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ABSTRACT  

Purpose: To investigate whether diffusion MRI can be used to parcellate cortical areas based on 

a contrast related to neurite density, thus providing a complementary tool to myelin-based MRI 

techniques used for myeloarchitecture.  

Methods: Several myelin-sensitive MRI methods (e.g. those based on T1, T2, and T2*) have been 

proposed to parcellate cortical areas based on their myeloarchitecture. Recent improvements in 

hardware, acquisition, and analysis methods have opened the possibility of achieving a more 

robust characterisation of cortical microstructure using diffusion MRI. High-quality diffusion 

MRI data from the Human Connectome Project was combined with recent advances in fibre 

orientation modelling. The orientational average of the fibre orientation distribution was used as 

summary parameter, which was displayed as inflated brain surface views. 

Results: Diffusion MRI identifies cortical patterns consistent with those previously seen by MRI 

methods used for studying myeloarchitecture, which have shown patterns of high myelination in 

the sensorimotor strip, visual cortex, and auditory areas, and low myelination in frontal and 

anterior temporal areas.  

Conclusion: In vivo human diffusion MRI provides a useful complementary non-invasive 

approach to myelin-based methods used to study whole-brain cortical parcellation, by exploiting 

a contrast based on the geometric organisation of the tissue microstructure rather than myelin 

itself. 

 

 

 

KEYWORDS: diffusion MRI, myeloarchitecture, fibre orientation distribution, cortex, 

parcellation, brain.  
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INTRODUCTION 

The arrangement and density of myelinated fibres throughout the cortex is greatly heterogeneous 

(1). The spatial organization of these myelinated fibres in the cortex makes it possible to 

parcellate areas based on their myeloarchitecture, due to differences in the properties (e.g. their 

thickness and compactness) of the fibre layers and radial fibres (1). Myeloarchitecture and 

cytoarchitecture have long been used for cortical parcellation; while the former is based on the 

arrangement of myelinated fibres, the latter is based on the size, shape and arrangement of 

neuronal cell bodies. 

Invasive techniques for myeloarchitecture have been around for over a century (e.g. staining 

myelinated nerve fibres using the Weigert stain or its variants) (1–5). More recently, the use of 

non-invasive MRI methods to map cortical myeloarchitecture has received increasing interest. 

For example, a number of methods based on T1-, T2- and T2*-weighted images (or on their 

quantitative parameters T1, T2 and T2*), as well as on magnetisation transfer ratio and 

quantitative susceptibility mapping have been shown to produce detailed maps of human cortical 

areas in a completely non-invasive way (6–17). Many of these studies have consistently shown 

image contrast (e.g. low vs. high T1 values) between well-defined areas, on the one hand 

corresponding to areas previously shown to have high myelination (e.g. with low T1 values, such 

as in the sensorimotor strip in the central sulcus, visual cortex, and auditory areas in the Sylvian 

fissure), and on the other corresponding to areas previously shown to have low myelination (e.g. 

with high T1 values, such as in frontal areas).  

Recent improvements in MRI hardware, acquisition methods, and higher-order models for the 

diffusion MRI signal have opened the possibility of achieving a more robust characterisation of 

the microstructure properties of cortical grey matter (GM) using diffusion MRI. Diffusion MRI 

may therefore provide an alternative useful contrast to study GM, despite having previously 

focused primarily on white matter (WM). Most diffusion MRI studies of GM so far have been 

mainly aimed at providing detailed intra-cortical information (18–24), and most often this has 

been achieved based on high-resolution ex vivo diffusion MRI data. Some other studies (25,26) 

have also shown promising in vivo results for exploiting the diffusion MRI contrast to delineate 

cortical features that were spatially consistent with previous myeloarchitecture studies. For 

example, McNab et al (25) scanned at high resolution (1 mm isotropic) a coronal slab of the 
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human brain that covered the primary motor cortex (M1) and primary somatosensory cortex 

(S1), and used a surface-based analysis to investigate the principal diffusion orientation (based 

on the diffusion tensor model), the fractional anisotropy and the mean diffusivity; in particular, 

they found that the principal diffusion orientation was able to differentiate specific regions, 

including M1 (with primarily radial orientation), S1 (primarily tangential), as well as Heschl’s 

gyrus and second somatosensory cortex (S2) (primarily tangential). Similarly, Nagy et al (26) 

used several features extracted from diffusion signal profiles (obtained from whole-brain at 2.3 

mm resolution) to discriminate a number of cortical regions in the human brain. However, 

further investigations in whole-brain in vivo human data are still required to assess whether 

diffusion MRI can be used to map human cortical areas based on a contrast related to cortical 

microstructure, and thus provide a complementary non-invasive tool to the myelin-based MRI 

techniques increasingly being used for whole-brain in vivo cortical parcellation. We investigate 

this here by exploiting high-quality diffusion MRI data (27,28) and recent advances in diffusion 

fibre orientation modelling (29).   

METHODS 

Data acquisition 

Data from 8 healthy subjects were acquired on a Siemens 3T Connectome Skyra system with a 

32-channel head coil as part of the Human Connectome Project (27,28); these data were 

downloaded from the ConnectomeDB (http://db.humanconnectome.org). The relevant diffusion 

MRI parameters include: 18 b=0 images and b=1000, 2000 and 3000 s/mm
2
 (90 diffusion 

directions each); TR/TE=5520/89.5 ms (which were matched across shells); 1.25mm isotropic 

resolution. In addition, all images were acquired with reversed phase-encoding for susceptibility 

distortion correction. Structural scans were also acquired for every subject, using high-resolution 

T1-weighted imaging (0.7 mm isotropic). Please refer to references (27,28) for further details 

regarding acquisition and pre-processing steps – Note: any further processing step besides those 

standard for the HCP data are described in the next section. The signal-to-noise ratios were 19.1, 

7.8, 4.7, and 3.4 for the b=0, 1000, 2000 and 3000 s/mm
2
, respectively, with signal-to-noise ratio 

for a given b value defined as the ratio of the mean signal for the b images to the standard 

deviation of the b=0 signal.  
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Data Analysis 

Diffusion MRI analysis was carried out using MRtrix (http://www.mrtrix.org). Fibre orientation 

distributions (FODs) were calculated using multi-shell multi-tissue (MSMT) constrained 

spherical deconvolution (CSD) (29). In brief, MSMT-CSD is an extension of single-shell CSD 

(30) to multi-shell diffusion MRI data, and it involves a multi-compartment model that can be 

used to resolve different components (in our case, WM-like, GM-like, and cerebrospinal fluid 

like components) based on their distinct b-value dependences. MSMT-CSD produces an estimate 

of each of these components, with the WM-like compartment also characterised as a full FOD 

(29). In particular, and of relevance for the current study, the measurement of the WM-like 

component within cortical GM can be non-zero. Prior to MSMT-CSD, the diffusion-weighted 

images were corrected for bias-fields as these could introduce a spatial dependency in the scaling 

of the tissue responses. For each subject, a single multiplicative bias field was estimated using 

the b = 0 s/mm
2
 images and the N4ITK approach (31). The estimated bias field was then applied 

to correct the intensity of all diffusion-weighted volumes. 

To study cortical patterns, the l=0 term of the FOD spherical harmonic expansion of the WM-

like component (i.e. the orientational average of the FOD, which corresponds to the density of 

the WM-like component) was computed in each cortical voxel. For consistency with the 

terminology previously used in the apparent fibre density (AFD) method (32), this l=0 term is 

referred to as AFDtotal
 
(33), since it corresponds to the AFD summed over all orientations.  

After rigid realignment of the T1-weighted anatomical data to the diffusion MRI data, the cortical 

distribution of AFDtotal values are displayed as inflated brain surface views using FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu). For the results shown here, AFDtotal was sampled along the 

normal between the WM/GM interface and the pial surface for a total of 11 equally spaced 

samples; these values were then averaged, and projected back onto the mid-cortical surface. 

Note: To verify that partial volume effect with adjacent WM was not the source of the observed 

effect, the analysis was repeated excluding the contribution from the 3 cortical subdivisions 

closer to the WM/GM interface – see Supporting Fig. S1.   

For comparison, and to assess the effect of using advanced diffusion fibre orientation modelling, 

the same analysis was repeated for the FODs estimated from single-shell data (corresponding to 

the b=3000 s/mm
2
 shell), using the single-tissue CSD method, as implemented in reference (29).
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RESULTS 

Consistent with previous findings (29), Fig. 1 confirms that the recently proposed MSMT-CSD 

approach provides a much more robust estimate of the fibre architecture in the cortex than that 

obtained using single-shell single-tissue CSD (cf. Figs. 1a and 1b): the predominant radial fibre 

orientation is more clearly identified with MSMT-CSD than with CSD. Interestingly, the smaller 

FODs observed in certain cortical structures are not artefactual, but their spatial distribution does 

correspond with the known myeloarchitecture patterns observed with myelin-based methods. For 

example, close inspection of the FODs in Fig. 1a shows a change in the cortical microstructure 

(e.g. as given by a change in the overall size of the FODs) that is anatomically consistent with 

the known transition between the high myelin Brodmann area 4 and low myelin Brodmann area 

3a (arrow), as seen in previous T1 and myelin histology studies (see Figs. 1d and 1e) (10). It 

should be emphasised, however, that diffusion MRI is primarily sensitive to the presence and 

organisation of ‘WM-like’ fibres in the cortex; it is not clear to what extent the myelin content 

itself contributes to the effect observed in the diffusion MRI data (34) – see Discussion section 

for further details.  

When displayed on an axial orientation, the MSMT-CSD approach also reproduces the expected 

different dominant fibre orientation in the neighbourhood of the central sulcus (Fig. 2), with M1 

showing a primarily radial dominant orientation and S1 mostly a tangential orientation (e.g. cf. 

Fig. 1 of MacNab et al (25)).  

The overall microstructure pattern based on MSMT-CSD data is shown in Figs. 3a and 3b, where 

the group average results of AFDtotal from MSMT-CSD are shown (see Figs. 4a and 4b for the 

corresponding results from an illustrative individual): the location of areas of high AFDtotal show 

a striking similarity to well-characterised areas of high myelin (e.g. cf. Fig. 3 of Glasser et al 

(12)), including sensorimotor strip, auditory areas, visual cortex (V1, V2) and other areas 

involved in visual processing (e.g. medial temporal complex, MT+, and frontal eye fields, FEF). 

It also shows low AFDtotal areas in well-recognised areas of low myelin (e.g. frontal areas, 

anterior temporal, etc.). Note: the AFDtotal patterns were very similar when the contribution from 

the 3 cortical subdivisions closer to the GM/WM interface were excluded (see Supporting Fig. 

S1; and the Spearman’s coefficient showed high spatial correlation between the two maps, with 

ρ=0.95), suggesting partial volume effect with WM is not responsible for the observed effect. 
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Interestingly, Fig. 1c shows that areas with reduced AFDtotal are not necessarily devoid of 

coherent fibre architecture, but that they are mostly reduced in their overall magnitude (cf. Figs. 

1a and 1c).  

As a measure of the inter-group variability on the AFDtotal patterns, Supporting Fig. S2 shows the 

group standard deviation maps. While the variance is, in general, larger in cortical regions with 

larger AFDtotal values, the patterns are not equivalent. For example, frontal areas have very low 

AFDtotal but some have relatively large variance. Similarly, despite comparable AFDtotal values in 

primary motor and sensory areas (e.g. ‘SM’ label in Fig. 3b), the variance was smaller in primary 

motor cortex; this finding was consistent with the variance patterns observed with myelin-based 

methods (35).  

In contrast to MSMT-CSD, the spatial patterns observed with AFDtotal from single-shell single-

tissue CSD do not reflect the myeloarchitecture patterns based on methods sensitive to myelin 

distribution (see Figs. 3c and 3d); the difference in cortical patterns between MSMT and single-

shell single-tissue CSD is presumably due to partial volume with the isotropic components of 

GM and cerebrospinal fluid (36).  

As can be appreciated from the cortical thickness map (Fig. 5), and consistent with previous 

studies (8), the microstructure patterns observed with MSMT-CSD are not simply due to 

thickness-related effects (i.e. the patterns are not equivalent). Spearman’s coefficient showed low 

spatial correlation between the two maps (ρ=–0.11).  

DISCUSSION 

We have shown that whole-brain in vivo human diffusion MRI can identify cortical patterns 

consistent with those previously shown with myelin-based methods used for studying 

myeloarchitecture (6–17). This was made possible by combining high-quality MRI data with 

advanced diffusion MRI models. Diffusion MRI therefore provides a promising and 

complementary non-invasive approach to myelin-based methods in the study of whole-brain 

cortical parcellation, by exploiting a contrast based on tissue microstructure organisation. Our 

results also complement previous work on cortical measurements in diffusion MRI (18–26).  
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It should be noted that, as was the case for the more general AFD formalism (32), AFDtotal can be 

used quantitatively, therefore providing a useful complementary surrogate marker to study 

cortical patterns in the healthy and diseased brain.  

Given that the CSD formalism (both for the single and multi-shell variants) involves no 

normalisation to the b=0 image (cf. for example to the apparent diffusion coefficient formalism), 

AFDtotal could still have contribution from T1 and T2. However, it should be emphasized that the 

observed AFDtotal cortical patterns were not due to residual T1 and T2-weighting in the diffusion 

MRI data, given that they were not present in the single-shell single-tissue CSD results, which 

were acquired using the same TE/TR values. They must therefore be related to the diffusion 

contrast mechanism.  

The cortical patterns observed also cannot be explained simply by a cortical thickness ‘partial 

volume’ effect, i.e. mainly reflecting contamination from partial volume with the anisotropic 

component in the white matter fraction of the voxel (and, therefore, not related to the cortical 

tissue). As shown in Fig. 5, the cortical thickness patterns are substantially different to those 

patterns found in AFDtotal. These findings are consistent with those from previous studies: for 

example, using a T2*-based myeloarchitecture method, Cohen-Adad et al (8) showed that, while 

there can be some regions of low/high T2* that correspond to thick/thin cortex, quantitatively the 

maps had low spatial correlation, from which they concluded that the myeloarchitecture patterns 

could not be the result of cortical thickness effects alone.   

The observed cortical AFDtotal patterns have, in general, a bilateral appearance. There are 

however some exceptions: these include the auditory areas, where larger AFDtotal values were 

observed on the left hemisphere (Fig. 3). This left-right asymmetry is consistent with the results 

found by others, such as the lower T2* values in Brodmann area 42 on the left hemisphere by 

Cohen-Adad et al (8), and higher R1 values reported by (37), likely related to the greater 

myelination in left auditory cortex. We also observed a left-right asymmetry in the primary 

somatosensory cortex, where AFDtotal in the left hemisphere had a smaller extent towards the 

ventral aspect. This finding is somewhat surprising, as it has not been reported using most 

myeloarchitecture surrogate markers (12); however, there have been reports of inter-hemispheric 

differences in Brodmann areas 2–3 (consistent with our observations in AFDtotal patterns) based 
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on T2* myeloarchitectonics (8). Further studies are therefore required to understand the exact 

source of this left-right asymmetry within S1.  

As highlighted in the Results section, it should be emphasised that, while AFDtotal from MSMT-

CSD provided useful complementary information to myeloarchitecture, this does not imply that 

the observed diffusion contrast is primarily due to the presence of myelin (34). The presence of 

myelin does have an influence on the measured diffusion signal and its anisotropy, but it has 

been shown that it is not the key contribution, which is instead the density of intact membranes 

(34). In fact, given that anisotropy can be measured even in healthy non-myelinated fibres, it has 

been stressed that diffusion anisotropy should not be considered myelin-specific (38). The 

AFDtotal contrast reflects instead the density of WM-like fibres in the cortex, and is more likely 

related to the changes in microstructural properties often seen in those cortical areas (1): 

variations in the proportion and density of radial/tangential fibres in the cortex defines the 

various myeloarchitectonic areas.  

By definition, AFDtotal corresponds to the AFD summed over all orientations. Based on 

numerical simulations, Raffelt et al (32) showed that, under certain experimental conditions (e.g. 

high b-value and long diffusion-weighting gradient pulses), the signal in the diffusion-weighted 

imaging originates primarily from the restricted compartment, and that the orientational averaged 

AFD can be considered proportional to neurite density (see reference (32) for further discussion 

regarding the interpretation of AFD and the experimental conditions under which this is valid). 

AFDtotal would be expected to correlate strongly with myelin if the axons/neurites contributing to 

the AFDtotal signal were myelinated uniformly; however, there is scope for the non-myelinated 

axons/neurites to contribute to the AFDtotal without a corresponding contribution to the myelin 

signal. More generally, while we expect to see this correlation, it would be very speculative to 

therefore interpret AFDtotal as a marker of myelin. Other diffusion MRI parameters might be also 

suitable to generate similar cortical patterns to those observed here using AFDtotal, such as those 

based on complex models of microstructure like neurite orientation dispersion and density 

imaging (NODDI) (39) and others. Further work is needed to determine the relative performance 

of the various possible diffusion MRI parameters, their noise sensitivity, etc. It is again important 

to emphasise, however, that all these diffusion MRI measures are not myelin-based measures 

and, therefore, their cortical patterns are not expected to match one-to-one with the patterns 

observed with more myelin-sensitive techniques commonly used for myeloarchitecture, such as 
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with T1-weighted/T2-weighted imaging (12). It should be therefore stressed that AFDtotal (and 

other related diffusion MRI measures) cannot be considered tools for myeloarchitecture, but 

rather that they can complement these other myelin-based methods. Further studies are required 

to determine how the patterns observed with these diffusion-based methods relate to those seen 

with myelin-based methods, but this is beyond the scope of this Technical Note, whose main 

purpose is to introduce AFDtotal as a tool for cortical parcellation. 

Our observations based on AFDtotal may also have implications for those interested in continuing 

the streamline tracking process into cortical structures (instead of typically stopping when the 

streamline exit WM tissue, e.g. based on a FOD or fractional anisotropy threshold). For example, 

apart from the known issues for tractography algorithms related to the presence of high curvature 

for streamlines when reaching some cortical areas and the associated gyral bias (40), as well as 

the effect from superficial white matter fibres (41), the observed cortical AFDtotal patterns may 

also influence streamline terminations (e.g. areas with low AFDtotal may fall below an FOD 

threshold used for terminating tracking (29,42), and thus the degree of streamline tracking into 

cortical structures will be biased by the AFDtotal patterns).  

Finally, it should be noted that the results presented here were achieved using high-quality data 

from the Human Connectome Project, acquired on a customised 3T system using a relatively 

long acquisition protocol; these data are therefore far superior to those typically achievable with 

more conventional 3T scanners and diffusion MRI acquisition protocols. It remains to be 

investigated whether AFDtotal also provides a viable option for investigations into cortical 

microstructure using more standard diffusion MRI data and, if so, what the optimal acquisition 

protocol should be. 

CONCLUSIONS 

This study demonstrates that in vivo human diffusion MRI may provide a useful complementary 

non-invasive approach to myelin-based methods used to study whole-brain cortical parcellation, 

by exploiting a contrast based on a diffusion MRI-derived measure of neurite density, rather than 

myelin itself. Given the difference in the mechanism underlying the contrast, it is possible that 

the combination of this approach with in vivo myelin mapping methods (such as those based on 

T1- and T2*-weighted data (12,15)) will allow more detailed investigations into the organisation 



 11 

of the human cortex, its function, and associated pathologies, particularly in regions where these 

patterns do not match. 
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Figure 1: Fibre orientation distributions (FODs) in the border between primary motor 

(Brodmann area 4) and somatosensory (Brodmann area 3a) cortex in a single subject (see inset in 

(c) for location); calculated using MSMT-CSD (a) or standard (single-shell single tissue) CSD 

(b). (c) Same FODs as in (a), but normalised to unit AFDtotal. The solid line curve in included to 

provide an indication of the location of the WM/GM boundary. Arrow in (a) indicates the 

transition between Brodmann area 4 and Brodmann area 3a. (d) Ex vivo quantitative T1 map of a 

tissue block of the border between areas 4 and 3a from a post-mortem human brain (Note: 

different brain to that shown in (a)–(c)); arrow indicates a sharp change in T1 contrast that is 

consistent with the change in myelin, as seen by staining for myelin basic protein (e). Panels (d) 

and (e) reproduced with permission from (10), © 2011 Geyer, Weiss, Reimann, Lohmann and 

Turner. 
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Figure 2: Fibre orientation distributions (FODs) overlaid on an anatomical image, in the 

neighbourhood of the central sulcus. The insert image shows the anatomical axial slice, as well 

as the zoomed region where the FODs are overlaid. M1 (on the anterior side of the central sulcus 

in the image) displays a mostly radial orientation; S1 (on the posterior side) displays primarily 

tangential orientation. The FODs have been normalised to unit AFDtotal for ease of visualisation 

of the orientations.    
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Figure 3: Group average (N=8) AFDtotal maps displayed on an inflated surface, from MSMT-

CSD (a: left, b: right hemispheres), and from single-shell single-tissue CSD (c: left, d: right). The 

AFDtotal cortical patterns reconstructed based on data from MSMT-CSD show a striking 

similarity with well-known patterns of myeloarchitecture. Au: auditory; AT: anterior temporal; 

FEF: frontal eye fields; Fr: Frontal; IPS: intra-parietal sulcus; MT+: middle temporal complex; 

SM: sensorimotor; V1: primary visual cortex; and V2: visual area two. A.u.: arbitrary units. 
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Figure 4: AFDtotal map from an illustrative individual, displayed on an inflated surface. The 

results from MSMT-CSD are shown at the top (a: left, b: right hemispheres); the results from 

single-shell single-tissue CSD at the bottom (c: left, d: right). Similar patterns to those observed 

in the population average can be seen with MSMT-CSD (cf. Fig. 3, top row), albeit noisier, as 

expected. A.u.: arbitrary units.  

 

Figure 5: Population average cortical thickness map (in mm), displayed on an inflated surface 

(a: left, b: right hemispheres). There is no one-to-one match between the AFDtotal patterns and the 

thickness patterns.  
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Supporting Figure S1: Group average (N=8) AFDtotal maps displayed on an inflated surface, 

from MSMT-CSD (a: left, b: right hemispheres). The AFDtotal here was computed by excluding 

the contribution from the 3 cortical subdivisions closer to the GM/WM interface. The AFDtotal 

patterns were very similar to those shown in the top row of Fig. 3 (where the contributions from 

all cortical subdivisions were included in the AFDtotal calculation), suggesting partial volume 

effect is not responsible for the observed effect. A.u.: arbitrary units. 

 

Supporting Figure S2: Group average (N=8) standard deviation of the AFDtotal maps displayed 

on an inflated surface, from MSMT-CSD (a: left, b: right hemispheres). A.u.: arbitrary units. 

 

 


