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Abstract. We use statistical mechanical techniques to model the adaptive
immune system, represented by lymphocyte networks in which B cells interact
with T cells and antigen. We assume that B- and T-clones evolve in different
thermal noise environments and on different timescales, and derive stationary
distributions and study expansion of B clones for the case where these timescales
are adiabatically separated. We compute characteristics of B-clone sizes, such as
average concentrations, in parameter regimes where T-clone sizes are modelled as
binary variables. This analysis is independent of the network topology, and its
results are qualitatively consistent with experimental observations. To obtain the
full distributions of B-clone sizes we assume further that the network topologies
are random and locally equivalent to trees. This allows us to compete these
distributions via the Bethe-Peierls approach. As an example we calculate B-clone
distributions for immune models defined on random regular networks.

1. Introduction

The main task of the immune system is to defend an organism from invading pathogens
such as viruses, bacteria, parasites, etc. In complicated multicellular organisms, such
as vertebrates, the immune system is usually divided into two subsystems: the innate
immune system and the adaptive immune system [1]. The former can be seen as a
first line of defence on which the organism relies for protection in the first hours and
days of infection with a new pathogen, but its immune response is not specific to this
particular pathogen. The latter is a second line of defence, which is usually triggered
by the innate immune system, whose immune response is more specific and also offers
a more long-term protection. These properties of the adaptive immune system arise
from its ability to learn and memorise a wide range of pathogens, an important part of
which is learning to recognise the molecules of the organism [2], which emerges from
the interactions of its cells, mediated by signalling proteins (cytokines).

Interactions between B cells and T cells are dominant in the adaptive immune
response [1]. The main feature of a B cell is its B cell receptor (BCR) which is used to
recognise antigen (Ag). Antigen is a (unique) protein on the surface of the pathogen.
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However, a BCR recognises only a specific part of the Ag, which is called epitope,
so potentially a single BCR can recognise many different Ags [3, 4]. An Ag that
binds to the BCR is subsequently internalised and is broken by the cell into peptides
(short proteins) which are then displayed on its surface. The T cell also has its T
cell receptor (TCR) to recognise Ag, however, in contrast to B cells, a T cell binds
to the peptides on the surface of antigen presenting cells (APCs), such as dendritic
cells, B cells, etc. The adaptive immune response is triggered when T helper cells that
are attached by their TCRs to B cells, activate these B cells (by cytokine-mediated
signals) that recognise the same Ag. The strength of this interaction between the
BCR (TCR) and the Ag is called affinity. Upon activation, the B cells with highest
affinity begin to proliferate in a process known as clonal expansion. A group of B
cells (or T cells) with the same BCR (or TCR) is called a clone. While B cell clones
(B clones) are expanding the T cells, activated by Ag, they are also going through
the process of clonal expansion. We note that the mode of B cell activation described
here is called “T-dependent B cell activation”, however for some “simple” Ags with
repetitive patterns, such as polysaccharides, the B cell can also be activated directly
by Ag and without the help from a T cell (“T-independent activation”).

Some proliferating B cells differentiate into plasma cells, which secrete large
quantities of antibodies (BCRs in soluble form). The antibodies (Ab) protect the host
from infection by binding to the pathogen and thus, by blocking its external parts,
make the attack ineffective or “mark” the pathogen for ingestion by other host cells.
However, the Abs produced in this initial clonal expansion are of very low affinity,
especially if the host is infected with this pathogen for the first time. The other
proliferating B cells are used to seed the germinal centres (GCs). GCs are special
micro-environments, formed within secondary lymphoid organs, which are divided
into the light and dark zones. In the dark zone B cells undergo somatic hypermutation
which introduces random mutations into the genes of BCRs. This process is followed
by the interaction of B cells with the helper cells and Ag in the light zone of the GC.
Here B cells with higher affinity are selected and differentiated into plasma cells and
memory B cells. Presence of high affinity memory B cells in the organism leads to a
more vigorous immune response on the subsequent infections by the same Ag.

Statistical physics (SP) approaches to modelling the adaptive immune system [5,
6] are predominantly based on the idea that the immune system can be viewed as
a network (or graph). The nodes in such networks are lymphocyte clones (B cells
and T cells), antibodies, antigens, etc. and the edges model interactions such as
B cells receiving “signals” from T cells, antibodies binding to antigen, etc. One
of the first such studies was [7], describing a network of interacting antibodies [8],
i.e. an idiotypic network. Despite being very simple (binary variables assigned to
the nodes represented Ab concentrations, and the interactions were assumed to be
random), this model exhibited memory, which was interpreted as the (immunological)
memory of the past exposure to the Ag. A more detailed model with lymphocytes
and cytokines was introduced in [9]. Here the (bipartite) network was formed by
interactions between effector clones, formed by B cells and killer T cells, and helper
clones (T cells), mediated by cytokines (strengths of (random) interactions in the
model). The immunological memory in this model arises from the ability of T clones
to memorise an extensive number of cytokine signalling “strategies” (or patterns),
allowing to cope with possible Ag stimulation. However, the fully connected network
topology used in this model restricted the immune memory to retrieval of only one
pattern at a time, limiting the abilities of the immune system to fight against multiple
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Ags [9]. The finitely connected network topology, which is more realistic from the
biological point of view [10], allows to retrieve an extensive number of patterns in
parallel.

The above studies all used the equilibrium SP framework, and assumed existence
of an energy function, governing behaviour of Abs, lymphocytes, etc., from the very
beginning. However, whenever it is not clear that such a function exists, or if we want
to study relaxation to equilibrium, we must study dynamics. Examples of studies
of the dynamics of immune idiotypic networks and bipartite lymphocyte networks
are [11] and [12]. Finally, we note that SP models and concepts are also used
in statistical inference of immune system data. The maximum entropy model of
amino acid sequences was used to study the repertoire of memory B cell receptors
in zebrafish [13]. Recently, similar approaches were applied to study the repertoires
of T cells [14] and B cells [15] in humans.

In this paper we develop further the lymphocyte network model [9, 10], in both
qualitative and quantitative directions. The main difference between the current
and previous versions of the model is that we relax the assumption that B clones,
represented by log-concentrations of B cells, and T cell clones (T clones), represented
by concentrations of T cells, are subject to the same thermal noise [10]. We note
that both populations of B cells and T cells are affected by various random events
such as stochasticity in cell division and cell death [16], thermal fluctuations in the
TCR-peptide [17, 18, 19, 20] bond strengths [21], etc. Also, these are populations
of biochemically, and possibly physically [22], distinct cells. Furthermore, in the T-
dependent immune response the magnitude of fluctuations in the populations of B
cells and T cells are expected to be very different due to the fact that the former
are subject to the process of somatic hypermutation and the latter are not [1]. For
the above reasons it is implausible for the random noise in B and T clones to be of
identical strength.

Having different thermal noise levels, i.e. different “temperatures”, in the B and T
clone evolution introduces some technical difficulties in the analysis of the problem. In
contrast to previous studies [9, 10], it prevents us from using the equilibrium framework
directly. However, we can make progress by assuming that either B clones or T clones
are “fast” variables [23], i.e. they are evolving on different time-scales. The latter
allows us to obtain the stationary distribution of a two-temperature system in its
explicit form [24], unlike the situation with the same or comparable time-scales [25].

Furthermore, previous studies did not distinguish the T helper cells from the T
regulator cells [26]. The latter play an important role in preventing autoimmunity by
suppressing the growth of self-reactive B clones which could be produced during the
T-dependent immune responses [27]. Also, B cells infiltrate tumours and there is an
evidence for in situ immune responses [28], to tumour-associated (self) Ags, which are
thought to be strongly influenced by the presence of regulator T cells [29].

Finally, we note that our main focus in this paper will be on the properties of B
clone distributions and how these are affected by the parameters of the model, such
as network topology, concentration of Ag, etc. Existing models of clone distributions
usually disregard such details (see [30] and references therein) and do not explicitly
include interactions between the B cells and T cells dominant in the T-dependent
immune response. Recently, the importance of these properties in our understanding
of the ageing immune system was emphasised in [31] and we also envisage that these
properties are important in tumour immunology [28].
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σ1

σi

σN

b1

bµ

bM

Figure 1. Bi-partite network of T-clones and B-clones, generated by the T-
dependent immune response. A red link between a (helper) T-clone i and a
B-clone µ represent that this B-clone receiving a signal to expand. A blue link
between a (regulator) T-clone i and B-clone µ represents a signal to contract.

2. Dynamics

We consider M B-clones interacting with N T-clones on a bipartite graph G =
(V,F , E), where N = |V|, M = |F| and E is the set of edges (see Figure 1). The
set of indices ∂µ contains all T-clones i connected to B-clone µ, and the set ∂i defines
all B-clones µ that are connected to T-clone i. The B-clone sizes are specified by the
log-concentrations b = (b1, . . . , bM ), and we assume that these are governed by the
Langevin equation

τb
dbµ
dt

= Jµ

∑
i∈∂µ

ξµi σi + θµ

− ρbµ + χµ(t) (1)

where the zero-average Gaussian noise χµ(t), with 〈χµ(t)χν(t′)〉 = 2τbβ̃
−1δµνδ(t− t′),

is characterised by a “temperature” parameter T̃ = β̃−1. In this dynamics the µ-th B-
clone receives the “signal”

∑
i∈∂µ ξ

µ
i σi from |∂µ| T-clones, whose sizes are specified by

the concentrations σ = (σ1, . . . , σN ). The i-th T-clone is either formed by T-helper or
by T-regulator cells. The efficacies of the T-helper and T-regulator clones are encoded,
respectively, by “cytokine” variables ξµi > 0 and ξµi < 0. The signal

∑
i∈∂µ ξ

µ
i σi

from the T-clones is modulated by the interaction strength Jµ(a) =
∑
ν≤M Sµνaµ,

which depends on the Ags, as represented by the vector of epitope “concentrations”
a = (a1, . . . , aM ). Here Sµν ≥ 0 is an element of an “affinity” matrix which specifies
how well the ν-th epitope is “matched” by the µ-th B-clone. A very specialised
B-clone will interact with only one epitope (i.e. Sµν = δµν), whereas poly-reactive
B-clones [3, 4] can interact with many different epitopes (e.g. Sµν > 0 for all ν). The
θµ term gives the possibility of B-clone activation even in the absence of a signal (or in
the presence of only a weak signal) from the T clones, i.e. it facilitates T-independent
activation.

A positive (negative) “field” Fµ(σ) = Jµ
(∑

i∈∂µ ξ
µ
i σi + θµ

)
has an excitatory

(inhibitory) effect on the growth of µ-th B-clone. The strength of this effect is
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increasing with larger amounts of Ag: the interaction Jµ(a) is a monotonic non-
decreasing function of the antigen a, i.e. Jµ(a) ≥ Jµ(ã) for all µ when aν ≥ ãν
for all ν. Furthermore, the growth of clone µ is kept in check by the “apoptosis”
therm −ρbµ, which limits its amplitude. For Jµ = 0, i.e. without Ag, the
distribution of log-concentration bµ in equilibrium takes the Gaussian form p(bµ) =

(2π/ρβ̃)
1
2 exp[− 1

2ρβ̃b
2
µ].

In order to derive a dynamical equation for the T-clones we will follow the ideas
of [9, 10]. Firstly, we note that if we define the energy function (or Hamiltonian)

H(b,σ) = −
M∑
µ=1

bµFµ(σ) +
1

2
ρ

M∑
µ=1

b2
µ, (2)

then equation (1) can be written in the form

τb
dbµ
dt

= − ∂

∂bµ
H(b,σ) + χµ(t). (3)

We note that this dynamics is invariant under the transformationH(b,σ)→ H(b,σ)+
V (σ) where V (σ) is any function of σ. Secondly, we assume that

τσ
dσi
dt

= − ∂

∂σi
H(b,σ) + ηi(t), (4)

where the zero-average Gaussian noise ηi(t), with 〈ηi(t)ηj(t′)〉 = 2τσβ
−1δijδ(t− t′), is

chaacterised by a “temperature” T = β−1. From the above follows the equation

τσ
dσi
dt

=
∑
µ∈∂i

Jµξ
µ
i bµ −

∂

∂σi
V (σ) + ηi(t). (5)

For now we will leave the function V (σ) unspecified – it will be used later to “restrict”
the range of σi’s – while allowing us to define various thermodynamic functions.
We note that the advantage of assuming that T-clones are governed by the same
Hamiltonian as B-clones is that it allows us to use analytical tools from equilibrium
statistical mechanics. The disadvantage is that wether this approach is correct or not,
as in any other phenomenological approach, can be only established a posteriori. One
of the consequences of using the present approach, which is explicit in the T-clone
equation (5), is that, in the presence of Ag, the evolution of the T-clones is governed
by the B-clones. The latter can be interpreted as “B-cells acting as Ag presentation
cells (APCs) for the T-cells” which is a well known immunological fact [1]. However,
besides B-cells there are other dedicated APCs, such as dendritic cells, etc. The latter
can be included via the potential V . Finally, we note that the relation between the
time-scales of the T- and B-clone subsystems (τb � τσ versus τσ � τb) give us two
possible scenarios to analyse the equilibrium state [32].

2.1. Fast equilibration of B-clones

We first assume that the B-clone variables bµ are “fast” variables, and equilibrate on
timescales much shorter than those characterising the evolution of the T-clones. In
equilibrium the former will then be governed by the distribution

P~β(b|σ) =
1

Z~β(σ)
e−

~βH(b,σ), (6)



Statistical mechanics of lymphocyte networks modelled with slow and fast variables 6

where Z~β(σ) =
∫

db e−
~βH(b,σ) is a partition function. From this it then follows that

the dynamic equation (4) becomes ‡
dσi
dt

= −
〈

∂

∂σi
H(b,σ)

〉
~β

+ ηi(t) (7)

= − ∂

∂σi
F~β(σ) + ηi(t),

where F~β(σ) = −β̃−1 logZ~β(σ) is (formally) a free energy of a state σ. The above
subsequently implies that in equilibrium the T-clones are governed by the distribution

Pβ,~β(σ) =
1

Zβ,~β
e−βF~�(σ), (8)

where Zβ,~β =
∫

dσ e−βF~�(σ).
From (6) and (8) we can construct the joint distribution

Pβ,~β(b,σ) = P~β(b|σ)Pβ,~β(σ)

=

{
M∏
µ=1

e
− 1

2ρ
~β
�
b�−

F�(σ)

�

�2√
2π/ρβ̃

}
e
�

2�

PM
�=1 F

2
�(σ)∫

Dσ̃ e
�

2�

PM
�=1 F

2
�( ~σ)

(9)

which in turn allow us to construct the average density

P (b) =
1

M

M∑
µ=1

〈δ(b− bµ)〉β,~β =

∫
dF P (F )

e−
1
2ρ

~β(b−F� )
2√

2π/ρβ̃
, (10)

where

P (F ) =

∫
Dσ

e
�

2�

PM
�=1 F

2
� (σ)∫

Dσ̃ e
�

2�

PM
�=1 F

2
� ( ~σ)

1

M

M∑
µ=1

δ (F − Fµ(σ)) (11)

is a distribution B-clone activation fields. It follows from the above that the number
of B cells in a volume V , their concentration c, is governed by the distribution§

P (c) =

∫
dF P (F )

e−
1
2ρ

~β(log(c)−F� )
2

c
√

2π/ρβ̃
. (12)

We note that in equation (9) the “Boltzmann” factor exp[ β2ρ
∑
µ≤M F 2

µ(σ)] can

be written, up to an irrelevant constant, as exp[−β
∑
µ≤M Eµ(σ)]. The “energy”

function Eµ(σ) = − 1
2

∑
i∈∂µ

∑
j∈∂µ J

µ
ijσiσj −

∑
i∈∂µ θ

µ
i σi, where Jµij = (J2

µ/ρ)ξµi ξ
µ
j

and θµi = (J2
µ/ρ)ξµi θµ, can be represented as a fully connected weighted graph (or

clique) formed by those the T-clones that control B-clone µ. Thus the B-clone
dynamics (1), given the assumptions of this section, leads us to the result that in
equilibrium the T-clones are interacting via this network of cliques (see Figure 2).

‡ We note that the ‘implicit averaging’ procedure used here is exact when τb → 0 [23].
§ For any distribution P (b) we have P (c) =

R
P (b) δ

�
c− eb

�
db = 1

c
P (log (c)).
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σi

Jµij

σj

Figure 2. Example of a local topology in the T-clone network generated by the
system with fast B-clone equilibration. The evolution of B-clone µ (large grey
circle) is governed by three T helper clones (red nodes) and one T regulator clone
(blue node), forming a clique of four nodes.

2.2. Fast equilibration of T-clones

Here we assume, contrary to the previous subsection, that the T-clones equilibrate
first, and are upon equilibration governed by the distribution

Pβ(σ|b) =
1

Zβ(b)
e−βH(b,σ), (13)

where Zβ(b) =
∫

dσ e−βH(b,σ). The dynamics of B-clones is then given by

dbµ
dt

= −
〈

∂

∂bµ
H(b,σ)

〉
β

+ χµ(t) (14)

= − ∂

∂bµ
Fβ(b) + χµ(t),

where Fβ(b) = −β−1 logZβ(b). The latter thus evolve towards the equilibrium state

P~β,β(b) =
1

Z~β,β

e−
~βF�(b) =

Znβ (b)∫
db̃ Znβ (b̃)

, (15)

where n = β̃/β. We can use (15) and (13) to construct the joint distribution

P~β,β(b,σ) =
e−

1
2ρnβ

PM
�=1 b

2
� eβ

PM
�=1 b�F�(σ)Wn−1

β (b)∫
db̃ e−

1
2ρnβ

PM
�=1

~b2
�Wn

β (b̃)
, (16)

where Wβ(b) =
∫

Dσ eβ
PM
�=1 b�F�(σ).

Let us first consider the case when n ∈ Z+. Here

Wn
β (b) =

∫
Dσ1 · · ·

∫
Dσn eβ

PM
�=1 b�

Pn
�=1 F�(σ�) (17)

and the thermal average 〈f(σ)〉 =
∫

DσP~β,β(σ)f(σ) of any function f(σ) will be given
by the following “replica” relation

〈f(σ)〉 =

∫
db e−

1
2ρnβ

PM
�=1 b

2
�
∫
{Dσα} eβ

PM
�=1 b�

Pn
�=1 F�(σ�)∫

db̃ e−
1
2ρnβ

PM
�=1

~b2
�Wn

β (b̃)
f(σ1)
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J�ij
n

σ1
i

σ1
j

σ2
i

σ2
j

σ3
i

σ3
j

σni

σnj

Figure 3. Enlargement of the T-clone network in the system with fast T-clone
equilibration and n ∈ Z+. All n copies of a T-clone clique (shown here only for
one link in this clique) associated with the µ-th B-clone are interconnected in a
such way that they form a fully connected (weighted) network of n× |∂µ| nodes.

=
〈 1

n

n∑
α=1

f(σα)
〉
n
, (18)

where we have defined the average

〈{· · ·}〉n =

∫
{Dσα} e

�
2n�

PM
�=1(

Pn
�=1 F�(σ�))

2∫
{Dσ̃α} e

�
2n�

PM
�=1(

Pn
�=1 F�( ~σ�

))
2 {· · ·}. (19)

The Boltzmann weight exp[ β
2nρ

∑
µ≤M (

∑
α≤n Fµ(σα))2] in this expression can be writ-

ten, up to an irrelevant constant, in the form exp[−β
∑
µ≤M Eµ({σα})]. The energy

function Eµ({σα}) = − 1
2

∑
α,γ

∑
i∈∂µ

∑
j∈∂µ(Jµij/n)σαi σ

γ
j −
∑n
α=1

∑
i∈∂µ θ

µ
i σ

α
i , where

Jµij = (J2
µ/ρ)ξµi ξ

µ
j and θµi = (J2

µ/ρ)ξµi θµ, can be represented as a clique constructed

from those n×|∂µ| T-clones that control B-clone µ. Thus for n ∈ Z+ the fast T-clone
equilibration leads to the enlargement of the ‘local’ T-clone system (see Figure 3).

The B-clone density P (b) = 1
M

∑M
ν=1 〈δ(b− bν)〉~β,β can now be computed by

using the identity (17) in distribution (16), which gives us

P (b) =

∫
dF P (F )

e−
1
2ρnβ(b− F

n� )
2√

2π/ρnβ
(20)

with the distribution of (replicated) fields

P (F ) =
1

M

M∑
ν=1

〈
δ
(
F −

n∑
α=1

Fν(σα)
)〉

n
. (21)

From this also follows the distribution of B-cell concentrations

P (c) =

∫
dF P (F )

e−
1
2ρnβ(log(c)− F

n� )
2

c
√

2π/ρnβ
. (22)

Let us now compute the distribution (16) for the more general case where n ∈ R+,
not necessarily integer. In order to do this we assume that V (σ) =

∑
i V (σi), and use

the short-hand Dσ = e−β
PN
i=1 V (σi)dσ. We then consider the integral

Wβ(b) =

∫
Dσ eβ

PM
�=1 b�F�(σ)

= eβ
PM
�=1 b�J�θ�+

PN
i=1 log

R
Dσ e��

P
�2@i b�J��

�
i
, (23)
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�c 1 0 �c 1

m� hci

1

1
2

0

Figure 4. Fraction of regulator T cells (lower branch) m� = 1
2

(1−m), fraction

of helper T cells (upper branch) m+ = 1
2

(1 +m), and average B-clone size 〈c〉, in
the fast B-clone equilibration regime, as a function of the inverse temperature β
in the T-clone system modelled with the binary variables σi ∈ {−1, 1}.

where Dσ = e−βV (σ)dσ. Upon inserting this result into (16) we can extract the
marginal distributions

P~β,β(b) =
1

Z~β,β

e
− 1

2ρnβ
PM
�=1

�
b�−

J���
�

�2
+n
PN
i=1 log

R
Dσ e��

P
�2@i b�J��

�
i

(24)

P~β,β(σ) =

∫
db P~β,β(b)

{
N∏
i=1

eβσi
P
�2@i b�J�ξ

�
i∫

Dσ̃ eβ~σ
P
�2@i b�J�ξ

�
i

}
, (25)

with Z~β,β =
∫

db̃ exp[− 1
2ρnβ

∑M
µ=1(b̃µ − J�θ�

ρ )2 + n
∑N
i=1 log

∫
Dσ eβσ

P
�2@i

~b�J�ξ
�
i ].

The distributions (24,25) can be used to construct the densities P (b) =

M−1
∑M
µ=1

∫
dbP~β,β(b) δ(b− bµ) = M−1

∑M
µ=1 Pµ(b) (the concentration density P (c)

is given by P (b)/c with b = log c ) and P (σ) = N−1
∑N
i=1

∫
Dσ P~β,β(σ) δ(σ − σi) =

N−1
∑N
i=1 Pi(σ), where the marginal distribution Pi(σ) is given by

Pi(σ) =

∫
db P~β,β(b)

∫
Dσi eβσi

P
�2@i b�J�ξ

�
i δ(σ − σi)∫

Dσ̃i eβ~σi
P
�2@i b�J�ξ

�
i

, (26)

respectively. In a similar manner, using the definition

Pµ(F ) =

∫
Dσ P~β,β(σ)δ (F − Fµ(σ)) ,

we can derive the distribution of fields‖

Pµ(F ) =

∫
db P~β,β(b)δ (F−Fµ(σ))

∏
i∈∂µ

∫
Dσi eβσi

P
�2@i b�J�ξ

�
i∫

Dσ̃i eβ~σi
P
�2@i b�J�ξ

�
i

. (27)

3. Equilibrium analysis

In the remainder of this article we consider the simplest case when the T clones (or
single T cells) are modelled by the (binary) Ising variables σi ∈ {−1, 1}, or by the

‖ Similarly to a B-clone, the i-th T-clone experiences the field
P
�2@j b�J�ξ

�
j ; see equation (26).
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binary variables σi ∈ {0, 1}. The motivation for this choice of variables is as follows. A
single T helper cell can be either active or inactive, i.e. “on” or “off”, and is activated
by the Ag presenting cell which could be a dendritic cell, a B cell, etc. Then this T
helper cell can activate a B cell if it receives the “right” Ag related signal from it.
For the T regulator cells we assume that a similar mechanism is at work [27]. On the
level of T-clone we could say that the T-clone is active (inactive) if majority of its
cells are active (inactive). Thus the use of binary variables can be seen either as a
crude approximation of T-clones, where we only retain information about the state of
a clone but disregard its size, or all N variables are simply treated as single T cells
and we no longer distinguish the T clones to which they belong.

Within the analytical framework of the previous section the choices σi ∈ {−1, 1}
and σi ∈ {0, 1} can be obtained by using the double well potentials V (σ) =

∆
∑N
i=1

(
σ2
i − 1

)2
and V (σ) = ∆

∑N
i=1 σ

2
i (σi − 1)

2
+ 1

2ω
∑N
i=1 σ

2
i respectively. Here

the “chemical” potential ω allows us to control the number of activated T cells∑N
i=1 δσi,1, via the integral measure Dσ. Taking the limit ∆ → ∞ converts the N -

dimensional integral
∫

Dσf(σ), for example in the equation (18), into a sum
∑

σ f(σ)
over binary variables. Furthermore, the choice σi ∈ {−1, 1}, combined with ξµi = 1,
gives us the scenario when each active T cell is either a regulator cell or a helper cell.
The fact that the i-th T cell can change from being a regulator, σi = −1, to being
a helper, σi = 1 (or vice versa), must then be seen as an assumption that changes
in T cell function occur on the same time scale as the immune response to the Ag.
However, in experiments [27, 33] one usually has access only to the number of T cells
of either type, and such an assumption may be acceptable to capture the observed
phenomena. For the alternative choice of active or inactive T cells where σi ∈ {0, 1}
for all i, with ξµi ∈ {−1, 1} (in this case ξµi = ξi), the number of regulating T cells∑N
i=1 δξi;−1 is independent of the immune response.

The consequence of our choice for the measure V (σ) describing the variables σi,
when T cells are fast variables with n =∈ Z+ (see section 2.2), is that the T cells are
governed by the distribution

P (σ1, . . . ,σn) =
e
�

2n�

PM
�=1(

Pn
�=1 F�(σ�))

2

∑
{ ~σ�} e

�
2n�

PM
�=1(

Pn
�=1 F�( ~σ�

))
2 , (28)

where Fµ(σα) = Jµ
(∑

i∈∂µ ξ
µ
i σ

α
i +θµ

)
, which is equivalent to an Ising spin model for

σi ∈ {−1, 1} or a “lattice gas” for σi ∈ {0, 1}. For the latter we need to add the term

− 1
2βω

∑N
i=1

∑n
α=1 σ

α
i to the “energy” function in the exponential of (28). We note

that Jµ(a) = J
∑
ν≤M Sµνaµ, where J ≥ 0, allows us to control the “amount” of Ag a

by increasing or decreasing J . Then the quantity βJ2 controls either the level of noise
in the T clone system for fixed J or the amount of Ag for fixed β. Also the distribution
of T-clones (9) in the fast B clone equilibration regime can be obtained from (28) by
setting n = 1, so for T-clones the case of integer n covers both equilibration scenarios.
Let us for now discuss the case of n = 1 and θµ = 0.

For the Ising case with ξµi = 1, the average “magnetization” m = 1
N

∑N
i=1〈σi〉,

which is related to the fraction of activated helper (regulator) T-cells¶ via the identity
m+ = 1 − m− (m− = 1

2 (1 − m)), has a phase transition at βc = β from the
disordered paramagnetic (PM) m = 0 phase to the ordered ferromagnetic (FM) phase

¶ In immune response experiments, as in [27], such fractions can be computed from the number of
activated T helper, T regulator cells and the total number of activated T cells, N.
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Figure 5. Two possible topologies for bipartite immunological graphs (left and
centre), to illustrate the consequences of eliminating ‘fast’ B-clones. T and B
clones are represented by circles and squares respectively. Upon integrating out
the B-clone variables, the bipartite graph on the left gives rise to an effective
T-clone system shown on the right, in which the T-clones (circles) interact on the
classical square lattice (drawn as thick solid lines). Also the bipartite graph in
the centre gives rise to an effective T-clone system on the square lattice shown on
the right, but now with extended interaction range (drawn as thin solid lines).

m 6= 0 (see Figure 4) when N → ∞ [34]. We note that in this framework the
PM and FM phases can be interpreted respectively, as the “low-dose tolerance” and
“vigorous immune response” phases of a real immune system. The former is consistent
with its insensitivity to “small” amounts of Ag and the latter is consistent with its
strong reaction to a larger amounts of Ag [1]. The noise parameter β controls this
“sensitivity” to the Ag: for small (large) β, i.e. in a high (low) noise regime, a larger
(smaller) amount of Ag is needed to trigger a vigorous immune response.

There are many possible topologies of a bipartite graph G for which the T cell
system (28) has a finite critical inverse noise level βc. Suppose we choose one such
topology (see Figure 5), then for β ∈ (βc,∞) the fraction of helper (regulator) T
cells m+ ( m−) is either a monotonic non-decreasing or a monotonic non-increasing
function of the noise parameter β (see Figure 4) and of interaction strength J2

µ/ρ. This
follows from the Griffiths-Kelly-Sherman (GKS) theorem [35], which holds for any
ferromagnetic Ising spin system. Furthermore, if we know the average magnetization
m ≡ m({J2

µ/ρ}) for the T cell system with uniform interactions, i.e. with Jµ = J
for all µ, then by the same theorem m(J2

0/ρ) ≤ m({J2
µ/ρ}) ≤ m(J2

1/ρ) , where
J0 = infµ Jµ and J1 = supµ Jµ, from which it also follows that βc ≡ βc({J2

µ/ρ})
obeys: βc(J

2
0/ρ) ≤ βc({J2

µ/ρ}) ≤ βc(J2
1/ρ).

We note that the ratio of the number of regulator T cells to the total number of T
cells was observed, during a normal immune response to the Ag stimulation, to be in
the range 0.1− 0.25 in experiments on mice [27]. In the phase diagram (see Figure 4)
this corresponds to the lower branch of the m− plot. Also in this regime, the fraction
m+ of helper T-cells is a monotonic non-decreasing function of Ag concentration,
which is consistent with the experimental data [33]. The case of a “lattice gas”, i.e.
σi ∈ {0, 1} and ξi = 1, which is the scenario where we have only T helper cells which
are either active (σi = 1) or inactive (σi = 0), can be mapped similarly into the
ferromagnetic Ising model with (positive) external field [34]. For example, by writing
σi = 1

2 (1 + si), where si ∈ {−1, 1}. As a consequence, also here the fraction of helper
T clones m+ = 1−m− is a continuous and monotonic function of β and J2

µ/ρ [35].
We now turn to the analysis of B-clone properties in the fast B-clone and fast
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T-clone (n ∈ Z+) equilibration regimes. For the former the average B-clone size (or
average B cell concentration) 〈c〉 can be computed from (12), and for the latter the
same average can be computed from (22). In order to simplify the analysis of both
equilibration regimes, we define the distribution

P (c) =

∫
dF P (F )

e−
1
2ρ

~β(log(c)− F
n� )

2

c
√

2π/ρβ̃
, (29)

where

P (F ) =
∑
{σ�}

P (σ1, . . . ,σn)
1

M

M∑
ν=1

δ
(
F −

n∑
α=1

Fν(σα)
)
. (30)

Formula (29) gives the distribution of B-clone sizes for the fast B-clone and fast T-
clone equilibration regimes when n = 1 and β̃ = nβ, respectively. This log-normal
distribution can be interpreted as the (asymptotic) distribution of the “size” ci of an
element in a growth process, which changes its size at rate w(c→c′) = λδ (c′−(1+g)c),
in which λ is a (mean) growth rate and g is a growth factor [36]. The growth factor g
is related to the apoptosis parameter ρ via log2(1+g) = ρ−1 and the noise parameter
β̃ is related to the (rescaled) time λt , where λ is a (mean) growth rate, via λt = β̃−1.
Furthermore, when the initial size ci = c0 then c0 = exp[(F/n−√ρ/β̃)/ρ] and the
distribution (29) represents an average over random initial conditions. Since c is a
clone size, the growth process picture is consistent with the adaptive immune response:
those B-cells which “survived” interactions with the T cells, of which there are c0, serve
to ‘seed’ the B cell proliferation process.

Average and variance of (29) are given by

〈c〉 = e1/2ρ~β

∫
dF P (F )eF/nρ (31)

〈(c− 〈c〉)2〉 = e1/2ρ~β
(

e1/2ρ~β− 1
)∫

dF P (F )e2F/nρ. (32)

Let us next define the function 〈eF/nρ〉β =
∫

dF P (F )eF/nρ and consider its properties.
For β → 0 this function can be expanded around β = 0 which gives 〈eF/nρ〉β =

M−1
∑
µ≤M eJ�θ�/ρ coshn|∂µ|(Jµ/nρ) + O(β), while in the opposite limit β → ∞

it is dominated by the ferromagnetic ground state σ = (1, . . . , 1) which gives us
〈eF/nρ〉∞ = M−1

∑
µ≤M e(J�/ρ)(|∂µ|+θ�) (note that for θµ 6= 0 the dynamics (5) can

also “select” the (1, . . . , 1) state as N → ∞), so 〈eF/nρ〉∞ ≥ 〈eF/nρ〉0. Furthermore,
〈eF/nρ〉β is monotonic non-decreasing function of β and J (Jµ = J

∑
ν≤M Sµνaµ),

which for N <∞ is smooth everywhere except at βc , when N →∞ with θµ = 0 (see
Appendix A for details).

From the above analysis of 〈eF/nρ〉β we infer that in the fast B-clone equilibration
regime (n = 1) the average number of B-cells 〈c〉 is a monotonic non-decreasing
function of β and J (see Figure 4 for one of the possible behaviours). Combining
the two plots in Figure 4 then shows that 〈c〉 must be a monotonic non-decreasing
(non-increasing) function of the fraction of helper T-cells m+ (regulator T-cells m−)
and Ag, which is consistent with what was observed in in vivo [33, 27]. We note
that the variance 〈(c − 〈c〉)2〉 has a similar behaviour in this regime (the function
〈e2F/nρ〉β =

∫
dF P (F )e2F/nρ used in (32) has the same behaviour as the function

〈eF/nρ〉β).
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The behaviour of the average 〈c〉 in the case of fast T-clone equilibration with
n ∈ Z+ is not so clear, due to the relation β̃ = nβ. Here 〈c〉 = e1/2ρnβ〈eF/nρ〉β
diverges for β → 0 (it is finite when β → ∞), and the derivative ∂〈c〉/∂β =
e1/2ρnβ

(
∂〈eF/nρ〉β/∂β − 〈eF/nρ〉β/2ρnβ2

)
is negative when β → 0 (in this limit

∂〈eF/nρ〉β/∂β < ∞, and 〈eF/nρ〉β/2ρnβ2 = O(1/β)). For β → ∞ the derivative
∂〈c〉/∂β could be positive or negative; now 〈eF/nρ〉β/2ρnβ2 = O(1/β2), and one
expects the convergence to zero of ∂〈eF/nρ〉β/∂β to be strongly influenced by the
topology of the effective T-clone network. However, if β is fixed and we vary only J
then behaviours summarised in the Figure 4 are also observed (due to monotonicity
of the average 〈eF/nρ〉β with respect to J which is shown in the Appendix A) in the
n ∈ Z+ fast T-clone equilibration regime.

The fast T-clone equilibration regime with n ∈ R+ is much more difficult to
analyse, but in the low B-clone noise β̃ →∞ limit we expect at least in some regimes
the same phase diagram as in the Figure 4. To show this we first note that the
marginal distribution (26) can be written as the integral

Pi(σ) =

∫
db

e
~βφ(b)∫

db̃ e~βφ(~b)

∫
Dσi eβσi

P
�2@i b�J�ξ

�
i δ(σ − σi)∫

Dσ̃i eβ~σi
P
�2@i b�J�ξ

�
i

, (33)

where

φ(b) = − 1

2
ρ

M∑
µ=1

(
bµ−

Jµθµ
ρ

)2

+
1

β

N∑
i=1

log

∫
Dσ eβσ

P
�2@ib�J�ξ

�
i . (34)

This integral can be computed exactly by the Laplace method [37], which gives us

Pi(σ) =

∫
Dσi eβσi

P
�2@i b

�
�J�ξ

�
i δ(σ − σi)∫

Dσ̃i eβ~σi
P
�2@i b

�
�J�ξ

�
i

, (35)

where b∗µ is a solution of the following system of equations

bµ/Jµ =
1

ρ

∑
i∈∂µ

ξµi

∫
Dσ eβσ

P
�2@i b�J�ξ

�
i σ∫

Dσ̃ eβ~σ
P
�2@i b�J�ξ

�
i

+ θµ (36)

corresponding to a maximum of the function φ(b). From the first moment

〈σi〉 =

∫
Dσi eβσi

P
�2@i b

�
�J�ξ

�
i σi∫

Dσ̃i eβ~σi
P
�2@i b

�
�J�ξ

�
i

(37)

of the distribution (35), and the extremum condition (36), it follows that

bµ = Jµ

(1

ρ

∑
j∈∂µ

ξµj 〈σj〉+ θµ

)
(38)

which gives us the equation

〈σi〉 =

∫
Dσ eβσ

P
�2@i J

2
�ξ
�
i ( 1

�

P
j2@� ξ

�
j 〈σj〉+θ�)σ∫

Dσ̃ eβ~σ
P
�2@i J

2
�ξ
�
i ( 1

�

P
j2@� ξ

�
j 〈σj〉+θ�)

. (39)

Solutions of this equation can be used to compute the marginal T-clone distribution
(35) via the equation

Pi(σ) =

∫
Dσi eβσi

P
�2@i J

2
�ξ
�
i ( 1

�

P
j2@� ξ

�
j 〈σj〉+θ�)δ(σ − σi)∫

Dσ̃i eβ~σi
P
�2@i J

2
�ξ
�
i ( 1

�

P
j2@� ξ

�
j 〈σj〉+θ�)

(40)
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and the distribution (27) via the equation

Pµ(F ) =
∏
i∈∂µ

∫
Dσi eβσi

P
�2@i J

2
�ξ
�
i ( 1

�

P
j2@� ξ

�
j 〈σj〉+θ�)∫

Dσ̃i eβ~σi
P
�2@i J

2
�ξ
�
i ( 1

�

P
j2@� ξ

�
j 〈σj〉+θ�)

× δ(F − Fµ(σ)) . (41)

The average B-cell concentration 〈c〉 =
∫∞

0
dc cP (c) can be also computed from the

integral 〈c〉 = M−1
∑
µ≤M lim~β→∞

∫
db P~β,β(b)eb� which gives us the equation

〈c〉 =
1

M

M∑
µ=1

eJ�( 1
�

P
j2@� ξ

�
j 〈σj〉+θ�). (42)

In the case of Ising variables σi ∈ {−1, 1} and ξµi ∈ {−1, 1}, which also includes the
binary case σi ∈ {0, 1}, the above framework leads to

〈σi〉 = tanh
(
β
∑
µ∈∂i

J2
µξ
µ
i

(1

ρ

∑
j∈∂µ

ξµj 〈σj〉+ θµ
))
. (43)

The simplest nontrivial clonal interaction structure is a regular network topology,
as in Figure 5, with uniform interactions+ Jµ = J , ξµi = 1 for all (i, µ), and no self-
activation, i.e. θµ = 0. Here equation (43) simplifies considerably. From (38) we
infer that bµ = J

ρK〈σi〉, with |∂µ| = K, and if we define the average magnetization

m = 〈σi〉 we find that

m = tanhβ(J2LKm/ρ), (44)

with |∂i| = L. The average B cell concentration 〈c〉 = e
J
�Km follows from (42). The

distribution of fields (41) takes the following simple form, with P (F ) = Pµ(F ):

P (F ) =
∑
{σj}

eβ
J2

� LKm
PK
j=1 σj

2K coshK
(
β J

2

ρ LKm
)δ(F − J K∑

j=1

σj
)
, (45)

Equation (44) has m = 0 as its solution for any β, but this solution becomes
unstable for β > βc, where βc = ρ

J2LK , and two stable solutions |m| 6= 0 emerge.
Furthermore, the average number of B cells, 〈c〉, is a monotonic non-increasing function
of the fraction of T regulator cells m− = 1

2 (1 − m) (the representative case of
L = K = 4 and ρ = 1 is studied in the Figure 6). The B-clones are receiving
predominantly excitatory signals from the T clones, described by P (F ), when m− <

1
2 ,

and predominantly inhibitory signals when m− >
1
2 , as can be seen in Figure 6. For

β < βc the point m = 0 is the only solution, and the B cells are no longer controlled
by the T cells: 〈c〉 = 1 for all β and J . For β > βc and m− <

1
2 the average number

of B cells 〈c〉 is increasing with β and J (see inset in Figure 6). Thus βc separates the
“low-dose tolerance” PM phase, where immune system is insensitive to Ag, from the
“vigorous immune response” FM phase where it is very sensitive to Ag.

So far we have been able to discuss the behaviour of T- and B-clones by making
only weak assumptions about network topologies and interactions. This analysis is
qualitative, and only covers the cases where we can map our model onto ferromagnetic
Ising spin systems, which are quite well understood [35, 34]. Unfortunately, one

+ We expect that having non-uniform interactions J� would lead only to quantitative but not
qualitative differences with the uniform J� = J case studied here, i.e. we expect the same phase
diagram in both cases, provided that non-uniform J� are well behaved.
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� J

P (F )

hci

F

m� m�

Figure 6. Behaviour of B- and T-clones in the model with fast T-clone
equilibration in the noiseless B-clone regime (β̃ →∞) . The system, here defined
on a graph with connectivity L = K = 4, was studied for the high β < βc
(βc = 0.0625) and low β > βc T clone noise levels with J = 1 and for the low
J < Jc (Jc = 0.25) and high J > Jc Ag levels with β = 1. Top left: The average B-
clone size, 〈c〉, as a function of the fraction of T-regulator cells , m� = 1

2
(1−m),

for J = 1 and β ∈ [0, 0.5]. Inset: 〈c〉 as a function of β. Top right: 〈c〉 as a
function of m� for β = 1 and J ∈ [0, 1]. Inset: 〈c〉 as a function of J . Bottom:
The distribution P (F ) for β = 0.0525 with m� = 1

2
(left), for β = 0.0855 with

m� = 0.1 (centre) and for β = 0.0855 with m� = 0.9 (right).

cannot construct such arguments for the case where σi ∈ {0, 1} with ξµi ∈ {−1, 1},
which is again equivalent to an Ising model but is no longer ferromagnetic; the map
σ : {−1, 1} → {0, 1}, where σ = 1+s

2 , here gives rise to site-dependent external fields,
which could be positive or negative. Moreover, to make quantitive predictions about
the observables such as fractions of T cells, m±, and concentrations of B cells, 〈c〉,
and more informative observables such as the B-clone distribution (29), we have to be
more specific about the graph G and the interaction parameters {ξµi , Jµ}.

In the absence of microscopic knowledge about interactivity in real immune
systems, we will follow the “Bayesian” route and choose topological and interaction
parameters randomly, but subject to biological constraints such as the average number
of regulator T cells p = 1

N

∑N
i=1 δξi;−1 or the number of T cells that a single B cell can

interact with (for example in the graphs of Figure 5 these numbers are 4 and 8) which
can be deduced from [38]. In real immune systems the interactions of lymphocytes
with Ag occur in a 3-dimensional volume, so it seems reasonable to choose a regular 3d
lattice for our graph topology. However, even if we choose a simpler 2d lattice, there
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are still many possibilities for how to construct the graph G (two of which are shown
in Figure 5). Systems interacting on d-dimensional lattices, with d > 1, are hard to
study analytically. One therefore often uses locally tree-like [39] random topologies,
an approximation which is expected to be good away from phase transitions [40].

3.1. Bethe−Peierls approximation

For systems interacting on trees, relevant local observables such as the distribution
of fields (27) can be computed recursively. Let us first consider the distribution (28),
which governs the (replicated) T-clone variables {σαi } in both the fast B-clone (n = 1)
and fast T-clone (n ∈ Z+) equilibration regimes, defined on a factor-tree Tµ(r) of
radius r which is centred at the factor-node µ (see Figure B1 in Appendix B). The
field Fµ({hi}) = Jµ

(∑
i∈∂µ ξ

µ
i hi + θµ

)
, where hi =

∑n
α=1 σ

α
i , on this factor node is

governed by the distribution∗

Pµ(F ) =

∑
{hi}

{∏
i∈∂µ Piµ[hi]

}
e
�

2n�F
2

∑
{~hi}

{∏
i∈∂µ Piµ[h̃i]

}
e
�J2
�

2n� (
P
i2@� ξ

�
i

~hi+θ�)
2

× δ
(
F − Jµ

( ∑
i∈∂µ

ξµi hi + θµ
))
, (46)

where the cavity distribution Pµi[hi] can be computed recursively, starting from the
variables located in the boundary ∂Tµ of the tree Tµ, via the equation

Pµi[hi] =
∑
{hj}

{ ∏
ν∈∂i\µ

∏
j∈∂ν\i

Pνj [hj ]

} ∑
σ1,...,σn

δhi;
Pn
�=1 σ

�

× e
�

2n�

P
�2@in�J

2
�(
P
j2@� ξ

�
j hj+θ�)

2

×

[∑
~hi

∑
{~hj}

{ ∏
ν∈∂j\µ

∏
j∈∂ν\i

Pνj [h̃j ]

} ∑
~σ1,...,~σn

δ~hi;
Pn
�=1 ~σ�

× e
�

2n�

P
�2@in�J

2
�(
P
j2@� ξ

�
j

~hj+θ�)
2

]−1

. (47)

Similarly the magnetization 〈σi〉 = 1
n

∑
h Pi(h)h, where Pi(h) =

∑
σ Pi(σ)δh;

Pn
�=1 σ

� ,
of the tree Ti can be computed via the equation

〈σi〉 =
∑
h

1

n

∑
{hj}

{ ∏
µ∈∂i

∏
j∈∂µ\i

Pµj [hj ]

}∑
σ
δh;
Pn
�=1 σ

�

× e
�

2n�

P
�2@i J

2
�(
P
j2@�ni ξ

�
j hj+ξ�i h+θ�))

2

h

×

{∑
~h

∑
{~hj}

∏
µ∈∂i

∏
j∈∂µ\i

Pµj [h̃j ]

∑
~σ

δ~h;
Pn
�=1 ~σ� (48)

× e
�

2n�

P
�2@i J

2
�(
P
j2@�ni ξ

�
j

~hj+ξ�i
~h+θ�))

2

}−1

.

∗ Derivation details of the first three equations in this section are provided in Appendix B.
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We note that the equations derived in this section can be used to compute local
observables, such as the distribution Pµ(F ) or the local magnetization 〈σi〉, on locally-
tree like graphs. In these graphs a “ball” of radius r centred on any variable node
i (or factor node µ ) converges to the tree of radius r centred at this node, Ti(r),
when N → ∞ (or when M → ∞ with M/N < ∞), for any r [39]. An observable
associated with node i in such graphs is usually approximated by the same observable
computed on Ti(∞)]. Furthermore, local observables computed on random trees
can be used to compute densities: for example, upon assuming that the density
P (F ) = limM→∞

1
M

∑M
µ=1 Pµ(F ) is self-averaging [39] we can replace this average

with the average over the trees Tµ(∞) which for n ∈ Z+ gives us the equation

P (F ) =
∑
K≥1

P (K)

{
K∏
i=1

∫
{dPi}W [{Pi}]

}∫
dJ P (J)

∫
dθ P (θ)

×

〈∑
{hi}

{∏K
i=1 Pi[hi|ξi]

}
e
�

2n�F
2

δ
(
F − J

(∑K
i=1 ξihi + θ

))
∑
{~hi}

{∏K
i=1 Pi[h̃i|ξi]

}
e
�J2

2n� (
PK
i=1 ξi

~hi+θ)
2

〉
{ξi}

.(49)

The above equation was derived for the ensemble of random graphs with the prescribed
distributions P (L) and P (K) of the variable-node and factor-node connectivities,
respectively. We have also assumed that all parameters {ξi}, {Jµ} and {θµ} are
were drawn independently at random from the distributions P (ξ), P (J) and P (θ)
respectively. The distribution W [{P}] is usually approximated by the (empirical)
density W [{P}] = 1

N
∑
i≤N

∏
h,ξ δ (P [h|ξ]−Pi[h|ξ]) which is obtained via a population

dynamics algorithm [42], which at each step replaces a member i of the population
P = {Pj [h|ξ]} with the new value

Pi[h|ξ] =
∑
{haj }

{
L−1∏
a=1

K−1∏
j=1

Pi(a;j)
[haj |ξaj ]

} ∑
σ1,...,σn

δh;
Pn
�=1 σ

� (50)

× e
�

2n�

PL�1
a=1 J

2
a(
PK�1
j=1 ξaj h

a
j+θa+ξh)2

×

[∑
~h

∑
{~haj }

{
L−1∏
a=1

K−1∏
j=1

Pi(a;j)
[h̃aj |ξaj ]

} ∑
~σ1,...,~σn

δ~h;
Pn
�=1 ~σ�

× e
�

2n�

PL�1
a=1 J

2
a(
PK�1
j=1 ξaj

~haj+θa+ξ~h)2

]−1

which is computed using the (L−1)×(K−1) distributions Pi(a;j)
[h|ξ]. Here i(a,j) ∈

{1, . . . ,N} is drawn randomly and uniformly from the population P, and L and
K are random integers drawn from Q(L) = LP (L)/

∑
~L≥1 L̃P (L̃) and Q(K) =

KP (K)/
∑

~K≥1 K̃P (K̃), respectively. The parameters {ξai }, {Ja} and {θa} are also
random numbers, drawn from the distributions P (ξ), P (J) and P (θ), respectively.

Finally, we note that Bethe−Peierls approximation also can be used to study the
n ∈ R+ case (see Appendix C).

3.2. Analysis of homogeneous systems on random regular factor-graphs

The simplest non-trivial interaction topologies that allows us to obtain more
quantitative results are models defined on random regular factor-graphs. The ensemble

] This procedure is exact for ferromagnetic Ising models with uniform interactions [41].
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Figure 7. An immune system with the interaction topology of a random (K,L)-
regular factor-graph (left) gives rise to an effective system of T-clones interacting
on a random (K,L)-regular clique graph (right).

of these graphs contains all graphs with fixed connectivities of variable-nodes, |∂i| = L,
and factor-nodes, |∂µ| = K. This regularity imposes the constraint L/K = M/N on
the ratio of factor-nodes (B-clones) to variable nodes (T-clones). We also assume
that Jµ = J and θµ = θ, and consider the case of σi ∈ {−1, 1} with n ∈ Z+. For
N → ∞, random regular factor-graphs are locally tree-like [39], and we therefore
expect that the “tree approximation”, described in the previous section will be exact
on such graphs. Furthermore, the (local) topology of the T-clones system (28) in this
connectivity regime resembles a variant of the Bethe lattice [34], where each node is
connected to exactly L fully connected graphs (cliques) of size K (see Figure 7). From
now on we will call such a graph a random (K,L)-regular clique graph.

Let us consider the system (28) on one of such graphs. Since the variable nodes
and factor nodes are now all equivalent, the cavity distribution Piµ[h] in equation (47)
is the same for all i and µ, i.e. Piµ[h] = P [h], which gives us the recursive equation

P [h] =

[∑
{hj}

{∏K−1
j=1 P [hj ]

}
e
�J2

2n� (
PK�1
j=1 hj+h)

2]L−1(
n
n+h

2

)
∑

~h

[∑
{~hj}

{∏K−1
j=1 P [h̃j ]

}
e
�J2

2n� (
PK�1
j=1

~hj+~h)
2]L−1( n

n+~h
2

) , (51)

where h ∈ {−n,−n+ 1, . . . , n−1, n}, and where the binomial coefficient
(
n
n+h

2

)
results

from the computation of
∑
σ1,...,σn δh;

Pn
�=1 σ

� . The solution of this equation can be
used to compute the field distribution (46), via the equation

P (F ) =

∑
{hj}

{∏K
j=1 P [hj ]

}
e
�

2n�F
2

δ
(
F − J

∑K
j=1 hj

)
∑
{~hj}

{∏K
j=1 P [h̃j ]

}
e
�J2

2n� (
PK
j=1

~hj)2
, (52)

The same is true for the average magnetization m = 1
n

∑
h P (h)h, where P (h) is the

RHS of the equation (51) with L = L+ 1. The latter result is obtained by comparing
the equations (B.10) and (47).

Let us first consider the case of fast B-clone equilibration. This regime can be
studied using equations (51), (52) and (29), with n = 1. For n = 1 the T-clone
system is in the paramagnetic (PM) m = 0 phase when β < βc (see Appendix D).
Here the distribution of fields P (F ) is symmetric, see Figures 8, which gives rise to
the quadratic behaviour in the distribution of B-clones P (c) seen in Figure 9. As we
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P (F )

F

Figure 8. The distribution P (F ) of the T-clone activity F in the immune system
model with fast B-clone equilibration, defined on a random regular factor-graph
with connectivity L=K = 4. We show data for the high β < βc and low β > βc
T-clone noise regimes (note: βc≈0.0929), for the values β = 0.0639, with m� = 1

2
(left), β = 0.1219 with m� = 0.1 (centre) and β = 0.1219 with m� = 0.9 (right).

increase β, the system will enter the ferromagnetic (FM) m 6= 0 phase when β > βc.
Here the distribution P (F ) is no longer symmetric, see Figure 8, and the distribution
of B-clones is seen to exhibit “power law” behaviour when β → ∞. We note that in
this regime the distribution (29) is dominated by the probability P (F ) evaluated at
the field values F = ±JK, corresponding to the magnetization m > 0 or m < 0. In
particular when β →∞, we have

P (c) ∝ c−1+ ~βF e−
1
2ρ

~β log2(c). (53)

We note that power law behaviour is also present in the empirical B-clone
distributions [30]. Moreover, in the FM phase the average concentration of B cells (31)
can be controlled by the fraction m− of regulating T-clones; see Figures 9. Comparing
with the results of fast T-clone equilibration, summarised in Figure 6, we note that
here βc is larger and hence a larger amount of Ag (i.e. a larger value of J) is needed
by the immune system to mount a vigorous immune response (see Figure 9), i.e. the
system is less sensitive††. Also the behaviour of B-clones in the “low-dose tolerance”
PM regime is different: the average number of B-cells, 〈c〉, is increasing with β and J
in Figure 9, but in Figure 6 it is a constant.

In the regime of fast T-clone equilibration with n ∈ Z+ (n > 2) we solve the
recurrence equation (51) using the initial condition

P0[h] =
(1+m0

2

)n+h
2
(1−m0

2

)n�h
2

(
n
n+h

2

)
, (54)

where m0 ∈ [−1, 1] is such that m0 = n−1
∑
h P0[h]h. For small β the solution P [h] is

symmetric for any m0, and
∑
h P [h]h = 0, corresponding to the PM phase m = 0. For

large β the solution P [h] is no longer symmetric, and
∑
h P [h]h > 0 (or

∑
h P [h]h < 0)

for m0 > 0 (or m0 < 0), which corresponds to the FM phase. The transition from PM
to FM happens at βc which is, in addition to L and K, also a function of the parameter
n. The T-clones apparently continue to behave as in the fast B-clone equilibration
regime, see Figures 10, but the behaviour of the B-clones is different.

††This aspect of the model can be used to distinguish between the equilibration regimes when
comparing model with experimental data.
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hci

m�

�

m�

J

P (c)

c

Figure 9. Behaviour of B-clone concentrations in the immune system with
fast B-clone equilibration. The system, interacting on a random regular factor-
graph with connectivity L = K = 4, was studied for B-clone noise parameters
β̃ ∈ {0.5, 1.0, 2.0}, represented by the dotted, dashed and solid lines respectively,
in the high T-clone noise (β < βc) and low T-clone noise (β > βc) regimes with
J = 1 and in the low Ag (J < Jc) and high Ag (J > Jc) regimes with β = 1.
Note that βc ≈ 0.0929 and Jc ≈ 0.3048. Top left: average B-clone size, 〈c〉, as a
function of the fraction m� of regulator T cells for J = 1 and β ∈ [0, 1]. Inset:
〈c〉 as a function of β for β̃ = 0.5. Top right: 〈c〉, as a function of m� for β = 1
and J ∈ [0, 1]. Inset: 〈c〉 as a function of J for β̃ = 0.5. Bottom left: distribution
P (c) of the B-clone size c for β = 0.0639 (m� = 1

2
). Bottom centre: P (c) for

β = 0.1219 and m� = 0.1 (excess of helpers). Bottom right: P (c) for β = 0.1219
and m� = 0.9 (excess of regulators).

We observe that if we fix J and vary β then the average concentration of B cells
〈c〉 is no longer a monotonic function of m−: 〈c〉 increases with m− on the interval
[0,M−) and decreases on the interval (M−, 1], where M− denotes the location of the
maximum. See Figure 11. For n→∞, the interval [0,M−) shrinks and in this limit we
expect to recover the exact equations (44) and (45) of the (equivalent) β̃ →∞ limit.
However, this limit does not commute with the β → 0 limit for which the average 〈c〉
is diverging. This is very different from the fast B-clone equilibration result where the
average concentration of B-cells, 〈c〉, behaves monotonically and does not have any
singularities (see Figure 9) . There is no qualitative difference in the behaviour of 〈c〉
for the different equilibration regimes when we fix β and vary J , but the system in the
fast T-clone equilibration regime has a lower βc than in the fast B-clone equilibration
regime and hence it is more “sensitive”. The “power law” behaviour of the distribution
P (c) is less pronounced, see Figure 11, than in Figure 9 of the fast B-clone case. We
ascribe this to the dependence on β of the log-normal part of the distribution (29) via
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P (F )

F

Figure 10. The distribution P (F ) of T-clone activity F in the immune system
model with fast T-clone equilibration, defined on a random regular factor-graph
with connectivity L=K=4. The system was studied in the high β < βc (left) and
low β > βc (centre and right) T-clone noise regimes, for B-clone noise parameters
β̃ = 2β (βc ≈ 0.077) and β̃ = 5β (βc ≈ 0.069), represented by empty and filled
boxes, respectively. The T-clone noise parameters for the case of β̃ = 2β (empty
boxes) were β = 0.076 with m� = 1

2
(left), β = 0.1015 with m� = 0.1 (centre)

and β = 0.1015 with m� = 0.9 (right). The T-clone noise parameters for the
case β̃ = 5β (filled boxes) were β = 0.068 with m� = 1

2
(left), β = 0.0915 with

m� = 0.1 (centre) and β = 0.0915 with m� = 0.9 (right).

the relation β̃ = nβ.
Finally, we note that equation (51), which thus far we were able to analyse only

numerically, can be studied further analytically when the connectivity L or K is large.
Also, this analysis allows us to probe the extreme regime of large B-clone numbers
M � N or large T-clone numbers (N �M).

3.3. Large L and finite K (or M/N →∞) regime

To start we note that equation (51) can also be written in the form

P [h] =
∑
{N}

(L−1)!
{∏

{hj}

(∏K−1
j=1 P [hj ]

)N [{hj}]}{∏
{hj}N [{hj}]!

}
× e

�J2

2n�

P
fhjg

N [{hj}](h+
PK�1
j=1 hj)

2
(

n
n+h

2

)

×

[∑
~h

∑
{N}

(L−1)!
{∏

{~hj}

(∏K−1
j=1 P [h̃j ]

)N [{~hj}]}{∏
{~hj}N [{h̃j}]!

}
× e

�J2

2n�

P
f~hjg

N [{~hj}](~h+
PK�1
j=1

~hj)
2
(

n
n+~h

2

)]−1

, (55)

where
∑
{hj}N [{hj}] = L−1 and N [{hj}] ∈ {0, . . . , L−1}. Using N ! = ρNNN e−N

with ρ0 = 1 and ρN =
√

2πN e
�N

12N , where |θN | < 1 (see [43] ), gives us

(L−1)!∏
{hj}N [{hj}]!

=
ρL−1(L−1)(L−1)e−(L−1)∏

{hj} ρN [{hj}]NN [{hj}][{hj}]e−N [{hj}]
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m�
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P (c)

c

Figure 11. Behaviour of B-clones in the immune model with fast T-clone
equilibration, defined on a random regular factor-graph with connectivity L =
K = 4. The system was studied in the high β < βc and low β > βc T-clone
noise regimes with J = 1 and in the low J < Jc and high J > Jc Ag regimes
with β = 1, for the B-clone noise parameters β̃ = 2β and β̃ = 5β , represented
by dashed and solid lines respectively. Note that βc ≈ 0.077 for β̃ = 2β and
βc ≈ 0.069 for β̃ = 5β when J = 1. For β = 1: Jc =

√
βc . Top left: The average

B clone size, 〈c〉, as a function of the fraction of T regulator cells, m�, for J = 1
and β ∈ [βc, 1]. Inset: 〈c〉 as a function of β for β̃ = 2β. Top right: 〈c〉, as a
function of m� for β = 1 and J ∈ [Jc, 1]. Inset: 〈c〉 as a function of J for β̃ = 2β.
Bottom left: The distribution P (c) of the B-clone size c for β = 0.076 (dashed
line) and β = 0.068 (solid line) with m� = 1

2
. Bottom centre: P (c) for β = 0.1015

(dashed line) and β = 0.0915 (solid line), with m� = 0.1. Bottom right: P (c) for
β = 0.1015 (dashed line) and β = 0.0915 (solid line), with m� = 0.9.

= e
−(L−1)

P
fhjg

N [fhjg]

L�1 log
N [fhjg]

L�1 +RL�1({N})
, (56)

whereRL−1({N})=log ρL−1−
∑
{hj} log ρN [{hj}] (it is easy to show thatRL−1({N})=

Ω({ NL−1})+O(log(L−1))). Let us define the functional

D

(
N

L− 1
||PK−1

)
=
∑
{hj}

N [{hj}]
L−1

log
( N [{hj}]

(L−1)
∏K−1
j=1 P [hj ]

)
, (57)

which is the Kullback−Leibler (KL) “distance” [44] between the distributions

N [{hj}]/(L−1) and
∏K−1
j=1 P [hj ], and use the identity (56) to compute the numerator

in the equation (55). This computation is greatly simplified if we assume that
J2 = 1/(L−1) and take the limit L→∞, which gives us∑

{N}

e
−(L−1)D( NL�1 ||P

K�1)+RL�1({N})+
P
fhjg

N [fhjg]

L�1
�

2n� (h+
PK�1
j=1 hj)

2
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=
∑
{N}

e
−(L−1)D( NL�1 ||P

K�1)+RL�1({N})+
P
fhjg

N [fhjg]

L�1
�

2n� (h+
PK�1
j=1 hj)

2

×
[∑
{N}

e−(L−1)D( NL�1 ||P
K�1)+RL�1({N})

]−1

= e
P
fhjg{

QK�1
j=1 P [hj ]} �

2n� (h+
PK�1
j=1 hj)

2

= e
�

2n� (h2+2h(K−1)〈~h〉), (58)

where 〈h̃〉 =
∑

~h P [h̃]h̃. Using the above result to compute the distribution (55) gives

P [h] =
e
�

2n� (h2+2h(K−1)〈~h〉)( n
n+h

2

)
∑
ĥ e

�
2n� (ĥ2+2ĥ(K−1)〈~h〉)( n

n+ĥ
2

) (59)

〈h〉 =

∑
h e

�
2n� (h2+2h(K−1)〈~h〉)( n

n+h
2

)
h∑

ĥ e
�

2n� (ĥ2+2ĥ(K−1)〈~h〉)( n
n+ĥ

2

) (60)

We note that in this limit the cavity distribution P [h] and the physical distribution
P (h) are the same, and the average 〈h〉/n equals the average magnetization m.

Let us next define the average

〈g(h)〉x =

∑
h e

�
2n� (h2+2h(K−1)x)( n

n+h
2

)
g(h)∑

ĥ e
�

2n� (ĥ2+2ĥ(K−1)x)( n
n+ĥ

2

) (61)

It allows us to write the RHS of equation (60) as 〈h〉x, where x = 〈h̃〉. The function
〈h〉x has the following properties for all x ≥ 0:

i) 〈h〉−x = −〈h〉x
ii) ∂

∂x 〈h〉x = β
nρ (K−1)

〈
(h−〈h〉x)

2 〉
x
≥ 0

iii) ∂2

∂x2 〈h〉x =
(
β
nρ

)2
(K−1)2

〈
(h−〈h〉x)

3 〉
x
≤ 0

From i) it follows that 〈h̃〉 = 0 is a fixed point of the recursion (60). According to ii)
this point becomes unstable when ∂

∂x 〈h〉x|x=0 = β
nρ (K−1)〈h2〉0 ≥ 1. The derivative

∂
∂x 〈h〉x|x=0 is a monotonic nondecreasing function of β, by the inequality

∂2

∂β∂x
〈h〉x|x=0 =

(K−1)

nρ
〈h2〉0 +

β(K−1)

nρ

[
〈h4〉0−〈h2〉20

]
≥ 0 (62)

Furthermore, for β large

〈h2〉0 =

∑
h e

�
2n�h

2( n
n+h

2

)
h2∑

ĥ e
�

2n� ĥ
2( n

n+ĥ
2

) =

∑
h e−

�
2n� (n2−h2)( n

n+h
2

)
h2∑

ĥ e−
�

2n� (n2−ĥ2)( n
n+ĥ

2

)
=

(
n
0

)
(−n)2 +

(
n
n

)
n2(

n
0

)
+
(
n
n

) = n2 (63)

and hence ∂
∂x 〈h〉x|x=0 ∈ [0, (βn/ρ)(K−1)] for β ∈ [0,∞). Thus there exists a finite

value βc where the trivial solution 〈h̃〉 = 0 of the recursion (60) becomes unstable.
According to i) and iii) the function 〈h〉x is concave (respectively convex) on the
interval x ∈ (0,∞) (respectively x ∈ (−∞, 0)), and hence this function crosses
the diagonal x only once on this interval when ∂

∂x 〈h〉x|x=0 > 1. This intersection
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corresponds to the stable solution |〈h̃〉| 6= 0 of equation (60). To prove iii) we use the
identity

(
n
n+h

2

)
=
∑
{σ�} δh;

Pn
�=1 σ

� in equation (61), which gives

〈g(h)〉x =

∑
{σ�} e

�
n�

P
�< σ

�σ+ �
n� (K−1)x

Pn
�=1 σ

�

g(
∑n
α=1 σ

α)∑
{~σ�} e

�
n�

P
�< ~σ�~σ+ �

n� (K−1)x
Pn
�=1 ~σ�

. (64)

From this we infer that the average 〈h〉x equals the average magnetization in
ferromagnetic Ising system with interactions and external field given by 1/nρ and
(K−1)x, respectively. By the the Griffiths–Hurst–Sherman (GHS) theorem [45] the
average magnetization in such systems is a concave function of a positive external
field, and hence inequality iii) is true.

Furthermore, upon using (64) to compute the average 〈h2〉0 we obtain the
identity (β/nρ)(K−1)〈h2〉0 = (β/ρ)(K−1) + (2β/nρ)(K−1)

∑
α<γ〈σασγ〉0. The

correlation function 〈σασγ〉0 ≥ 0, by the Griffiths-Kelly-Sherman (GKS) theorem [35],
and 〈σασγ〉0 ≤ 1, since σα ∈ {−1, 1} for all α. From this follow the inequalities
(β/ρ)(K−1) ≤ (β/nρ)(K−1)〈h2〉0 < (nβ/ρ)(K−1), which gives us the following lower
and upper bounds on βc: (ρ/n(K−1)) < βc ≤ ρ/(K−1).

Next we define the function m(h) = h/n and the average m =
∑
h P [h]m(h).

Using the recursive equation (60) we obtain

m =

∑
h en

�
2� (m2(h)+2m(h)(K−1)m)( n

n
1+m(h)

2

)
m(h)∑

~h en
�

2� (m2(~h)+2m(~h)(K−1)m)( n

n
1+m(~h)

2

) (65)

for this average. If in addition we define the function φn(m(h)) = (β/2ρ)[m(h)2 +
2m(h)(K−1)m] + 1

n log
( n
n

1+m(h)
2

)
, then for n→∞ we obtain the equation

m =

∑
h enφn(m(h))m(h)∑

~h enφn(m(~h))

=

∑
h e−n (supM2[�1;1] φ1(M)−φn(m(h)))m(h)∑

~h e−n (supM2[�1;1] φ1(M)−φn(m(~h)))

= argsupM∈[−1,1]

{
β

2ρ
[M2 + 2M(K − 1)m] + S

(
1

2
(1+M)

)}
,(66)

where S(u) is the Shannon entropy of a binary variable s ∈ {0, 1} with average
〈s〉 = u [44]. From the above it follows that m satisfies the equation

m = tanh(βKm/ρ) (67)

which recovers the β̃→∞ equation (44), in the limit L→∞ with J2 = 1/(L−1).
Finally, we note that the field distribution (52) converges to δ (F ) in the limit

L →∞ with J2 = 1/(L−1), and although the T-clones are responding to Ag in this
regime (one can set J2 = J̃2/(L−1)), they are unable to control the B-clones.

3.4. Finite L and large K (or M/N → 0) regime

The starting point of our analysis in this parameter regime is to note that the equation
(51) can be written in the following form:

P [h] =

[ ∫
Dz e

zJ
q

�
n�h
(∑

~h P [h̃] e
zJ
q

�
n�

~h
)K−1]L−1(
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n+h

2

)
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ĥ

[ ∫
Dz e

zJ
q

�
n� ĥ
(∑

~h P [h̃] e
zJ
q

�
n�

~h
)K−1]L−1( n

n+ĥ
2

) , (68)
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where Dz ≡ e−
1
2 z

2

dz/
√

2π. Using the multinomial theorem we can write(∑
h

P [h] e
zJ
q

�
n�h
)K−1

=
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{
∏
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{∏
h

PN [h][h]e
zJ
q

�
n�N [h]h

}

=
∑
{N [h]}

(K−1)!

{
∏
hN [h]!}

{∏
h

PN [h][h]
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P
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, (69)

where
∑
hN [h] = K−1 and N [h] ∈ {0, 1, . . . ,K−1}. Using the above in equation

(68) gives us

P [h] =

[ ∑
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Let us consider the multinomial distribution in equation (70). Using the formula

K!=ρKK
Ke−K , with ρ0 =1 and ρK>0 =

√
2πKe

�K
12K , where |θK | < 1, we obtain

(K−1)!{∏
~hN [h̃]!

}
∏
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The functional D
(
N
K−1 ||P

)
=
∑

~h
N [~h]
K−1 log

(
N [~h]

(K−1)P [~h]

)
is the KL distance between

the distributionsN [h]/(K−1) and P [h]. We have also defined the remainder functional
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2
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)
+
∑

~h
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(72)

Let us next consider the average∑
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For K large, with J = 1/(K−1), the above average is dominated by the summands

N [h]/(K−1) = P [h], and is equal to exp[ β
2nρ

(
h

K−1 +
∑

~h P [h̃]h̃
)2

]. This allows us to

compute the distribution (70) for large K−1, which satisfies the equation
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Clearly limK→∞ P [h] =
( n
ĥ+n

2

)
/
∑
ĥ

( n
ĥ+n

2

)
, so this limit is equivalent to the infinite

temperature regime β = 0, and the T-clones are unable to control the B-clones.

4. Discussion

In this paper we study lymphocyte network models of the adaptive immune system.
We derive dynamic equation for the B cell clones (B-clones), which depend on the T
cell clones (T-clones) and antigen, and assume (following [9, 10]) that the Hamiltonian
of this dynamic equation also governs the dynamics of the T-clones. Furthermore, we
propose that the dynamics of B- and T-clones is subject to different thermal noise
environments, and that they may evolve on different characteristic timescales. We
compute the stationary distribution of the process in the limit of infinite (adiabatic)
separation of timescales, which corresponds to an equilibration scenario in which the
fast (or slow) B-clone variables are interacting with the slow (or fast) T-clone variables.
From the stationary distribution we obtain the average density of B-clone sizes, and
the thermal averages of other macroscopic observables.

To simplify our analysis we consider the scenario where T-clones can be modelled
by either Ising spin variables {−1, 1} and binary variables {0, 1}. The former definition
describes activated helper T-cells, modelled by +1, and activated regulator T-cells,
modelled by −1. In the latter case we only have helper T-clones, which are either
inactive, modelled by 0, or active, modelled by +1. We show that in the fast B-
clone equilibration regime and in the fast T-clone equilibration regime, with the ratio
of B clone noise to T-clone noise parameter n = β̃/β ∈ Z+, the behaviour of T-
clones is governed by an equilibrium distribution of n×N interacting Ising spins, in a
effectively ferromagnetic model with inverse temperature β and interactions J2

µ/ρ. As
a consequence, there are network topologies for which there exists the critical noise
βc such that for β > βc the fraction of helper (regulator) T cells is a monotonic
function of the Ag concentration. Furthermore, we show that the average B-clone size
(or concentration), 〈c〉, is a monotonic increasing function of the fraction of helper
T-clones m+ (i.e. a decreasing function of the fracion m− of regulators). This result
is consistent with experimental data [33, 27]. Unfortunately, at present we are unable
to carry out such a topology-independent analysis for the fast T-clone equilibration
regime with non-integer ratios n ∈ R+.

Obtaining distributions P (c) of B-clone sizes requires a more detailed knowledge
of the topology of the lymphocyte networks. Assuming this topology to be locally
tree-like, we use the Bethe-Peierls (BP) approximation to derive equations for P (c)
and other observables in models on random networks. We solve these equations for
the case when the model is homogeneous (Jµ = J for all µ) and defined on a random
regular graph, where each B-clone is connected to exactly K T-clones and each T-
clone is connected to exactly L B-clones; here the ratio of B- to T-clones α = M/N
equals L/K. We study this model in the fast B-clone equilibration regime and the
fast T-clone equilibration regime, with n ∈ Z+ and β̃ → ∞. We find that for fast
B-clone equilibration the distribution P (c) in an “overregulated” (m− = 0.9) immune
response regime is different from the distribution in a “normal” (m− = 0.1) regime:
it behaves as a “power law” when m− = 0.9. The overregulated regime corresponds
to the “branch” of the phase diagram (see Figure 4) where the “signal” from the T
cells to the B cell clones is predominantly suppressive (see Figure 8). We envisage
that in the real immune system such a situation can occur when the B cell clones are
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self-reactive, which is possible in the immune response to tumours [29].
We also study the regimes when α→∞ (‘large” B-clone number limit) and α→ 0

(“large” T-clone number limit), with rescaled interactions J2 = 1
L−1 and J = 1

K−1
respectively (for technical reasons). We find that in both of these regimes the B-
clones are operating independently of the T-clones. In the regime α→∞ we find that
the response of T-clones to Ag is following the same phase transition pattern as in
the Figure 4. Also, in this regime the “cavity” distribution equation (B.7) simplifies
significantly, and much can be learned about this equation analytically (although for
finite K, L and n > 1 we were unable to find an explicit solution, even in the “simple”
high temperature phase). The regime α→ 0 is equivalent to the infinite temperature
regime, where T cells are insensitive to the Ag stimulation.

In future studies we plan to compute phase diagrams for the model in the fast
T-clone equilibration regime with non-integer n ∈ R+. A good starting point here
would be to consider the regular case (see Appendix E). Also, it would be interesting
to consider the case where the fraction of T-regulator clones is fixed and all T-
clones could be active or inactive, i.e. the case of σi ∈ {0, 1} and ξi ∈ {−1, 1}.
Here one could assume that that the networks and interactions are random, and
compute the phase diagrams by solving equation (50) by population dynamics. In
order to model the process of affinity maturation, a further important ingredient of
the adaptive immune system which has not been included yet, one can also assume
that, in addition to B clones and T clones, also the interactions Jµ evolve in time,
and use the slow (or fast) variable assumptions to compute stationary distributions of
the more complicated process. Furthermore, the assumption of separated time-scales
can be relaxed, but to make progress in this purely dynamical scenario would require
application of sophisticated analytical tools such as the (dynamical) path integral
method [46] or the dynamical replica theory [47]. However, the most important next
step would be to connect the theoretical framework developed in this article with
concrete experimental data.
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Appendix A. Analysis of the function 〈eF/nρ〉β

In this section we study the behaviour as a function of β of the following average:

〈eF/nρ〉β =
∑
{σ�}

P (σ1, . . . ,σn)
1

M

M∑
ν=1

e
1
n�

Pn
�=1F�(σ�) (A.1)

=
1

M

M∑
ν=1

∑
{σ�}e

�
2n�

PM
�=1(

Pn
�=1F�(σ�))

2

e
1
n�

Pn
�=1F�(σ�)∑

{ ~σ�} e
�

2n�

PM
�=1(

Pn
�=1 F�( ~σ�

))
2 .
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Here Fµ(σα) = Jµ(
∑
i∈∂µ σ

α
i +θµ) with σαi ∈ {−1, 1}, and we have Jµ ≥ 0 and θµ ≥ 0

for all µ. In particular we are interested in the derivative

2nρ
∂

∂β
〈eF/nρ〉β =

1

M

∑
ν,µ

{〈( n∑
α=1

Fµ(σα)
)2

e
1
n�
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�=1F�(σ�)

〉
−
〈( n∑

α=1

Fµ(σα)
)2〉〈

e
1
n�

Pn
�=1F�(σ�)

〉}
. (A.2)

Using Taylor’s expansion of the exponential,

e
1
n�

Pn
�=1F�(σ�) =

∑
`≥0

1

(nρ)``!

( n∑
α=1

Fν(σα)
)`

(A.3)

this derivative can be written as the infinite sum

2nρ
∂

∂β
〈eF/nρ〉β =

∑
`≥0

1

(nρ)``!

1

M

∑
ν,µ

{〈( n∑
α=1

Fµ(σα)
)2( n∑

α=1

Fν(σα)
)`〉

−
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. (A.4)

Finally, we rewrite the products (
∑n
α=1Fν(σα))

`
=
∑
α1,...,α‘≤n

∏`
j=1 Fν(σαj ) as

sums, using the identity∏̀
j=1

(xj + θ) =
∑

S‘⊆[`]

θ`−|S‘|
∏
j∈S‘

xj , (A.5)

where S` is a subset of the set [`] = {1, . . . , `}. This leads us to the equation
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. (A.6)

Now, by the GKS theorem [35], the correlation terms in the above sum are positive,
from which it follows that ∂

∂β 〈e
F/nρ〉β ≥ 0 and hence the average 〈eF/nρ〉β is a

monotonic non-decreasing function of β. Furthermore, for Jµ = J
∑
ν≤M Sµνaµ the

average 〈eF/nρ〉β is also a monotonic non-decreasing function of J . To show this we
consider the derivative

J
∂

∂J
〈eF/nρ〉β = 2β
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+
1

M

M∑
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〉
. (A.7)

Now the first term on the RHS of above is positive by the previous argument for
∂
∂β 〈e

F/nρ〉β and the second term is also positive by a similar argument which uses

Taylor expansion (A.3) and the GKS theorem.
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µ

σi

ν

σj

Figure B1. The interaction topology of a replicated spin system on a factor-tree
T�, rooted at factor-node µ. All spins are represented by circular “variable” nodes,

and each term in the “Boltzmann factor” exp[ �
2n�

P
�2T� (

Pn
�=1 F�(��))2] =Q

�2T� F�({�j : j ∈ ∂ν}) corresponds to a square “factor” node. A link between

variable node ` and factor node ν implies that �‘ acts as an argument of F� .

The distribution P (σ1, . . . ,σn) used in definition (A.1) can be written in the
canonical form P (σ1, . . . ,σn) ∝ exp[−βE(σ1, . . . ,σn)], where E(σ1, . . . ,σn) =

−(2nρ)−1
∑M
µ=1(

∑n
α=1 Fµ(σα))2 is the corresponding energy function. Then the

specific heat (density) C(β) = N−1 d
dT 〈E(σ1, . . . ,σn)〉, where T = β−1, is given by

C(β) =
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}
. (A.8)

Comparing this with equation (A.4) reveals that 2nρ ∂
∂β 〈e

F/nρ〉β = 2N
β2MC(β)+ · · ·. As

N →∞, with 0 < N/M <∞, the specific heat C(β) will diverging in some systems,
such as ferromagnetic Ising models on d-dimensional lattice, whereas in others, such
as ferromagnetic Ising models on random trees, it will jump when β → β−c or β → β+

c .

Appendix B. Computation on a factor tree for n ∈ Z+

Let us assume that the system (28) is defined on a factor tree Tµ(r) of radius r rooted
at factor-node µ (see Figure B1). Then the distribution of (replicated) fields on µ

Pµ(F ) =
∑
{σ�}

P (σ1, . . . ,σn) δ
(
F −

n∑
α=1

Fµ(σα)
)

(B.1)

can be computed recursively as follows. Firstly, we compute the “partition” function

Zµ(F ) =
∑
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e
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P
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In above we defined the factor tree Ti (of radius r−1), rooted at variable node i. The
partition function Zµ(F ) can be used to construct the distribution of fields

Pµ(F ) =
Zµ(F )∫
Zµ(F̃ ) dF̃

(B.3)
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In the same way we can define the “cavity” distribution, Pµi[σ], corresponding to the
topology that would be found if the edge (i, µ) were removed (see Figure B1),

Pµi[σ] =
Zµi[σ]∑
~σ Zµi[σ̃]

, (B.4)

and thereby obtain the equation
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We note that in order to distinguish “cavity” distributions, such as Pµi[σ], from the
corresponding distributions on graphs with all links intact, such as Pi(σ), we will use
square brackets [. . .] in referring to the former, throughout this paper.

We next we compute the cavity partition function
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(B.6)

Using this expression in definition (B.4) gives us equation
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Furthermore, we note that the partition function
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which is defined on a factor-tree Ti(R) rooted at the variable node i, can be used to
construct the distribution

Pi(σ) =
Zi(σ)∑
~σ Zi(σ̃)

(B.9)

which gives the (local) magnetization equation
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× e
�
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P
�2@i J

2
�(
P
j2@�ni ξ

�
j

Pn
�=1 ~σ�j +ξ�i

Pn
�=1 ~σ�+θ�))

2
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The structure of the equations derived in this section is not affected by the choice for
the σαi variables, but in the Ising case σαi ∈ {−1, 1} with θµ = 0 the recursion (B.7)
preserves the spin-reversal symmetry, i.e. the equality Pν`[σ] = Pν`[−σ] implies that
Pµj [σ] = Pµj [−σ]. For n = 1 this implies that Pν`[σ] = 1

2 is a solution of this map
for any β, but for n > 1 the uniform distribution Pν`[σ] = 1

2n is a solution of (B.7)
only when β = 0. The consequence of the symmetry Pµj [σ] = Pµj [−σ] is that the
local magnetization becomes 〈σi〉 = 0, and that the distribution (B.5) is symmetric,
i.e. Pµ(F ) = Pµ(−F ).

Finally, we note that the equations (B.5), (B.7) and (B.10) can be simplified if
we define the replica “magnetization” distribution

P [h] =
∑
σ
P [σ]δh;

Pn
�=1 σ

� . (B.11)

Using above definition in these equations gives the equations (46), (47) and (48).
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bµ

i

bν

j

Figure C1. Interaction topology of a replicated system of spins on a factor-
tree T�, rooted at variable-node µ. Spins are represented by circular “variable”
nodes, and each term in the Boltzmann factor exp[− 1

2
ρnβ

P
�2T�(b−J�θ�/ρ)2 +

n
P
i2T� log 2 cosh(β

P
�2@i J�ξ

�
i b�)] = {

Q
�2T� f(b�)}{

Q
i2T� Fi({b�: ν ∈ ∂i})}

corresponds to a small filled square “factor” node (when representing f(b�)) or
large unfilled one (when representing Fi). A link between variable node ν and
factor node i implies that b� acts as an argument of Fi.

Appendix C. Computation on a factor tree for n ∈ R+

Let us assume that the distribution (24), as given by

P (b) =
1

Z
e−

1
2ρnβ

PM
�=1(b�−

J���
� )2+n

PN
i=1 log 2 cosh(β

P
�2@i b�J�ξ

�
i ) (C.1)

when adopted to the Ising case σi ∈ {−1, 1}, is defined on a factor-tree Tµ(r) of radius
r rooted at variable-node µ (see Figure C1). We note that all equations in this section
are derived for σi ∈ {−1, 1}, but they can be used trivially also for σi ∈ {0, 1}, by
making the transformations 2 cosh(x) → 1 + ex and 2 sinh(x) → ex. To compute the
marginal distribution

Pµ(b) =

∫
db P (b) δ(b− bµ) (C.2)

we consider the partition function

Zµ(b) =

{ ∏
ν∈T�

∫
dbν

}
δ (b− bµ) e

− 1
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P
�2T�(b�− J�� θ�)

2
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ν
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)}n

= e
− 1
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�
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�2
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∫
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}
δ (b− bµ)
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)}n
δ (b− bµ) (C.3)

which subsequently gives us the marginal Pµ(b) via the equation

Pµ(b) =
Zµ(b)∫∞

−∞ db̃ Zµ(b̃)
(C.4)

=

{ ∏
i∈∂µ
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This immediately gives us the equation

Pµ(b) =

{∏
i∈∂µ

∏
ν∈∂i\µ

∫ ∞
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(C.5)
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×

[{∏
i∈∂µ

∏
ν∈∂i\µ

∫ ∞
−∞

Piν [b̃ν ]db̃ν

}∫ ∞
−∞

db̃ e
− 1

2ρnβ
�

~b− J�� θ�
�2

×

{∏
i∈∂µ

2 cosh
(
β
∑

ν∈∂i\µ

Jνξ
ν
i b̃ν + βJµξ

µ
i b̃
)}n]−1

,

if we insert the definition

Pνi[b] =
Zνi[b]∫∞

−∞db̃ Zνi[b̃]
. (C.6)

In order to derive an equation for the distribution Pνi[b] we compute the partition
function, associated with the factor-tree Tν of radius r−1 (see Figure C1), as follows

Zνi[b] =

{ ∏
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Using this expression in definition (C.6) gives us the recursive equation

Pνi[b] =
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For n ∈ Z+, we can use the above equation, together with the identity 2n coshn(x) =∑
σ1,...,σn ex

Pn
�=1 σ

�

, and the definition
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)]n , (C.9)

to recover equation (B.7) and all other equations of n ∈ Z+ which involve the cavity
distribution Piµ[σi].

Furthermore, the above approach can be used to compute any marginal of (C.1).
In particular, the joint distribution of the variables in the set {bµ : µ ∈ ∂i} is derived
by considering the distribution (C.1) defined on a factor-tree Ti rooted at factor-node
i:

Pi({bµ: µ ∈ ∂i}) =

{∏
µ∈∂i Pµi[bµ]

}
coshn
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µ
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) . (C.10)

This is then used to compute the local magnetization 〈σi〉 =
∑
σ Pi(σ)σ from the

distribution (26) which gives us the equation

〈σi〉 =
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. (C.11)

Finally, to compute the distribution of fields (27) we need to know the joint
distribution Pµ(b, {bν}) of the variable b = bµ and of all its immediate neighbours bν
(see Figure C1). This distribution can be “read off” from equation (C.5), using the
identity Pµ(b) =

{ ∫∞
−∞ dbν

}
Pµ(b, {bν}), which gives

Pµ(F ) =
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.

Equation (C.8) preserves the symmetry Pνi[b] = Pνi[−b] when θµ = 0. This implies
that for such Pνi[b] the marginal distribution (C.5) and the distribution of fields (C.12)
are both symmetric functions, and that the local magnetization (C.11) is zero.
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Appendix D. Analysis of n = 1 case

For n = 1, equation (51) can be simplified further by noticing that here h ∈ {−1, 1}
and the distribution P [h], with h = σ, can be written in the form

P [σ] =
eφσ

2 cosh(φ)
. (D.1)

where φ is a “cavity field” parameter. Using this in (51) gives us the equation

P [σ] =
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from which, via the identity φ = 1
2 log(P [+1]/P [−1]), we can derive
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2
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 . (D.3)

The solution φ of the above equation can be used to compute the marginal distribution

P (σ) =

[∑
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Comparing this with the cavity distribution (D.2) gives us the magnetization formula

m =
∑
σ

P (σ)σ = tanh
( Lφ

L−1

)
. (D.5)

Also, using definition (34) in the distribution of fields (52) gives us the equation

P (F ) =

∑
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Upon defining the RHS of (D.3) as f(φ), this equation takes the form φ = f(φ). The
value φ = 0, which corresponds to the paramagnetic (PM) m = 0 phase, is always a
solution. However, it becomes unstable at the point where f ′(0) = 1, in which

f ′(0) = (L−1)(K−1)

∑
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1
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) , (D.7)

For f ′(0) > 1 equation (D.3) has two stable solutions φ 6= 0, which correspond to
the ferromagnetic (FM) m 6= 0 phase. Solving the equation f ′(0) = 1 gives us the
critical inverse temperature βc (J = ρ = 1) where the PM to FM transition occurs
(see Figure D1). We note that for L > 2 and K = 2 the equation (D.7) recovers the
result βc = tanh−1 (1/(L−1)) of ferromagnetic Ising models on Bethe lattices [42].
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�c

L

K

m = 0

m 6= 0

Figure D1. Phase diagram of ferromagnetic Ising model on random (K,L)-
regular clique graphs. We plot the critical inverse temperature βc as a function of
the vertex degree L and the factor degree K. The system is in the ferromagnetic
m 6= 0 phase for β > βc, and in the paramagnetic m = 0 phase for β < βc.

Appendix E. Homogeneous systems on random regular factor-graphs,
withn ∈ R+

The equations derived in Appendix C can be easily adopted to study the system (C.1),
which is homogeneous and defined on a random regular factor-graph (see section 3.2
for details). Here the marginal distribution P (b) = Pµ(b) is given by

P (b) = e−
1
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2
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and the cavity distribution P [ b ] = Pνi[ b ] can be computed recursively via

P [b] =
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We note that P (b) and P [b] are related by the transformation K−1 → K. Finally,
once we know the distribution P [b], then we can also compute the magnetization

〈σi〉 =
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and the distribution of fields

P (F ) =
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