; 3) Caregivers will suffer more burden when patients
experience NPS with dementia; 4) NPS are the main determinants of caregiver burden both in PD patients with and without dementia.

METHODS

Sample

The sample consisted of 584 pairs of consecutive patients and their main caregivers from the SEND-PD validation study [12]. Patients were included if: PD diagnosis was made by a neurologist according to internationally recognized diagnostic criteria [13]; caregiver was present during the visit; and patients or their legal representative signed informed consent. Patients who did not meet all inclusion criteria or who had a condition that could hamper the assessment were excluded.

The caregiver was defined as “any person who, without being a professional or belonging to a social support network, usually lives with the patient and, in some way, is directly implicated in the patient’s care or is directly affected by the patient’s health problem” [2]. Caregiver inclusion criteria were: age 18 years or older, ability to complete self-administered questionnaires in Spanish, and willingness to sign informed consent.

Ethical Approval

The study was approved by the institutional review boards of the Carlos III Institute of Health and Alzheimer’s Disease Research Unit, CIEN Foundation and was reported to the Spanish Medicines Agency [12]. Patients or their legal representative signed informed consent.
Assessments

The following evaluations were carried out: Hoehn & Yahr staging (HY) [14] and Clinical Impression of Severity Index for PD (CISI-PD) [15]; Scales for Outcomes in PD-Motor (SCOPA-Motor) [16]; Mini-Mental State Examination (MMSE) [17], and the Pill Questionnaire and Lexical Fluency, according to the diagnostic procedures for PD dementia [18]. The Scale for Evaluation of Neuropsychiatric Disorders in PD (SEND-PD) was used to assess the presence of NPS [12].

A clinical judgment on the dementia status of each patient (normal, cognitive impairment without dementia, or dementia and degree of severity), based on the patient’s medical record, interview with the patient and caregiver, and assessments, was recorded. This question was used to group patients with or without dementia.

The SEND-PD is a rater-based scale specifically developed to assess the severity of most relevant NPS found in PD. It is informed by the patients or caregivers if patients can not answer the questions properly. Its 12 items are grouped in three dimensions: psychotic symptoms (4 items), mood/apathy (5), and ICD and related behaviors (3). Items are scored from 0 (not present) to 4 (very severe) and a total sum score is obtained for each domain. It shows satisfactory psychometric properties [12].

Caregiver burden was assessed with the Zarit Caregiver Burden Inventory (ZCBI) [19], a 22-item measure assessing the impact of the patient’s disease or disability on the caregiver’s physical, emotional, social and financial situation. Items are scored from 0 (never) to 4 (nearly always), with a maximum total score of 88 indicating the highest level of caregiver burden.

Socio-demographic data from patients and caregivers were collected. Levodopa equivalent daily doses (LEDD) were calculated [20].
Data analysis

Descriptive statistics were used for socio-demographic and clinical variables. For NPS prevalence, the percentage of patients scoring >0 (presence of the symptom) in each SEND-PD item and domain was calculated for the total sample and by dementia status (patients with and without dementia).

To analyze the relationship between ZCBI and the other variables, Spearman’s correlation coefficients were determined for the total sample and dementia status groups. Coefficients of 0.35-0.59 were deemed as moderate, while coefficients ≥0.60 were considered high [21].

ZCBI mean values were calculated in the sample broken down by groups of interest: patients’ and caregivers’ sex and age, education level, relationship, disease duration, HY, cognitive status, and presence of NPS as per SEND-PD subscales. Mann-Whitney and Kruskal-Wallis tests were used to ascertain the differences between groups. In addition, specific comparisons of caregiver burden were determined for patients with NPS according to their dementia status (Mann-Whitney tests).

A linear regression model was built using ZCBI as the dependent variable and disease duration, disability, NPS and dementia status as independent variables. Similar models, removing dementia status as predictor, were then repeated for the groups by dementia status. Linear regression assumptions were previously checked.

RESULTS

Table 1 presents patients and caregivers description. Table 2 displays the prevalence of NPS assessed by the SEND-PD. The SEND-PD was responded by patients (87.03%), caregivers (12.59%) or both (0.38%).
Patients with dementia (n=94; 16.15%) consistently presented more NPS than
patients without dementia (p<0.007) in all domains (Table 2). For patients with
dementia, the most prevalent symptom was apathy. For patients without dementia, the
most prevalent symptom was depression. For the entire sample, the most prevalent
symptoms were depression and anxiety.

ZCBI score in total sample was moderately associated with CISI-PD ($r_s=0.56$,
p<0.001), SCOPA-Motor ($r_s=0.56$, p<0.001), and PIGD scores ($r_s=0.53$, p<0.001). A
moderate association was also observed with HY stage ($r_s=0.46$, p<0.001) and MMSE
($r_s=-0.35$, p<0.001). ZCBI score correlated 0.32 to 0.53 with the SEND-PD dimensions
(p<0.001) in the total sample. In the group without dementia, ZCBI correlated 0.34 with
SEND-PD Psychotic, 0.44 with Mood/Apathy and 0.25 with Impulse Control Disorders
(p<0.001), while in the group with dementia, correlation coefficients with SEND-PD
subscales were 0.51, 0.34, and 0.32, respectively (p<0.001).

Caregivers of patients with NPS reported significantly higher burden than
caregivers of patients without symptoms (p<0.001; Table 3). Comparing the group of
patients with NPS by dementia status, caregivers of patients with dementia reported a
significantly higher burden than those without dementia (p<0.001 for the three SEND-
PD subscales; Table 3).

Linear regression models (Table 4) indicate that the SEND-PD dimensions
mood/apathy (standardized $\beta=0.28$) and psychosis ($\beta=0.18$); disability ($\beta=0.21$) and
disease duration ($\beta=0.11$) were significant determinants of ZCBI score for the entire
cohort.

Caregiver burden of patients without dementia was associated with higher
SEND-PD mood/apathy ($\beta=0.28$) and psychosis scores ($\beta=0.15$), higher disability
($\beta=0.21$) and longer disease duration ($\beta=0.13$). For patients with dementia, the only
significant determinants were SEND-PD psychosis ($\beta=0.31$) and mood/apathy scores ($\beta=0.28$).

DISCUSSION

In PD, motor symptoms and complications are well established factors that are intrusive to daily life and increase caregiver burden. The aim of this study was to assess the impact of NPS and dementia on caregivers’ burden, using a recently developed PD-specific scale for the assessment of NPS, the SEND-PD [12].

In our cohort, caregivers were mostly middle-aged women who took care of a male patient/spouse, a profile coincident with most studies on PD caregivers [5,22]. In the present study, ZCBI scores were associated with SEND-PD dimensions, thus confirming the first hypothesis on a relationship between caregiver burden and presence and severity of NPS. Also, and in agreement with a previous study [5], other PD aspects such as motor impairment, disease severity and PD subtype, were also related to caregiver burden. Interestingly, the correlation between caregivers’ burden and psychotic symptoms was higher in PD patients with dementia than in those with normal cognition. PD patients with dementia have a greater prevalence of psychotic symptoms than patients without dementia, as hypothesized in this study, and this fact increases caregiver burden [23,24].

Different profiles of NPS according to cognitive status were observed in this study: while PD patients with normal cognitive function had more depression and anxiety, PD patients with dementia showed higher percentages of apathy/lack of initiative and mental fatigue. For the entire sample, the most prevalent NPS were those pertaining to the mood/apathy domain, followed by psychotic symptoms. These results are in line with previous studies [4,8] and highlight the need for carrying out complete
neuropsychiatric assessments of PD patients in clinical practice, and for evaluating the
effects that PD treatments may have on NPS [8].

Caregivers reported significantly more burden when patients experienced NPS
and dementia, suggesting a synergetic effect of dementia and NPS on caregiver burden.
This confirms our third hypothesis and is congruent with previously reported increased
caregiver burden in patients with dementia, compared with those without dementia [23].

Our study identified mood/apathy and psychosis as significant determinants of
caregiver burden. Disability and disease duration also contributed significantly to
caregiver burden in patients without dementia. ICD symptoms were not associated with
caregiver burden when controlling for other factors. This confirms our fourth hypothesis
that NPS are main determinants of caregiver burden, particularly mood/apathy and
psychosis, while ICDs may play a lesser role. This is consistent with a recent study
reporting that although caregivers of patients with ICD displayed more burden than
caregivers of patients without ICD, the association between ICD symptoms and
caregiver burden was low [25]. In another study, cognitive behavioral therapy for
patient’s ICD did not alleviate caregiver burden [26].

Previous studies have documented the significant impact of the patient’s
mood/apathy [25], psychotic symptoms [4], disability [9,22] and disease duration [27]
on caregiver burden [28]. Screening for these factors, and specifically patient’s NPS and
dementia, may help identify caregivers who could benefit from intervention strategies
such as group support or respite care [29].

According to the stress-appraisal model of caregiver wellbeing, behavioral
problems (including NPS), cognitive impairment (dementia in our study) and functional
dependency are primary stressors that have a direct impact on caregiver burden, as well
as an indirect effect through mediator variables [30,31]. Our results indicate that the
contribution of NPS and disability to caregiver burden is different for patients with and without dementia. In the group of patients with dementia, the only significant determinants of caregiver burden were mood/apathy and psychotic symptoms. Further studies are needed to investigate if dementia could also be acting in moderating the relationship between primary stressors and caregiver burden.

Our study has some limitations, such as the convenience sample used. However, its relatively large size and patients characteristics similar to other studies allow confidence in the consistency of the reported results. Furthermore, the cross-sectional design prevents from making causal inferences. Information from patients in more advanced stages or with dementia was obtained through their caregivers, which may bias the data. Finally, further studies are needed that explore more deeply what characteristics of caregivers might influence its burden.

In conclusion, caregivers of patients with PD are subjected to a variety of problems that influence their health, social life, financial situation, and quality of life. What this study adds is the use of a new specific instrument for assessment of NPS (SEND-PD), which enabled us to confirm that these disorders were closely associated with caregiver burden, were more prevalent and burdensome in patients with dementia, and performed as the main determinants of the caregiver burden in this study.
Financial Disclosures

Pablo Martinez-Martin received honoraria from speaking engagements at scientific meetings of Abbvie and Teva, and from serving in a scientific advisory board of Abbvie; grants from Carlos III Institute of Health, IMSERSO, Reina Sofia Foundation, and Michael J. Fox Foundation. He is Chair of the IPMDS Committee for Development of Rating Scales. His employment is at Carlos III Institute of Health.

Carmen Rodríguez-Blázquez has nothing to disclose. Her employment is at Carlos III Institute of Health.

Maria João Forjaz has nothing to disclose. Her employment is at Carlos III Institute of Health.

Belen Frades-Payo has nothing to disclose. Her employment is at Alzheimer Center Reina Sofia Foundation, Carlos III Institute of Health.

Luis Agüera-Ortiz has nothing to disclose. His employment is at Alzheimer Center Reina Sofia Foundation, Carlos III Institute of Health.

Daniel Weintraub has received research funding from Michael J. Fox Foundation for Parkinson’s Research, National Institutes of Health, Novartis Pharmaceuticals, Department of Veterans Affairs, and Alzheimer’s Disease Cooperative Study; honoraria from Biotie, Teva Pharmaceuticals, Lundbeck Inc., Pfizer, Avanir Pharmaceuticals, Acadia Pharmaceuticals, Merck & Co., UCB, Bristol-Myers Squibb Company, Novartis Pharmaceuticals, Clintrex LLC, Theravance, Medivation, CHDI Foundation, and the Weston Foundation; license fee payments from the University of Pennsylvania for the QUIP and QUIP-RS; and fees for testifying in two court cases related to impulse controls disorders in Parkinson’s disease (March, 2013-April, 2014, payments by Eversheds and Roach, Brown, McCarthy & Gruber, P.C.). He is Associate Professor of Psychiatry and Neurology at Perelman School of Medicine (University of Pennsylvania).

Ana Riesco has nothing to disclose.

Monica M. Kurtis received personal fees from UCB Pharma for lectures. She is employed at Hospital Ruber Internacional.

Kallol Ray Chaudhuri has received funding from Parkinson’s UK, NIHR, UCB, European Union and has received honorarium from UCB, Abbott, Britannia, US Worldmeds, Otsuka pharmaceuticals in the last 3 years and acted as a consultant for Abbvie, UCB, Britannia. His employment is at King’s College Hospital.
Authors’ Roles

2 – Drafting of the manuscript: Pablo Martinez-Martin, Carmen Rodriguez-Blazquez, Maria João Forjaz. Critical review of the draft: All the coauthors.

3 – Final approval of the submitted manuscript: All the coauthors.

Acknowledgments
The authors acknowledge UCB Pharma Spain, Pivotal S.L., and The SEND-PD Group for their help in the validation study. This study was not funded.
REFERENCES

Table 1. Sociodemographic and clinical variables of patients and caregivers

Table 2. Prevalence of neuropsychiatric symptoms (SEND-PD) for patients with and without dementia

Table 3. Zarit values in the sample broken down by groups of interest.

Table 4. Linear regression models for Zarit as dependent variable.
Table 1. Sociodemographic and clinical variables of patients and caregivers

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>%</th>
<th>Variables</th>
<th>M</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>336</td>
<td>58.43</td>
<td>Age</td>
<td>70.75</td>
<td>9.85</td>
</tr>
<tr>
<td>Women</td>
<td>239</td>
<td>41.57</td>
<td>Age at PD onset</td>
<td>62.76</td>
<td>10.41</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>89</td>
<td>15.37</td>
<td>PD duration</td>
<td>8.07</td>
<td>5.57</td>
</tr>
<tr>
<td>Primary</td>
<td>301</td>
<td>51.99</td>
<td>LEDD</td>
<td>201.87</td>
<td>136.71</td>
</tr>
<tr>
<td>High school</td>
<td>124</td>
<td>21.42</td>
<td>DA-Agonist LEDD</td>
<td>683.15</td>
<td>426.49</td>
</tr>
<tr>
<td>University</td>
<td>65</td>
<td>11.23</td>
<td>SCOPA-MEx</td>
<td>12.48</td>
<td>6.95</td>
</tr>
<tr>
<td>Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>355</td>
<td>61.5</td>
<td>SCOPA-ADL</td>
<td>6.77</td>
<td>4.52</td>
</tr>
<tr>
<td>Housewives</td>
<td>107</td>
<td>18.5</td>
<td>SCOPA-MComp</td>
<td>2.31</td>
<td>2.64</td>
</tr>
<tr>
<td>Employed</td>
<td>33</td>
<td>5.7</td>
<td>SCOPA-Motor total</td>
<td>21.55</td>
<td>12.80</td>
</tr>
<tr>
<td>Other</td>
<td>82</td>
<td>14.3</td>
<td>MMSE</td>
<td>26.01</td>
<td>4.44</td>
</tr>
<tr>
<td>HY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>133</td>
<td>22.81</td>
<td>CISI-PD</td>
<td>8.65</td>
<td>4.91</td>
</tr>
<tr>
<td>2</td>
<td>268</td>
<td>45.97</td>
<td>SEND-PD:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>104</td>
<td>17.84</td>
<td>- Psychotic</td>
<td>1.33</td>
<td>2.23</td>
</tr>
<tr>
<td>4</td>
<td>62</td>
<td>10.63</td>
<td>- Mood/apathy</td>
<td>4.49</td>
<td>3.64</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>2.74</td>
<td>- ICD</td>
<td>0.57</td>
<td>1.30</td>
</tr>
<tr>
<td>Caregivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>166</td>
<td>29.54</td>
<td>Age</td>
<td>59.62</td>
<td>13.97</td>
</tr>
<tr>
<td>Women</td>
<td>396</td>
<td>70.46</td>
<td>Zarit</td>
<td>21.87</td>
<td>16.59</td>
</tr>
<tr>
<td>Relationship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spouse</td>
<td>349</td>
<td>61.23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td>168</td>
<td>29.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>53</td>
<td>9.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N: number; M: mean; SD: standard deviation; HY: Hoehn & Yahr Staging; PD: Parkinson’s disease; LEDD: levodopa equivalent daily dose; DA-Agonist: Dopamine-agonist. SCOPA: Scales for Outcomes in Parkinson’s Disease; MEx: Motor exploration; ADL: Activities of daily living; MComp: Motor complications; MMSE: Mini-mental Status Examination; CISI-PD: Clinical Impression of Severity Index for Parkinson’s Disease; SEND-PD: Scale for Evaluation of Neuropsychiatric Disorders in Parkinson’s Disease; ICD: Impulse control disorders.
Table 2. Prevalence of neuropsychiatric symptoms (SEND-PD) for patients with and without dementia

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>PD-No dementia (n=488)</th>
<th>PD Dementia (n=94)</th>
<th>p**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Irritability/Aggressiveness</td>
<td>38.4</td>
<td>33.4</td>
<td>63.8</td>
<td><0.001</td>
</tr>
<tr>
<td>2. Delusions</td>
<td>17.6</td>
<td>11.1</td>
<td>51.1</td>
<td><0.001</td>
</tr>
<tr>
<td>3. Misidentification</td>
<td>20.7</td>
<td>12.3</td>
<td>63.8</td>
<td><0.001</td>
</tr>
<tr>
<td>4. Hallucinations</td>
<td>22.8</td>
<td>15.8</td>
<td>58.5</td>
<td><0.001</td>
</tr>
<tr>
<td>SEND-PD Psychotic symptoms</td>
<td>48.5</td>
<td>41.6</td>
<td>84.0</td>
<td><0.001</td>
</tr>
<tr>
<td>5. Social/Verbal withdrawn</td>
<td>55.3</td>
<td>49.8</td>
<td>83.0</td>
<td><0.001</td>
</tr>
<tr>
<td>6. Apathy/Lack initiative</td>
<td>54.8</td>
<td>48.0</td>
<td>90.4</td>
<td><0.001</td>
</tr>
<tr>
<td>7. Mental fatigue</td>
<td>57.5</td>
<td>51.4</td>
<td>89.4</td>
<td><0.001</td>
</tr>
<tr>
<td>8. Depression</td>
<td>65.6</td>
<td>63.1</td>
<td>77.7</td>
<td>0.007</td>
</tr>
<tr>
<td>9. Anxiety</td>
<td>64.7</td>
<td>62.1</td>
<td>77.7</td>
<td>0.004</td>
</tr>
<tr>
<td>SEND-PD Mood/Apathy</td>
<td>87.3</td>
<td>85.7</td>
<td>95.7</td>
<td>0.007</td>
</tr>
<tr>
<td>10. Hobbyism/punding</td>
<td>18.3</td>
<td>13.9</td>
<td>40.4</td>
<td><0.001</td>
</tr>
<tr>
<td>11. Poor impulse control</td>
<td>18.2</td>
<td>15.2</td>
<td>33.0</td>
<td><0.001</td>
</tr>
<tr>
<td>12. Abuse of medication</td>
<td>6.9</td>
<td>4.9</td>
<td>16.0</td>
<td><0.001</td>
</tr>
<tr>
<td>SEND-PD Impulse control disorders</td>
<td>26.5</td>
<td>22.5</td>
<td>46.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Patients with NPS</td>
<td>89.6</td>
<td>87.9</td>
<td>97.9</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* Percentage of patients with SEND-PD Positive answer

** Chi-squared

PD: Parkinson’s disease; SEND-PD: Scale for Evaluation of Neuropsychiatric Disorders in Parkinson’s Disease; NPS: neuropsychiatric symptoms.
Table 3. Zarit values in the sample broken down by groups of interest.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Levels</th>
<th>N*</th>
<th>Mean</th>
<th>SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEND-PD Psychotic</td>
<td>No (0)</td>
<td>298</td>
<td>15.45</td>
<td>12.09</td>
<td><0.001 (MW)</td>
</tr>
<tr>
<td></td>
<td>Yes (≥1)</td>
<td>274</td>
<td>28.86</td>
<td>17.96</td>
<td></td>
</tr>
<tr>
<td>SEND-PD Mood/Apathy</td>
<td>No (0)</td>
<td>74</td>
<td>10.09</td>
<td>9.63</td>
<td><0.001 (MW)</td>
</tr>
<tr>
<td></td>
<td>Yes (≥1)</td>
<td>498</td>
<td>23.62</td>
<td>16.70</td>
<td></td>
</tr>
<tr>
<td>SEND-PD IC disorders</td>
<td>No (0)</td>
<td>421</td>
<td>18.89</td>
<td>15.18</td>
<td><0.001 (MW)</td>
</tr>
<tr>
<td></td>
<td>Yes (≥1)</td>
<td>151</td>
<td>30.19</td>
<td>17.56</td>
<td></td>
</tr>
<tr>
<td>PD Dementia(^a)</td>
<td>No</td>
<td>477</td>
<td>19.21</td>
<td>14.93</td>
<td><0.001 (MW)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>93</td>
<td>35.82</td>
<td>17.78</td>
<td></td>
</tr>
<tr>
<td>Dementia severity</td>
<td>No dementia</td>
<td>477</td>
<td>19.21</td>
<td>14.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mild</td>
<td>46</td>
<td>30.93</td>
<td>17.77</td>
<td><0.001 (KW)</td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td>37</td>
<td>37.86</td>
<td>16.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td>10</td>
<td>50.70</td>
<td>15.33</td>
<td></td>
</tr>
<tr>
<td>Patients with NPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEND-PD Psychotic</td>
<td>No PD-Dementia</td>
<td>195</td>
<td>24.80</td>
<td>16.713</td>
<td><0.001 (MW)</td>
</tr>
<tr>
<td></td>
<td>PD-Dementia</td>
<td>78</td>
<td>39.38</td>
<td>16.595</td>
<td></td>
</tr>
<tr>
<td>SEND-PD Mood/Apathy</td>
<td>No PD-Dementia</td>
<td>407</td>
<td>20.75</td>
<td>15.126</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PD-Dementia</td>
<td>89</td>
<td>37.12</td>
<td>17.034</td>
<td></td>
</tr>
<tr>
<td>SEND-PD IC disorders</td>
<td>No PD-Dementia</td>
<td>106</td>
<td>25.89</td>
<td>16.711</td>
<td><0.001 (MW)</td>
</tr>
<tr>
<td></td>
<td>PD-Dementia</td>
<td>44</td>
<td>41.25</td>
<td>14.205</td>
<td></td>
</tr>
</tbody>
</table>

SD: standard deviation; SEND-PD: Scale for Evaluation of Neuropsychiatric Disorders in Parkinson’s Disease; NPS: neuropsychiatric symptoms; PD-Dementia: Parkinson’s disease with dementia; MW: Mann-Whitney test; KW: Kruskal-Wallis test.

\(^{a}\)Clinical judgment on dementia (yes/no).

* Numbers that do not sum 584 are due to missing data
Table 4. Linear regression models for Zarit as dependent variable.

<table>
<thead>
<tr>
<th></th>
<th>Total sample*</th>
<th>PD-No dementia (n=477)</th>
<th>PD-Dementia (n=93)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standardized beta</td>
<td>p</td>
<td>Standardized beta</td>
</tr>
<tr>
<td>SEND-PD Mood/apathy</td>
<td>0.284</td>
<td><0.001</td>
<td>0.281</td>
</tr>
<tr>
<td>CISI-PD Disability</td>
<td>0.213</td>
<td><0.001</td>
<td>0.213</td>
</tr>
<tr>
<td>SEND-PD Psychosis</td>
<td>0.184</td>
<td><0.001</td>
<td>0.145</td>
</tr>
<tr>
<td>Disease duration</td>
<td>0.112</td>
<td>0.003</td>
<td>0.132</td>
</tr>
<tr>
<td>R Squared</td>
<td>0.38</td>
<td>0.003</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Independent variables in all models: disease duration, CISI-PD Disability item, and the SEND-PD subscales (mood/apathy, psychosis and impulse control disorders). Empty cells mean non-significant variables.

* Also includes the variable “clinical judgment on dementia”, which was not significant.