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ABSTRACT: Here we describe the development of the
London Hybrid Exposure Model (LHEM), which calculates
exposure of the Greater London population to outdoor air
pollution sources, in-buildings, in-vehicles, and outdoors, using
survey data of when and where people spend their time. For
comparison and to estimate exposure misclassification we
compared Londoners LHEM exposure with exposure at the
residential address, a commonly used exposure metric in
epidemiological research. In 2011, the mean annual LHEM
exposure to outdoor sources was estimated to be 37% lower for
PM,; and 63% lower for NO, than at the residential address.
These decreased estimates reflect the effects of reduced
exposure indoors, the amount of time spent indoors (~95%),

and the mode and duration of travel in London. We find that an individual’s exposure to PM, ; and NO, outside their residential
address is highly correlated (Pearson’s R of 0.9). In contrast, LHEM exposure estimates for PM, s and NO, suggest that the
degree of correlation is influenced by their exposure in different transport modes. Further development of the LHEM has the
potential to increase the understanding of exposure error and bias in time-series and cohort studies and thus better distinguish

the independent effects of NO, and PM, ;.

1. INTRODUCTION

Epidemiological research has demonstrated associations
between ambient air pollution and a range of health effects
especially on the respiratory and cardiovascular systems.' ™"’
Epidemiological methods include estimating PM, and NO,
exposure metrics at a coarse spatial scale, using degrees of
Iongitude/latitude,lz’l‘% monitoring stations as proxies,z’m’H_16
or by considering the proximity of a subjects address to nearby
roads.'” These studies often ignore the strong spatial
concentration gradients and variability that exist within urban
areas. More detailed approaches have evolved which estimate
pollution concentrations at individual addresses or at the
centroid of small areas such as postcodes using geostatistical
interpolation,'® land-use regression,'” and dispersion mod-
els.”®?" However, these models do not take account of
exposure within the home, at work/school, and in different
travel microenvironments, despite significant differences
between personal and outdoor exposures demonstrated using
comparative measurement studies.”” >* Consequently, these
methods contribute to random exposure error, which is likely to
bias health associations to the null*® and systematic error that

-4 ACS Publications  © 2016 American Chemical Society

will bias health associations in either direction. Furthermore,
the correlations between PM, and NO, which tend to be
observed using such methods make it difficult to investigate the
independent associations of these two pollutants with health
effects.”>*’

Among the first attempts to obtain more detailed exposure
estimates was the EXPOLIS study framework by Kousa et al.”*
who evaluated the temporal and spatial exposure of the
population of Helsinki, Finland in different microenvironments.
More recently, Dhondt et al.>’ developed a population
exposure modeling approach taking into account population
mobility in two urban areas in Belgium, concluding that large
differences in health impacts occur when assessments neglect
population mobility. Recent studies have highlighted the
importance of exposure to air pollution during trips in urban
areas. De Nazelle et al”® found that while a number of
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individuals in Barcelona spent 6% of their time in transit, it
contributed 11% of their daily exposure to NO,. Likewise,
Houston et al.>' concluded that although travel comprised 5%
of a participant’s day, it represented 27% of their daily exposure
to particle-bound polycyclic aromatic hydrocarbons. Other
studies have reported that commuters in urban areas receive
12% of their daily PM, 5 exposure and up to 30% of their black
carbon inhaled dose while traveling.>*~>* Evidence of this kind
has led the Health Effects Institute (HEI) to suggest activity-
based or hybrid exposure models, which combine space-time-
activity data, personal measurements, and air quality models,
come closest to a “best” estimate of human exposure.”

Here we describe the London Hybrid Exposure Model
(LHEM), calculating air pollution exposure at population level,
while accounting for each individual's movements, during the
day. We summarize the population’s travel behavior and then
compare LHEM exposure estimates with exposure at the
resident’s address, to assess exposure misclassification. We also
assess whether the LHEM provides a better basis for
investigating the independent effects of NO, and PM,; on
health.

2. MATERIALS AND METHODS

Using the LHEM we estimate exposure to outdoor air pollution
for the population of London while indoors, outdoors, and
during journeys. The following sections describe the develop-
ment of each component.

2.1. LHEM Time-Activity Data Set. Space-time-activity
data for the LHEM is based upon the London Travel Demand
Survey (LTDS),* provided by Transport for London (TfL)
(David Wilby, personal communication) for the period 2005—
2010. The LTDS data set is generated through interviews with
approximately 8,000 households per annum to ascertain details
of each person’s daily trips, travel mode, trip purpose, and
demographic data, among other factors. Household and person
weighting factors, rebased following the 2011 Census 7 and
calculated by TfL, allow the scaling of the LTDS data set
(45,079 people) to represent the population of London
(excluding children under S) - approximately seven million
people. For more details see Appendix A of the Supporting
Information (SI).

2.2. Trip Route Simulation. The LTDS data set includes
start and end coordinates, times of trips, and mode of transport
but does not describe the routes taken. These have been
simulated in a number of different ways. Before undertaking
trip route simulation, the data was cleaned to remove missing
or clearly incorrect data, for example, unrealistically quick
journeys, missing origin or destinations, and missing journey
sections. This removed 9% of the data, leaving a final data set of
45,079 people taking 98,770 trips and a total of 340,754 stages
(representing different transport modes within the same trip).
To calculate the routes, start and end coordinates, times, and
transport mode of each sta%e were processed in the R Statistical
Computing Environment” using the RPostgreSClL39 exten-
sion. Specifically, the start and end points of each stage were
formed into URL strings and processed by a number of
different routing application programming interfaces (APIs).
The Open Route Service API" was used to simulate walking
trips (shortest-path), the Project OSRM API"' to simulate car
trips (quickest-path), Google Directions* to simulate cycling
(quickest-path), and the TfL Journey Planner™ to simulate
public transport trips (overground train, the London Under-
ground, the Docklands Light Railway, and bus). These APIs
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returned routes between the start and end locations, which
were stored in a PostGIS database, and split into points for each
minute of the journey using linear interpolation. For periods
between trips, people were assumed to stay indoors at the
previous destination point. The resulting data set gave the
location and environment (indoor, walking, cycling, driving,
etc.) of each of the 45,079 LTDS respondents on a minute-by-
minute basis over 24 h.

2.3. Exposure Estimates. 2.3.1. Outdoor Air Pollution
Predictions. Exposure to outdoor air pollution was provided by
CMAQ-urban,™ which couples the Weather Research and
Forecasting (WRF) meteorological model,** the Community
Multiscale Air Quality (CMAQ) regional scale model,*® and the
Atmospheric Dispersion Modeling System (ADMS) roads
model.”” The CMAQ-urban model output was processed to
give annual average hour of day NO, (NO + NO,), NO, NO,
and PM, 5 concentrations in 2011, across a 20 m X 20 m grid
over the UK (Figure S1, SI). CMAQ-urban was run without
bias correction and has previously been submitted to the UK
Model Intercomparison exercise run by the UK Government
department DEFRA,* performing well against other urban and
regional models. In Appendix C and Figure S2 (SI) we
summarize the CMAQ-urban model evaluation, which has r
values of 0.9 (NOx/NO,) and 0.77 (PM, ). The bias for NO,
and PM, 5 is approximately 3% and —10%, respectively.

2.3.2. In-Building Exposure. To calculate indoor exposure to
outdoor sources of PM, 5 and NO, using the LHEM, we apply
indoor/outdoor (I/O) ratios for domestic properties to the
outdoor CMAQ-urban. As all I/O ratios are less than 1, this
means that exposure indoors is less than outdoors at the same
location. The modeling methods are described in full in Taylor
et al.*’ but briefly; models were run for 15 building types,
derived from the English Housing Survey’ and Geo-
information Group classifications,”” which represent 76% of
the known London housing stock. The building physics model
(Energy Plus 8.0°%) estimated dwelling I/O ratios for PM, 5 and
NO, using background air infiltration and exfiltration; indoor
and outdoor temperature-dependent window opening, repre-
senting realistic occupant behavior; and deposition rates and
penetration factors (detailed in Appendix D, SI). Air infiltration
and exfiltration were modeled by assigning permeabilities—
typical of the age, type, and construction of the buildings,
allowing the model to account for infiltration due to wind
pressures and buoyancy effects. Buildings were modeled using a
Test Reference Year (TRY) weather file for London,
representing “typical” weather conditions, and derived from a
30 year baseline, with results output hourly for a year-long
simulation. The ratios were summarized by hour of the day and
weekday/Saturday/Sunday to match the temporal resolution of
the CMAQ-Urban data set and then averaged for each
postcode in Greater London. I/O ratios for offices were
assumed to have the same value as houses in the same
postcode. Figure 1 shows a map of daily average PM, g ratios
(although hourly ratios are used in the model). A similar map
of 24 h average 1/O ratios for NO, is given in Figure S3 (SI).
For the postcodes in London where there was insufficient
housing stock information to calculate ratios (white areas,
Figure 1), the London average was used (0.31 for NO, and
0.56 for PM, ).

2.3.3. In-Vehicle Exposure. For in-vehicle exposure, the
pollutant concentration is derived by solving the mass balance
equation™ > (1), explained further in Appendix E (SI)
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Figure 1. Map of 24 h average indoor/outdoor (I/0) ratios used in
the LHEM. The I/O ratios for PM, g are smaller in inner London than
outer London providing the most protection in areas where the
outdoor pollutants are highest. NO, (see Figure S3) has a similar
pattern between central and outer London but has lower I/O ratios
(0.11 to 0.59). Superimposed on the map is the London Underground
network to aid orientation.

0 100 200 300km

L1 1 1

dc, A* Q
2 = 2,:.(C. — C) — nd Cu=V. | —]| C+ =
dt wm( out m) HVAV in g ( v ) in

(1)

where C,, is the outdoor concentration surrounding the
vehicle, 4,;, and Agyac are the hourly air exchange rates from
the windows and mechanical ventilation system, respectively, 7
is the filter removal efficiency taking values between 0—1, V, is
the deposition velocity in m h™', A* is the internal surface area
available for deposition, V is the volume of the vehicle, and Q is
the in-vehicle particle emission rate in pg h™' (defined as the
product of resuspension rate and number of passengers not
seated in the vehicle). The total surface area for deposition A*
is calculated by adding the internal surface area of the vehicle A
to the surface area of each passenger.”

The ventilation conditions in cars were assumed to be
constant throughout the journey with the assumption of no
indoor sources, whereas the ventilation conditions were
modified by the regular stops of buses and trains, with the
model parameters reset at each stop, remaining constant
between stops. Resuspension from people’s movements was
assumed to be the only indoor source of particles in buses and
trains with no indoor sources for gaseous pollutants assumed.
Details of the parameters used in the in-vehicle mass balance
model are provided in Table S2 and Appendix E (SI).

Finally, for the London underground, concentrations were
taken to be 94 ug m™> for PM, s and 51 ug m™ for NO,. These
figures were based upon PM, measurements conducted on
London Underground platforms and trains during 22 journeys,
over 450 min, using a TSI Sidepak AMS510°° (Benjamin Barratt,
personal communication) and from NO, measurements on the
Paris Metro.”’

2.3.4. Walking and Cycling Exposure. Exposure while
walking or cycling was taken from time and location specific
CMAQ-urban model concentrations.

By combining these methods, the LHEM calculates exposure
minute-by-minute for 45,079 people, representing 6.8m

Londoners. Using these data we calculate the population
average daily exposure and the contribution from each indoor,
in-vehicle and outdoor microenvironment. LHEM is able to
simulate exposure to PM,,/,s, PM components, NO,/NO,,
and O;, as well as the exposure to separate sources, although
here we have limited our analysis to NO, and PM, .

3. RESULTS

3.1. Travel and Exposure to NO, and PM, ; in London.
The results in Table 1 have been split into age categories,
totalling 6.8m people. For each of these age categories results
have been given for the number of people, the inner/outer
London split, the percentage of the day spent in different
microenvironments, their trip details during the day, and
exposure to NO, and PM, in each microenvironment as a
percentage of their total daily exposure. Missing data and data
“not recorded” represented <0.01% of the total data set.

Results from the LHEM show that on average people spend
over 95% of their time indoors, predominantly at home or at
work, and that this proportion of time varies by only 2—3%
across the age ranges and includes approximately 20% of people
who, when surveyed, did not leave their house. Active travel
(cycling and walking) takes up about 1—1.7% of the time
during a typical day with inactive travel (driving, on the bus,
underground, train, motorcycle) taking 1.4 to 3.6%. This
translates into the number of trips being approximately 3 for
children to almost 7 for adults, with mean journey times and
journey lengths ranging between 12.8 min and 3.1 km for
children and 26 min and 8 km for adults.

The percentage of daily exposure indoors to outdoor NO,
and PM, 5 sources ranges between 92% for children and 81%
for adults and between 96% for children and 88% for young
adults, respectively. Inactive travel in London results in 2.4
times greater exposure to NO, than active travel. Inactive travel
results in 3.2 times greater exposure to PM, 5 than active travel.
People’s trips contribute approximately 15% of their daily NO,
exposure and 9% of their daily PM, 5 exposure.

3.2. NO, and PM,s; Exposure and Exposure Mis-
classification. Exposure misclassification is an important
consideration in estimating exposure to air pollution in health
studies. Figure 2 (NO, left panel and PM, ; right panel) shows
LHEM exposure estimates compared to the equivalent
exposure estimated at the residential address.

For NO,, the mean LHEM exposure of 13.0 g m™> (median
exposure 12.4 pug m™) is approximately 63% lower than the
mean NO, exposure at the residential address of 34.6 ug m™>
(median 34.8 ug m™*). The mean PM,  LHEM exposure of 8.5
ug m~> (median 8.2 ug m™) is approximately 37% lower than
the PM, s mean exposure at the residential address of 13.5 ug
m™> (median 13.6 ug m™>).

Within city variability is important in determining associa-
tions with health risks, and for PM,, the range in LHEM
exposure is between 6.0 yg m~> and 32.2 ug m™, larger than
the range at the residential address (11.2 ug m—>—20.0 g m™>).
The LHEM PM, 5 exposure estimates are skewed with a long
tail of high exposure concentrations. In contrast, the range in
LHEM NO, exposures is between 4.3 ug m™ and 55.3 yg m™>,
smaller than the range at the residential address (17.8 yg m™>—
88.1 pug m™).

To establish more clearly the reasons for the differences in
the exposure distributions of the LHEM and residential address
methods, scatter plots of PM, s and NO, are given in Figure 3,
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Table 1. Summary of the Time Spent in Each Microenvironment, Trip Details, and the Exposure of London’s Population to

NO, and PM, ; from Outdoor Sources on an Average Day

child (5—17) young adult (18—29) adult (30—59) elderly (60+) all ages (=5)
no. of people 1,620,578 1,156,831 2,932,228 1,124,131 6,833,768
percentage of age group in inner/outer London
inner London 37% 47% 42% 30% 40%
outer London 63% 53% 58% 70% 60%
percentage of time spent in each microenvironment
driving 0.8 1.4 22 1.5 1.6
indoor 97.7 94.9 94.7 96.4 95.7
walk 0.9 1.7 LS 12 13
Underground and DLR 0.1 0.7 0.5 0.2 0.4
bus 0.5 0.9 0.7 0.6 0.7
cycle 0.0 0.1 0.1 0.0 0.1
train 0.0 0.2 0.2 0.1 0.2
motorcycle 0.0 0.1 0.1 0.0 0.0
av number of trips 2.8 S4 5.6 4.0 4.6
av trip time (mins) 12.8 272 26.1 184 21.6
av trip length (km) 3.1 7.7 8.1 S4 6.4
av NO, exposure (g m?) 11.9 13.7 13.6 122 12.9
percentage of daily NO, exposure by microenvironment”
driving 3.0 5.3 8.5 5.6 6.2
indoor 92.0 82.0 81.2 88.0 85.0
walk 2.6 5.4 4.7 3.3 4.1
Underground and DLR 0.2 2.5 1.7 0.6 1.3
bus 2.0 3.6 2.5 22 2.5
cycle 0.1 0.3 0.4 0.1 0.2
train 0.1 0.6 0.5 0.2 0.4
motorcycle 0.0 0.1 0.2 0.0 0.1
av PM, ¢ exposure (ug m™) 8.1 8.8 8.7 82 8.5
percentage of daily PM, g exposure by microenvironment”
driving 13 2.3 3.8 2.5 2.8
indoor 959 87.8 88.6 934 91.0
walk 1.4 2.5 2.3 1.7 2.0
Underground and DLR 0.4 52 3.6 12 2.7
bus 0.9 1.6 11 1.0 11
cycle 0.0 0.1 0.2 0.0 0.1
train 0.0 0.4 0.3 0.1 0.2
motorcycle 0.0 0.0 0.1 0.0 0.0

“The percentages given are the contribution of each activity to total daily exposure for the London population split by age group.
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Figure 2. A comparison of the daily exposures of the London population using LHEM and residential address.

divided into active travel, inactive travel, those who remain at
home, and all three combined.

The correlation between exposure estimated using the
LHEM and at residential address, shown in purple in Figure
3, is relatively weak, having Pearson’s R values of 0.41 for PM, g
and 0.55 for NO,. For those who undertake inactive travel,

shown in turquoise, there is also a weak relationship (R values
of 0.56 for NO, and 0.39 for PM, ) due to the increased time
spent in transit while exposed to high PM, and NO,
concentrations. In contrast, there is a strong relationship
between LHEM and residential address exposures for those
staying at home, shown in red (R values of 0.91 for NO, and
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Figure 3. Scatter plots of NO, (bottom) and PM, 5 (top) LHEM exposure versus exposure at the residential address - demonstrating the relative
strength of the relationship between those who undertake active travel (cycle and walk), those that stay at home, and those who undertake inactive

travel (car, motorcycle, bus, train, and tube).
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Figure 4. Scatter plots of NO, and PM, 5 exposure outdoors at the residential address (left) (R = 0.90) and using the LHEM (right).

0.86 for PM, ), and for those undertaking active travel, shown
in green (R values of 0.77 for NO, and 0.79 for PM, ;). Finally,
for individuals whose dominant transport mode is the London
Underground/DLR (not shown), there is no correlation
between LHEM exposure and residential address exposure to
PM,; (R values of —0.01). In summary, the strength of the
relationship between the LHEM and residential address
exposure is determined by travel, with inactive travel modes
contributing to the highest daily exposure estimates of PM,
and NO, and the largest exposure misclassification (shown in
blue, Figure 3).

The LHEM results also suggest that spending long periods of
time indoors reduces exposure to outdoor sources of air
pollution. I/O ratios (Figure 1 and Figure S3 (SI)) reduce
between outer and inner London, due to newer building stock
and the number of flats in large buildings, resulting in a small
surface area available for infiltration of outdoor air. As a
consequence there is greater protection from outdoor air
pollution, which is highest in this central part of the city.
However, greater air tightness will also increase the impact of

11764

exposure from indoor sources, currently not considered in the
LHEM.

3.3. Pollutant Correlations in Exposure Estimates. It is
often difficult to establish independent health associations for
NO, and PM, 5 due to their strong correlation outdoors. Scatter
plots of NO, vs PM, s outdoor residential exposure results are
given in Figure 4 (left panel) and show high correlation (R =
0.90). In contrast, the relationship between NO, and PM,
exposure using the LHEM (Figure 4, right panel) shows a
much more complicated picture, especially when broken down
by dominant travel mode (Figure 3), with the majority of the
people who stay at home having the lowest exposures (Figure
3, in red), and those that travel the highest (Figure 3, green and
blue/turquiose). Figure 4 (right panel) shows two distinct
groups in the population: those who have high NO, exposure
and low PM, 5 exposure, and those who have low NO, and high
PM, s exposure. This relationship remains during typical and
nontypical days (Appendix F and Figure S4, SI). Further work
is needed to better understand these relationships, but when
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applied to health studies this contrast has the potential to
examine the independent effects of NO, and PM, .

3.4. LHEM Sensitivity. While the outdoor exposure
estimates of CMAQ-urban have been comprehensively
evaluated using UK fixed site air quality data (Appendix CI,
SI), there is little suitable observed personal exposure data with
which to evaluate the LHEM exposure predictions. However,
since transport and indoor microenvironments are important
for exposure, we have tested the robustness of our results with
five sensitivity tests using different input variables in these
models. The results are presented as the percentage change in
daily PM, 5 exposure. Further work on the sensitivity of the
PM, ; and NO, exposure is planned (see Table 2).

Table 2. Percentage Variation of Total PM, ; Exposure
under Five LHEM Model Sensitivity Tests

test 1: test 2: test 3: test 4: test S:
age/ 10 vehicle vehicle resuspension  deposition
parameters  ratios  ventilation occupancy rate velocity
children +12.2 -0.5 0.0 +0.1 -03
young +11.1 -L1 0.0 +0.1 —0.5
adults

adults +11.2 -1.9 0.0 +0.1 —0.5
elderly +11.9 -1.2 0.0 +0.0 —0.4

Test 1: New PM, I/O ratios were modeled with a lower
particle deposition rate (0.125 h™" instead of 0.19 h™") and
higher building penetration factor (0.82/1 instead of 0.8/1),
resulting in ratios which were on average 20% higher, and
consistent with those used in other measurement based
studies*®*” which include indoor sources.

Test 2: The car, taxi, and van ventilation settings for the in-
vehicle model were changed from semiopened windows and
air-conditioning off (natural ventilation setting) to windows
closed and air-conditioning system in use (mechanical
ventilation setting), resulting in a lower penetration of outside
air into the vehicle.

Test 3: The number of people in buses, trains, and on the
Docklands Light Railway (DLR) was increased to the
maximum capacity of the vehicles (reflecting rush hour
transport conditions). The number of active passengers was
also increased (see Table S2, SI).

Test 4: Particle resuspension rates for the in-vehicle model
were doubled from the base case value of 0.02 yg/min~" to 0.04
pg/min~" (from Ferro el al.’").

Test S: Pollutant deposition rates for the in-vehicle part of
the model were increased from the mean values found in
INDAIR® to the maximum values found in the same study
(Appendix E, SI).

Results of the sensitivity tests show that altering the physical
parameters and ventilation settings of the in-vehicle calculations
(tests 2—5) had little effect on the overall population exposure
with a maximum change in PM, 5 exposure being —1.9% due to
vehicle ventilation assumptions for adults, although they are
likely to be more influential on the results of specific trips/
people. The parameter which had the largest effect was
changing building I/O ratios, which for all age groups increased
their exposure by >11.1%, demonstrating the importance of this
microenvironment in exposure calculations.

5. DISCUSSION

Correctly estimating human exposure to air pollution remains
an important source of uncertainty in public health research

and one which can push existing associations toward the null,
i.e. to incorrectly conclude that no association exists or to affect
the precision of the association. The LHEM, introduced here, is
the latest attempt™**°*®* to establish a more comprehensive
understanding of human exposure. There are many uncertain-
ties to our model that require further investigation; however,
using it, we find that our study population of 6.8m people,
representing the population of London (>S years of age),
spends between 94.7 and 97.9% of their time indoors and 2.1—
5.3% in transit, depending on age and other variables. These
time-activity patterns are broadly typical of other midlatitude
urban populations, for example the proportion of the day in
transit was 6% in a study in Barcelona” and 8% for the working
population in Helsinki, Finland.”® We find that travel
contributes between 8.0 and 18.8% of our population’s daily
exposure to outdoor NO, sources and between 4.1 and 12.2%
of outdoor PM,; sources, with inactive travel contributing
more than active travel. That people’s trips contribute
approximately 15% of their daily NO, exposure is similar to
findings in Barcelona® and that approximately 9% of the daily
PM, 5 exposure comes from people’s trips agrees with findings
by Fondelli et al.”® in Florence. The concentrations that we
model for transport microenvironments (Appendix G and
Table S3, SI) tend to have large ranges due to the temporal and
spatial variability of the CMAQ-urban model used as input to
the in-vehicle model. Results generally agree with studies that
include measurements of these environments,"*’" although
there is a large variation reported in the literature. Time spent
in indoor environments contributes the rest of the population’s
exposure of between 81.2 and 92% for NO, and 87.8 to 95.9%
for PM, 5 from outdoor sources.

When comparing the LHEM method to address-based
exposure estimates, we find the average LHEM exposure is
37% lower for PM, and 63% lower for NO,. Results from
other similar studies are difficult to find as we combine
individual exposures for a large population and do not include
indoor emissions. For NO, a study by de Nazelle® of a small
number (36) of active volunteers moving around the city found
subjects had 27% higher NO, exposure (including indoor
sources) when a time-activity model was compared to
residential exposure. Dhondt” found ambient NO, exposure
to be between 5% lower and 15% higher when using dynamic
methods with a model which has lower temporal and spatial
resolution than the LHEM and a relatively simple transport
exposure model. In addition the LHEM incorporates a larger
range of activity levels and ages, including a number of
participants who do not leave their home, and does not include
indoor sources. For PM, s Burke,”" when calculating exposure
to ambient sources using a stochastic simulation method, found
a median exposure to PM, s of 7 g m™ compared to our mean
of 8.5 ug m™>.

Using the LHEM we conclude that the indoor environment
is protective of exposure to outdoor emissions sources and that
this is reflected in much lower exposure estimates than would
be found using exposure outdoors at the residential address.
The degree to which buildings are protective varies geo-
graphically in London and is pollutant and housing specific.
Average NO, I/O ratios in the EXPOLIS and SAPALDIA
studies”””? are found to be 0.76 and 0.545 respectively, and are
higher than our range of 0.11 to 0.59 due to the influence of
indoor sources. For PM, 5, Taylor et al. compared the ratios we
use (range of 0.35 to 0.86) to existing studies and found good
agreement. Furthermore, sensitivity tests demonstrated that
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even with increased I/O ratios, the differences between LHEM
and residential exposure are still present. Finally a further
limitation of the LHEM is the assumption that I/O ratios for
commercial buildings are the same as domestic buildings of
similar ages, morphologies, and in the same postcode.

In addition, we have shown that transport microenviron-
ments are important in correctly establishing exposure, with
those who stay at home having an exposure which is closely
correlated with outdoor residential concentrations and those
who travel, in particular by car, bus, and by the London
Underground being poorly correlated with outdoor concen-
trations at the residential address. Members of the population
that travel by car, bus, and the London Underground are some
of the most highly exposed, with small differences in the
exposure across the four age groups used in this study.

There is also a more complex relationship between PM, 5 and
NO, LHEM exposure estimates compared to the correlated
exposures at residential addresses. Within health studies this
may have the potential to examine the independent health
effects of NO, and PM,; through the assessment of the
differential degree of misclassification of personal exposure to
each air pollutant. In future cohort studies in London,
participants could complete questionnaires similar to those in
the LTDS, which could then be combined with the LHEM to
assess personal exposure, and have this linked to their health
records. The LHEM could be used as a template for other
cities, as it provides population exposure, not possible using
alternatives such as personal monitoring. For time-series
studies, Zeger et al.”* illustrate how estimates of daily personal
exposure in the population can be used to adjust the relative
risk obtained from time-series studies, using daily ambient
concentrations, for measurement error and to predict the likely
bias occurring in multipollutant models. For health impact
assessments, policies designed to reduce air pollution exposure
by changing travel behavior, or by reducing specific micro-
environment concentrations, are currently difficult to assess as
the relevant exposure metric does not match those currently
used in epidemiological studies. This situation can be improved
by learning more about the relationships between different
exposure metrics using the LHEM or by deriving concen-
tration—response functions from future studies using the
LHEM or an analogous model. As the LHEM is based upon
CMAQ-urban predictions it is possible to predict exposure to
components of PM, such as elemental, organic carbon, nitrate,
and sulfate, rather than just PM mass, and also ozone.

The LTDS samples an individual’s activity on a single day.
The LTDS survey population has coverage of weekday and
weekend activities throughout the year, and by combining all
individuals and using weighting factors provided by TfL, we
obtained an average daily NO, and PM,; exposure for the
London population in 2011.

The next stage of the LHEM is better predicted exposure
indoors and outdoors from all sources, rather than to outdoor
sources as we have here. To do this requires the inclusion of an
indoor air pollution model with indoor sources, which given the
large amount of time that people spend indoors is likely to alter
LHEM exposure predictions. Second, a more comprehensive
evaluation of LHEM is needed using personal exposure data,
which have advanced rapidly in recent years, including the
development of postprocessing methods to ensure high data
quality. However, robust evaluation of models like LHEM is
still limited due to the cost and size of monitors, as well as the

practicality of obtaining large enough cohorts for the data to be
reliable.

To date, we have not found an equivalent LTDS data set
outside London; however, there is undoubtedly equivalent data
in other cities throughout the world, enabling models such as
LHEM to be developed. Although we recognize the significant
ethical hurdles that this approach would entail, it is hoped that
the LHEM, as the latest in this new breed of exposure models,
will lead to linking public health records with personal exposure
estimates, to better understand human exposure to air pollution
and the associated health effects. Finally, the LHEM can play a
part in testing air quality policy scenarios aimed at reducing
exposure rather than lowering ambient concentrations, for
investigating the exposure of different subpopulations and for
assessing exposure indoors and outside.
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