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Featured Article

Amyloid beta synaptotoxicity is Wnt–planar cell polarity dependent and
blocked by fasudilQ1

Q27 Katherine J. Sellersa,1, Christina Elliotta,1, Joshua Jacksonb,1, Anshua Ghosha,1, Elena Ribec,
Ana Rojo-Sanch�ısd, Heledd H. Jarosz-Griffithse, Iain A. Watsona, Weiming Xiaf,

Mikhail Semenovf, Peter Morinf, Nigel M. Hoopere, Rod Porterg, Jane Prestonh, Raya Al-Shawii,
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Abstract Introduction: Synapse loss is the basis of the cognitive decline indicative of dementia. In the brains
of Alzheimer’s disease (AD) sufferer’s amyloid beta (Ab) peptides aggregate to form senile plaques
but as soluble peptides that are toxic to synapsesQ3 . We previously demonstrated that Ab induces
Dickkopf-1 (Dkk1), which in turn activates theWnt–planar cell polarity (Wnt-PCP) pathway to drive
tau pathology and neuronal death.
Methods: We compared the effects of Ab and Dkk1 on synapse morphology and memory impair-
ment while inhibiting or silencing key elements of the Wnt-PCP pathway.
Results: We demonstrate that Ab synaptotoxicity is also Dkk1 and Wnt-PCP dependent, mediated
by the arm of Wnt-PCP regulating actin cytoskeletal dynamics via Daam1, RhoA, and ROCK, and
can be blocked by the drug fasudil.
Discussion: Our data place Wnt-PCP signaling at the center of AD neuropathology and indicate that
fasudil could be repositioned as a treatment for AD.
� 2017 Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords: Dickkopf-1; Amyloid; Synapse; Synaptotoxicity; Wnt; Planar cell polarity; ROCK; DAAM1; Fasudil;

Alzheimer’s

1. Background

Amyloid beta (Ab) has long been associated with Alz-
heimer’s disease (AD) through a propensity to form insol-
uble deposits, senile plaques, a hallmark of the AD brain.
Overwhelming genetic and experimental evidence indicate
that Ab and its parent molecule, the amyloid precursor
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protein (APP), are key players in the neuropathogenic
processes driving ADQ5 . Ab readily self-associates to form a
range of soluble oligomers and insoluble fibers, and the cur-
rent consensus view holds that these are the small soluble
oligomeric forms of Ab rather than the plaques themselves
that are the neurotoxic species [1–3]. We have previously
found that Ab-driven increases in tau phosphorylation (a
second hallmark of the disease) and neuronal death are
dependent on activation of a branch of Wingless/Wnt
signaling known as the Wnt–planar cell polarity (Wnt-
PCP) pathway, specifically the arm of Wnt-PCP acting
through JNK and its target c-Jun to regulate gene transcrip-
tion [4]. We have shown that Ab activates Wnt-PCP through
the ability of Ab to induce Dickkopf-1 (Dkk1), which by
blocking the binding interaction between LRP6 and frizzled
prevents canonical Wnt–b-catenin activity and concomi-
tantly activates Wnt-PCP signaling [5,6]. Furthermore, our
data indicate that Dkk1 and Wnt-PCP shape the transcrip-
tomic profile of the AD brain and the activity of pathways
within it most associated with the disease [4,7]. The top
four most significant of these pathways being the
Adherens Junction, Wnt signaling, TGF-b signaling, and
LTP, which are all intimately involved in synaptic
plasticityQ6 [8–10].

Ab synaptotoxicity is thought to be a very early
event in the disease process, central to disease etiol-
ogy, and possibly the driver of many other neurotoxic
properties attributed to Ab [2,11,12]. Indeed, the
degree of cognitive impairment in AD correlates
more closely with synapse number than with amyloid
load or extent of tau pathology [2,13,14]. However,
although widely studied, the underlying mechanisms
of Ab synaptotoxicity have yet to be fully
determined [2,15].

The synaptic effects of Ab have been reported to be
Dkk1 dependent [16]. In addition to influencing tran-
scription via JNK/c-Jun, the Wnt-PCP pathway also reg-
ulates cytoskeletal dynamics through ras homolog family
member A (RhoA) and rho-associated coiled-coil con-
taining protein kinase (ROCK), two key regulators of
synapse formation [17,18], shown to be responsive to
Ab [19]. Given this, we investigated the possibility that
Ab may exert its synaptotoxicity by activating the
Wnt-PCP/RhoA/ROCK pathway and present evidence
that this is the case. Furthermore, we have evaluated
the potential of the ROCK inhibitor drug, fasudil, as a
therapeutic approach to ameliorate both the synaptic
and cognitive effects of Ab.

2. Methods

2.1. Dkk1 measures

Rat Dkk1 messenger RNA expression was performed by
quantitative RT-PCR and protein levels determined using a
DuoSet enzyme-linked immunosorbent assay Kit (R&D
Systems, DY1906), both as previously describedQ7 [4].

2.2. Neuronal culture and transfections

Primary cortical neuronal cultures were prepared from
Sprague-Dawley rat E18 embryos as described previously
[20]. Cells were seeded onto coverslips coated with poly-D-
lysine (0.2 mg/mL, Sigma), at a density of 3 ! 105/well
equating to 857/mm2. Cells were cultured in feeding media:
neurobasal medium (21103049) supplemented with 2% B27
(17504044), 0.5 mM glutamine (25030024), and 1%
penicillin/streptomycin (15070063) (all reagents from Life
technologies, UK). After 4 days in vitro (DIV) 200 mM
D,L-aminophosphonovalerate (ab120004;Abcam)was added
to media to maintain neuronal health over long-term culture
and to reduce cell death because of excitotoxicity [20]. Fifty
percent media changes were performed twice weekly until
desired time in culture was reached (DIV 23). Cells were
then transfected with an eGFP expression construct driven
by the synapsin 1 promoter using Lipofectamine 2000 Q8. Trans-
fectionswere allowed to proceed for 2 days, resulting in 5% to
10% transfection efficacy [20,21].

2.3. Pharmacologic treatments of neuronal cultures

All pharmacologic treatments were performed in artifi-
cial cerebral spinal fluid: 125 mM NaCl, 2.5 mM KCL,
26.2 mM NaHCO3, 1 mM NaH2PO4, 11 mM glucose,
5 mM Hepes, 2.5 mM CaCl2, 1.25 mM MgCl2, and
0.2 mM aminophosphonovalerate. Neuronal cultures were
pretreated with inhibitor compounds for 30 minutes before
application of Dkk1 recombinant protein, Ab1-42 oligomers
(AbO), or fibrillar Ab25-35 to culture media. All compounds
were dissolved in water or DMSO at a concentration of 10 or
1 mM, and serially diluted to a 10 times working concentra-
tion in artificial cerebral spinal fluid and applied directly to
neuronal cultures Q9. Final concentration of solvent was
,0.01%, as also used in vehicle control. Treatments were al-
lowed to proceed for indicated times before being fixed for
immunocytochemistry.

2.3.1. Immunocytochemistry
Neurons were washed in phosphate-buffered saline and

then fixed in either 4% formaldehyde/4% sucrose in
phosphate-buffered saline for 10 minutes at room tempera-
ture followed by incubation in Q10methanol prechilled to
220�C for 10 minutes at 4�C or in methanol (220�C)
only for 20 minutes at 4�C. Fixed neurons were then permea-
bilized and blocked simultaneously (2% nonimmune goat
serum, Sigma, and 0.2% Triton X-100) before incubation
in primary antibodies overnight and subsequent incubation
with secondary antibodies the following day [20]. In the
green/purple color scheme, colocalization is indicated by
white overlap.

2.4. Antibodies used

The following antibodies were used: GFP, chicken
polyclonal (ab13972; Abcam); PSD95, mouse monoclonal
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(clone K28/43; 73-028; NeuroMab); PSD-95, rabbit poly-
clonal (2507; Cell Signaling Technology); Bassoon, mouse
monoclonal (ab82958; Abcam); and GluA1, rabbit poly-
clonal (ABN241; MilliporeQ11 ).

2.5. Spine morphology and immunofluorescence

Images were acquired with a Leica SP-5 confocal micro-
scope using a 63! oil-immersion objective (Leica, N.A.
1.4) as z-series. Two-dimensional maximum projection re-
constructions of images were generated, and morphometric
analysis (spine number, area, and breadth) was performed
using MetaMorph software (Universal Imaging Corpora-
tion, West Chester, PA, USA) [20]. Morphometric analysis
was performed on spines from at least two dendrites (sec-
ondary or tertiary branches), totaling 100 mm in length,
per neuron. For each condition, 9 to 12 neurons from at
least three separate experiments (each performed in dupli-
cate) were used. Experiments were carried out blind to con-
dition. Linear density and total gray value of each synaptic
protein cluster was measured automatically using Meta-
Morph [20]. Cultures undergoing direct comparison were
stained simultaneously and imaged with the same acquisi-
tion parameters.

2.6. Pharmacodynamics

Fasudil and hydroxyfasudil were administered separately
at 10, 30, and 100 mg/kg by intraperitoneal (IP) injection to
young adult male CD1 mice. Animals were sacrificed 20 mi-
nutes after dosing and terminal plasma and brain samples
were taken. Proteins were extracted using acetonitrile pre-
cipitation, and fasudil and hydroxyfasudil levels were
measured by UHPLC-TOFmass spectrometry using electro-
spray ionizationQ12 .

2.7. Behavioral testing

2.7.1. Animals
Female Lister Hooded rats (Charles River, UK;

weighing w215 6 20 g at the start of experimentation)
were housed in groups of five in individually ventilated
two-story home cages, on a 12 hours light cycle (illumi-
nated 07:00–19:00 hours) with controlled temperature
(216 2�C) and humidity (556 5%). Water and food (Spe-
cial Diet Services, UK) were given ad libitum. All experi-
ments were undertaken during the illuminated period and
conducted in accordance with UK Animals (Scientific Pro-
cedures) 1986 Act and the University of Manchester ethical
guidelines.

2.7.2. AbO preparation
Biotin-Ab1-42 (ANA24640) was purchased from Anas-

pec, USA, disaggregated in hexafluoroisopropanol for
1 hour, aliquoted, hexafluoroisopropanol removed by evap-
oration under N2, and monomeric peptide solublized in

DMSO at 1 mM, diluted to 100 mM in Ham’s F12, and
allowed to oligomerize at room temperature for 16 hours.

2.7.3. Surgical procedure
Rats were anesthetized using 4% isoflurane in O2 in an

induction chamber, mounted in a stereotaxic frame and anes-
thesia maintained with 2% to 3% isoflurane. Ten microliters
of 100 mM AbO was injected into the left lateral ventricle
using Bregman coordinates, H-0.8, Tr-1.5, V-4.5, at a flow
rate of 2.5 mL/minutes (total administered 5 10 mmol Q13). Sur-
gery date was defined as day 0. Rats were treated with IP in-
jections of vehicle or fasudil at 10 mg/kg twice daily from
days21 to 6. The novel object recognition test was performed
on day 7 as previously described [22]. In brief, rats were
placed in a 52 ! 52 ! 51 cm PVC arena for 3 minutes
with two identical objects Q14. Animals were taken out of the
box for an intertrial interval of 1 minute, then placed back
in the same box for a further 3 minutes with an identical
copy of the previous object and a novel object. Both sessions
were digitally recorded and the time spent exploring each
object scored. The discrimination index was calculated as
(novel 2 familiar)/(novel 1 familiar).

2.8. Statistical analyses

Statistical analyses were performed in GraphPad or
SPSS. Differences in quantitative immunofluorescence,
dendritic spine number, and morphology were identified
by Student’s unpaired t-tests. For comparisons between
multiple conditions the main effects and simple effects
were probed by one-way or two-way analysis of variance
with Tukey’s correction for multiple comparisons Q15. Error
bars represent standard errors of the mean.

3. Results

3.1. Ab drives Dkk1 production

Ab drives Dkk1 expression [4,16,23], and Dkk1 protein
levels are raised in the brains of Ab/APP-based mouse
models of AD pathology [24]. We extend these observations
by showing that increases in both Dkk1 messenger RNA and
protein are readily detectable in cultured rodent neurons af-
ter treatment with the active portion of Ab, Ab25-35, and by
soluble AbOwithin 2 to 3 hours, and within 4 hours by AbO
at nanomolar concentrations (Fig. 1A and B).

3.2. Synaptic effects of Ab and Dkk1 are similar

To compare the synaptic effects of Ab and Dkk1 pro-
tein, rat cortical neurons (24 DIV) were transfected with
eGFP and 48 hours later treated with either 2 mM AbO
for 4 hours or with 400 ng/mL recombinant Dkk1 protein
for 3 hours. The additional 1 hour given for Ab treatments
was to allow time for endogenous Dkk1 expression,
thereby rendering the two treatments more comparable.
AbO and Dkk1 had potent, significant, and very similar
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Fig. 1. Ab synaptotoxicity is Dkk1 dependent. (A) Rat primary cortical neuronal cultures (14 DIV) were treated with 10 mMAb25-35 for 2 and 3 hours, cells
harvested for RNA extraction, and media collected for protein analysis. Complementary DNAwas generated and qRT-PCR performed to determine rat Dkk1

mRNA levels (left). Secreted Dkk1 protein levels in media were measured by enzyme-linked immunosorbent assay (right). (B) Similar cultures were treated

at 3 mM and 300 nM with an Ab1-42 oligomer (AbO) preparation for the times indicated and harvested and Dkk1 mRNA levels were determined as

mentioned previously (C–E). Similar cultures were transfected with eGFP at 24 DIV, 48 hours later treated for 4 hours with 2 mM AbO, or for 3 hours
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effects on dendritic spine linear density (Fig. 1C and D).
After exposure to either AbO or Dkk1, a small number
of immature filopodia-like dendritic spines appear to be
spared indicating that Ab-driven spine loss is selectively
targeting dendritic spines with established postsynaptic
densities, something we are now investigating in more
detail.

3.3. Ab synaptotoxicity is Dkk1 dependent

Antibody neutralization of Dkk1 blocks Ab-induced
synapse loss [16]. To extend this, we knocked down
Dkk1 expression in primary cortical neuronal cultures us-
ing a previously validated penetrating peptide-coupled
small interfering RNA (siRNA) duplex targeting rat
Dkk1 with a scrambled form as controlQ16 [4]. Assessing syn-
apse number by phalloidin-488 labeling of F-actin puncta
in the presence of the control siRNA, 2 mM AbO caused a
substantial and significant reduction in synapse number in
more than 4 hours. This was significantly blocked in neu-
rons treated with the Dkk1 siRNA (Fig. 1E and F), con-
firming that Dkk1 is required for Ab synaptotoxicity to
occur.

3.4. Dkk1 synaptotoxicity is Daam1 dependent

Activation of the Wnt-PCP/RhoA/ROCK pathway re-
quires an interaction between Disheveled and Daam1 or
Daam2 (Fig. 2A). The only known role of Daam1 and
Daam2 is that within the Wnt-PCP pathway [25–27]. To
determine if Dkk1-driven synapse loss is Wnt-PCP depen-
dent we individually knocked down DAAM1 and DAAM2
in rat primary cortical cultures using penetrating siRNA du-
plexes against each. Western blotting of treated cultures
demonstrates that only Daam1 is expressed at detectable
levels in these cells and that the DAAM1 siRNA potently
reduced Daam1 protein expression (Fig. 2B). Daam1 is the
predominant neuronal isoform [28]. Using DAAM2si as a
control, 24 DIV cultures were treated with each siRNA for
48 hours and subsequently with recombinant Dkk1 protein
(400 ng/mL) or vehicle for 3 hours, fixed and synapse num-
ber again assessed by counting of phalloidin-labeled F-actin
puncta. Neither siRNA significantly affected puncta count
compared with untreated control subjects, Dkk1 substan-
tially reduced puncta after DAAM2 siRNA treatment but
had no effect after DAAM1 siRNA treatment (Fig. 2C and
D). Consistent with this observation the overexpression of
Daam1 reduces the synapse number in hippocampal neurons

in a Rho-dependent fashion [28], whereas Ab has been
shown to increase the expression levels of DAAM1 in human
neuroblastoma cells [29].

3.5. Ab-driven, Dkk1-dependent spine loss is mediated by
RhoA/ROCK

Downstream of DaamWnt-PCP regulates actin cytoskel-
etal dynamics through RhoA and ROCK [30,31]. Next, we
investigated whether pharmacologic inhibition of the
RhoA/ROCK pathway would inhibit both AbO-driven and
Dkk1-driven spine losses. Cortical cultures were transfected
with eGFP at 23 DIV and 48 hours later pretreated with the
well characterized ROCK inhibitor, Y-27632, or with
vehicle for 30 minutes, and then with 2 mMAbO for 4 hours
or with 400 ng/mL Dkk1 recombinant protein for 3 hours.
Assessment of dendritic spine linear density showed that
Y-27632 blocked both AbO-induced and Dkk1-induced
spine losses, with similar potency; Y-27632 alone had no ef-
fect on spine number (Fig. 3A and B). Together with Figs.
1C–G and 2C and D these data provide strong evidence
that Ab synaptotoxicity is dependent on Dkk1-driven activa-
tion of a Wnt-PCP/Daam1/RhoA/ROCK pathway Q17.

3.6. Dkk1 drives GluA1 and PSD-95 relocation

Acute Ab exposure causes a reduction in synaptic trans-
mission through the internalization of AMPA receptors
[32,33], whereas Dkk1 has been suggested to cause a
removal of PSD-95 from synapses Q18[16]. However, whether
acute exposure to Dkk1 drives the removal of PSD-95 away
from dendritic spines and the internalization of AMPA re-
ceptors is not known. To investigate this and determine
whether effects on PSD-95 and GluA1-containing AMPA
receptors could also be blocked by ROCK inhibition, 26
DIV eGFP-expressing cortical neurons were pretreated
with Y-27632 or vehicle and subsequently by Dkk1 for
3 hours. After fixation and immunolabeling for PSD-95
and GluA1, confocal imaging revealed that Dkk1 treatment
causes a significant reduction in the total number of PSD-
95 positive puncta, with significantly fewer PSD-95 posi-
tive spines, although concurrently increasing PSD-95
immunoreactive puncta within dendrites. These effects
were blocked by Y-27632 (Fig. 3C and D). Dkk1 did not ef-
fect the total level of GluA1 puncta but did similarly reduce
the number of GluA1 positive spines and increase GluA1
immunolabeling within the dendritic shaft, which was
again blocked by Y-27632 (Fig. 3C and E). Dkk1 then, as

with 400 ng/mLDkk1, fixed, imaged by confocal microscopy, and dendritic spine density and morphology assessed. Both treatments resulted in a significant

reduction in dendritic spine linear density (dsld), quantified in (D) (scale bar5 5 mM). Dsld/10 mm: control, 5.86 0.41; AbO, 3.76 0.34; Dkk1, 3.56 0.31;

P , .001 for all treatments. (E) Examination of average dendritic spine area revealed that AbO and Dkk1 cause a significant reduction in spine area (per

mm2): control, 0.856 0.027; AbO, 0.716 0.037; Dkk1, 0.666 0.013; P, .01 or P, .001. (F and G) Similar cultures were treated overnight with siDkk1

RNA duplex, or a scrambled version as control, each linked to the Pen-1 peptide. Next day cells were treated with 3 mM AbO for 4 hours, fixed, and fluo-

rescently labeled with phalloidin-488, imaged (F), and F-actin labeled puncta quantified (G) (scale bar5 50 mM). In all these significance was determined

by ANOVA and Tukey’s post hoc t-test. Error bars indicate the standard error of the mean. Abbreviations: Ab, amyloid beta; ANOVA, analysis of variance;

DIV, days in vitro; mRNA, messenger RNA. Q24
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does Ab, induces the removal of PSD-95 and GluA1 pro-
teins from synapses and promotes their trafficking into den-
drites. This also confirms that Dkk1-induced dendritic
spine loss is concomitant with a loss of synapses via a
RhoA/ROCK-dependent mechanism.

3.7. Ab and Dkk1-induced spine withdrawal are blocked
by fasudil

To confirm that effects of Y-27632 (hexane carboxa-
mide) are via ROCK we selected a second structurally dis-
similar ROCK inhibitor, fasudil (an isoquinoline), one of
only two ROCK inhibitors approved for use in manQ19 [34].
eGFP expressing cortical cultures were pretreated with
5 mM fasudil or vehicle for 30 minutes and subsequently
with either 2 mM AbO or 400 ng/mL Dkk1 recombinant
protein, fixed, and imaged by confocal microscopy. Fasudil
alone, like Y-27632, had a little effect on spine density.
AbO and Dkk1 both significantly reduced spine number

and the effects of each were again blocked by fasudil
(Fig. 4A and B). These data support our contention that
the synaptic effects of both Ab and Dkk1 are dependent
on the Wnt-PCP/RhoA/ROCK pathway and substantiate
the synaptoprotective properties only very recently attrib-
uted to fasudil [35].

3.8. Fasudil rescues Ab-driven cognitive deficits

Because fasudil has clinical approval and protects against
Ab synaptotoxicity make it a promising candidate for reposi-
tioning inAD. To further assess its usefulnesswe examined its
ability to protect against AbO-induced cognitive impairment
in vivo using a novel acute rat model [36]. Despite the pre-
dicted low central nervous system penetrance of fasudil
[37], both it [38] and its active metabolite hydroxyfasudil
[39] appear to be centrally active after peripheral administra-
tion Q20. Given the paucity of data concerning brain availability of
either compound and to inform on dosing for in vivo

Fig. 2. Dkk1 synaptotoxicity is Daam1 dependent. (A) Schematic of the Wnt-PCP pathway showing the two arms branching below Disheveled, acting via

Daam/Rho/ROCK to regulate cytoskeletal dynamics and JNK/c-Jun primarily to regulate gene transcription. (B) Primary cortical neuronal cultures were treated

with DAAM1 or DAAM2 Pen-1–coupled siRNA duplexes for 48 hours, harvested, and analyzed byWestern blotting for Daam1 and Daam2. Daam1 was detect-

able in untreated cells and Daam2was not. Daam1si potently reduced Daam1 protein expression levels. (C and D) Cultures were treated overnight with DAAM1

or DAAM2 siRNA duplexes. Next day cells were treated with 400 ng/mL recombinant Dkk1 protein for 3 hours, fixed, and fluorescently labeled with phalloidin-

488, imaged (C) (scale bar5 50 mM), and F-actin labeled puncta quantified (D). Significancewas determined by ANOVA and Tukey’s post hoc t-test. Error bars

indicate the standard error of the mean. Abbreviations: ANOVA, analysis of variance; Dkk1, Dickkopf-1; siRNA, small interfering RNA;Wnt-PCP,Wnt–planar

cell polarity.
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experimentation we evaluated brain penetrance of fasudil and
hydroxyfasudil. Each was administered at a range of doses
intraperitoneally to CD1 mice and levels of each were
measured in brain and plasma by mass spectrometry. Data

obtained demonstrate that fasudil is brain penetrant with a
plasma:brain ratio of 8.5% at the 10 mg/kg dose (Fig. 4C).
This figure is better than that of a number of compounds
widely used to treat a number of central nervous system
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Fig. 3. Ab and Dkk1 synaptic effects are ROCK dependent. (A and B) Rat primary cortical neurons were transfected with eGFP at 24 DIVand 48 hours later

treated with Y27632 or vehicle and 15 minutes later with 2 mMAbO for 4 hours or 400 ng/mL Dkk1 for 3 hours, fixed, and imaged by confocal microscopy for

the examination of spine morphology. AbO and Dkk1 caused a significant reduction in dendritic spine linear density. Y2763 alone had no significant effect on

spine density but in combination with AbO and Dkk1 blocked the effect of both (scale bar5 5 mM). (C–E) Rat primary 26 DIV neurons expressing eGFP were

treated with Y27632 and Dkk1 all as mentioned in (A). Concurrent with a loss of spine density, Dkk1 caused a significant reduction in total PSD-95 puncta (total

PSD-95 density/10 mm: control, 5.56 0.34; control1Y-27632, 6.26 0.55; Dkk1, 4.36 0.39; Dkk11Y-27632, 6.66 0.43). Interestingly, the number of spines

containing PSD-95 was also reduced, with a concurrent increase in the density of dendritic PSD-95, after treatment with Dkk1. This effect was blocked by

Y2763 (% spines containing PSD-95: control, 79.8 6 2.4; control 1 Y-27632, 78.2 6 2.7; Dkk1, 59.1 6 3.7; Dkk1 1 Y-27632, 78.9 6 2.1). Dendritic

PSD-95 puncta/10 mm: control, 0.936 0.11; control1Y-27632, 0.896 0.11; Dkk1, 1.676 0.17; Dkk11Y-27632, 0.956 0.15. (E) Dkk1 did not significantly

affect the total level of GluA1 immunoreactive puncta but did reduce the number of spines positive for GluA1 and increased levels of GluA1 in dendrites, which

was again blocked by inhibition of ROCK. GluA1 linear density/10 mm: control, 5.0 6 0.34; control 1 Y-27632, 4.6 6 0.40; Dkk1, 4.2 6 0.40; Dkk1 1 Y-

27632, 4.96 0.44;P5 .4574;% spines containing GluA1: control, 67.86 4.3; control1Y-27632, 68.46 3.7; Dkk1, 47.96 4.4; Dkk11Y-27632, 65.66 3.1.

Dendritic GluA1 puncta/10 mm: control, 1.256 0.13; control1 Y-27632, 1.206 0.15; Dkk1, 2.096 0.26; Dkk11Y-27632, 0.996 0.22. Abbreviations: Ab,
amyloid beta; AbO, Ab1-42 oligomer; DIV, days in vitro; Dkk1, Dickkopf-1.
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disorders such as clozapine (1.1%), haloperidol (1.1%), and
diazepam (3.6%) and is similar to that of donepezil, 12.6%
[40], one of the few drugs currently licensed for AD.

On the basis of these data 40 adult female rats of 250 to
300 g body weight were administered fasudil (10 mg/kg)
or vehicle (saline) intraperitoneally twice daily for 7 days.
After the initial IP injection, all animals underwent surgery
on day 1 to receive a single intracranial injection into the
left lateral ventricle of either 10 nmol AbO or vehicle in a
volume of 10 mL (at 2.5 mL/minutes) resulting in four groups
(n 5 10/group). On day 7, all 40 animals were presented
with a novel object recognition (NOR) task as previously
described [41]. In rats receiving vehicle the single dose of
AbO produced a marked and highly significant impairment
in NOR performance compared with control subjects. Fasu-
dil alone had no effect on NOR performance but completely
rescued performance deficits because of AbO (Fig. 4C).
These data confirm that peripherally administered fasudil

is able to block AbO-driven cognitive impairment. Given
the supporting evidence presented previously, we propose
that fasudil is able to protect against Ab-induced cognitive
impairment through its ability to antagonize an Ab activated
Dkk1/Wnt-PCP/Daam1/RhoA/ROCK-dependent pathway
that drives dendritic spine withdrawal and synapse loss.

4. Discussion

Opposing roles for the canonical and noncanonical Wnt
signaling pathways in synapse homeostasis have been previ-
ously recognized, with canonical Wnt promoting synapse
formation and stabilization [42] and noncanonical promot-
ing synapse disassembly/pruning [43,44]. Under normal
physiological conditions both pathways likely act in a
highly regulated and concerted manner to achieve the
appropriate levels of synaptic plasticity and resultant
cognitive functioning to occur. Inappropriate levels of Ab

Fig. 4. Fasudil is central nervous system penetrant and blocks Ab synaptotoxicity and cognitive impairment. (A and B) Rat primary cortical neuronal cultures

were transfected with eGFP at 26 DIVand 48 hours later pretreated with 5 mM fasudil or vehicle for 15 minutes and subsequently treated with AbO or Dkk1 and

imaged as in (A) (scale bar5 5 mM). AbO and Dkk1 caused a significant reduction in dsld, which fasudil fully and significantly blocked, as shown in (B) (dsld/

10 mm: control, 5.86 0.41; fasudil, 5.26 0.64; AbO, 3.76 0.34; AbO1 fasudil, 6.26 0.38; Dkk1, 3.56 0.20; Dkk11 fasudil, 5.46 0.27). (B) Significance

determined by ANOVA and Tukey’s post hoc t-test. Error bars indicate the standard deviation Q25. (C) Male CD1 mice were administered fasudil or hydroxyfasudil

at 10, 30, and 100 mg/kg, IP and brain and plasma collected 20 minutes after injection. Fasudil and hydroxyfasudil were detected and measured by mass spec-

trometry. (D and E) Forty young adult female rats were administered 10 mg/kg fasudil, or vehicle, IP, twice daily for 7 days, and given either a single dose of

AbO or vehicle, unilaterally, intracerebroventricularly on day 1. On day 7, all animals were presented with a NOR task, schematized in (D). Rats receiving

vehicle and AbO showed profound deficit in this task, whereas the performance of rats receiving AbO and fasudil was not different to that of control subjects

(E). Abbreviations: Ab, amyloid beta; AbO, Ab1-42 oligomer; DIV, days in vitro; Dkk1, Dickkopf-1; dsld, dendritic spine linear density; IP, intraperitoneal;

NOR, novel object recognition.
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result in cognitive impairment and memory deficits by
disrupting these processes.

Our data demonstrate that Ab-driven synapse with-
drawal involves the Dkk1-dependent activation of the
Wnt-PCP/RhoA/ROCK pathway. We show that at nanomo-
lar levels, oligomeric forms of Ab1-42 regarded to be the
most synaptotoxic form of Ab [45,46] rapidly upregulate
neuronal Dkk1 expression, leading to dendritic spine
retraction and altered localization of the postsynaptic
proteins, PSD-95 and GluA1, in a Daam1-dependent and
ROCK-dependent manner.

It has been postulated that Dkk1 alters synapse stability pre-
dominantly through antagonism of the canonicalWnt–b-catenin
pathway [16], which will contribute to the process given the role
of canonicalWnt in synapse formation and stability [42,47]. Our
data significantly advance on this idea, demonstrating that Dkk1-
mediated synapse loss involves the simultaneous and necessary
activation of theWnt-PCP/RhoA/ROCK pathway. This is in line
with previous reports specifically pointing to a role of Wnt-PCP
in synapse disassembly through core PCP component, Vangl2
[43,44].

We previously reported that Ab, through Dkk1, aber-
rantly activates the JNK/c-Jun arm of Wnt-PCP, and this
then drives the expression of genes required for Ab-
induced neuronal death and increases in tau phosphoryla-
tion in vitro and in vivo [4]. Furthermore, we also presented
evidence that the signaling pathways most associated with
disease in the AD brain are shaped, if not driven by Dkk1/
Wnt-PCP activity [4]. We now argue then that the Ab-
driven Dkk1-dependent activation of Wnt-PCP underpins
several of the key neuropathologic characteristic of AD,
including possibly the most fundamental of all, synapse
loss. This concept is depicted schematically in Fig. 5.
Given the familial AD gene, APP, the Ab parent molecule,
has itself recently been shown to be a modulatory

component of the Wnt-PCP coreceptor complex [48],
surely underpins the importance of this pathway in the dis-
ease process and indicates that a better understanding of the
roles of both Ab and APP in it, will shed further light on the
process and our ability to intervene therapeutically to slow
it down or prevent it.

Here, not only do we shed new light on these mechanisms
but have also identified fasudil, a drug approved for clinical
use in Japan and China since 1994 for cerebrovascular vaso-
spasm, as a strong candidate for repositioning/repurposing in
AD. We assessed the pharmacodynamics of fasudil and its
active metabolite hydroxyfasudil and found that both have
good brain penetrance. Because of legal infringements
within the pharmaceutical industry fasudil has not received
the Food and Drug Administration or European approval Q21.
However, in China it has been used in a small clinical trial
in patients with AD in combination with a second vasodi-
lator, nimodipine, and in this study, based on the cognitive
assessment, was found to give benefit compared with nimo-
dipine alone [49].

Given the recent report that ROCK inhibitor Y-27632
can reverse Dkk1-induced synapse loss in vivo [47] and
that fasudil is a well tolerated in man [50], the data we
present here concerning its ability to protect against Ab
synaptotoxicity, to be brain penetrant, and to protect
against Ab-induced cognitive impairment warrant
serious assessment of its utility as a much needed treat-
ment for AD.
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Fig. 5. Schematic of Ab-drivenWnt-PCP pathway activation. Ab drives a rapid increase in Dkk1 expression. Concomitant with antagonism of canonical Wnt–

b-catenin signaling Dkk1 then drives the activation of theWnt-PCP pathway by antagonizing the LRP6-Fzd interaction.We have previously shown that activity

in the JNK/c-Jun arm ofWnt-PCP induces the expression of several identified genes required for Ab-driven increases in tau phosphorylation and neuronal death
to occur. Here, we demonstrate that activity of the Daam1/RhoA/ROCK arm is necessary for Ab-driven synaptotoxicity and that this can be blocked by ROCK
inhibitors Y27632 or fasudil. Abbreviations; Ab, amyloid beta; c-Abl1, c-Abl oncogene 1, nonreceptor tyrosine kinase (ABL1); c-Jun (JUN), -; DAAM1,

disheveled-associated activator of morphogenesis 1; Dkk1, Dickkopf-1; Dvl, disheveled; EGR1, early growth response 1; Fzd, frizzled; GSK3-a/b, glycogen
synthase kinase-a/b; JNK1, c-Jun N-terminal kinase (MAPK8); KLF10, Kr€uppel-like factor 10; LRP6, LDL receptor related protein 6; MKK4/7, mitogen-

activated protein kinase kinase 4/7 (MAP2K4 and MAP2K7); NAB2, NGFI-A binding protein 2; RhoA, ras homolog family member A; ROCK, rho-

associated coiled-coil containing protein kinase; PCP, planar cell polarity; Vangl2, Van Gogh-like protein 2. Q26
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RESEARCH IN CONTEXT

1 Systematic review: Several decades of medical
research strongly indicate that synapse loss is an early
and key event in Alzheimer’s disease, and that this is
driven by soluble oligomeric forms of the amyloid
beta (Ab) peptide. However, the molecular mecha-
nisms underlying Ab synaptotoxicity are not clear,
nor has any medication been identified that can halt
this.

2 Interpretation: We present strong evidence that Ab-
driven synapse loss is dependent on a branch of
Wnt signaling known as the planar cell polarity
pathway. In elucidating this mechanism we found
that synapses and cognition in rats are protected
from the effects of Ab by a drug in clinical use, fasu-
dil.

3 Future directions: These findings will allow a yet
more detailed understanding of the mechanisms con-
trolling the synaptic effects of Ab to be determined.
Importantly, they indicate that fasudil, which is safe
in man and readily enters the brain, is a very prom-
ising candidate treatment for Alzheimer’s disease.
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