Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher’s definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher’s website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the Research Portal.

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACT

Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ cells and suggest that persistent proliferative capacity of Sox2+ cells may underlie the pathogenesis of PCP.

KEY WORDS: Pituitary development, Mouse, Papillary craniopharyngioma, Sox2, Tumour

INTRODUCTION

In vertebrates, the pituitary gland is considered to be master regulator of homeostasis because it regulates a wide range of essential physiological functions, such as metabolism, growth, fertility and the stress response. The pituitary gland comprises anterior, intermediate and posterior lobes (AL, IL and PL, respectively). The AL and IL derive from Rathke’s pouch, a dorsal evagination of the oral ectoderm at the boundary with the pharyngeal endoderm. The PL develops from a diverticulum at the ventral midline of the diencephalon: the infundibulum. At 18.5 dpc, the AL contains five hormone-expressing cell types – somatotrophs, lactotrophs, thyrotrophs, gonadotrophs and corticotrophs – that secrete growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), gonadotropins (FSH and LH) and adrenocorticotropic hormone (ACTH), respectively (Kelberman et al., 2009). In addition, the AP contains Sox2+/Sox9+ cells, a proportion of which represent stem cells in the postnatal pituitary (Castinetti et al., 2011; Andoniadou et al., 2013; Rizzoti et al., 2013). These cells are concentrated around the pituitary cleft in the IL and the ‘marginal zone’, a region of the dorsal AL mostly devoid of hormone-producing cells (Fauquier et al., 2008; Garcia-Lavendeira et al., 2009; Goldsmith et al., 2016; Pérez Millán et al., 2016). Dispersed Sox2+/Sox9+ cells are also detected throughout the parenchyma of the AL, intermingled with hormone-expressing cells (Mollard et al., 2012). The IL contains melanotrophs, which express melanocyte-stimulating hormone (MSH). The PL is devoid of endocrine cell types and contains the axonal projections from hypothalamic neurons.

Several signalling pathways and transcription factors regulate the normal development of the pituitary gland. Around 9.5 days post coitum (dpc), secreted signals from the prospective hypothalamus, such as FGF8, FGF10, BMP4 and SHH are required for RP induction and for the expression of transcription factors, including Hesx1, Sox2, Lhx3 and Lhx4 in RP progenitors (Ericson et al., 1998; Treier et al., 1998, 2001). RP progenitors divide actively from 9.5 to 14.5 dpc (Davis et al., 2011) to generate post-mitotic precursors that initiate cell-lineage commitment by expressing: (1) Sfi1 (Nr5a1), in the gonadotroph cell lineage (Schimmer and White, 2010); (2) the T-box transcription factor Tpit, which is responsible for the activation of the pro-opiomelanocortin (Pomc) gene in corticotrophs (and melanotrophs of the intermediate lobe) (Lamolet et al., 2001); and (3) POU Class 1 homeobox 1 (Pou1f1 or Pit1), which control the differentiation of thyrotrophs, lactotrophs and somatotrophs (Dollé et al., 1990). Mouse mutants and humans carrying inactivating mutations in most of these genes develop hypopituitarism (Fang et al., 2016).

The mitogen-activated protein kinase (MAPK) pathway encompasses different signalling cascades, of which the Ras-Raf-Mek-ERK1/2 (hereafter MAPK/ERK) is one of the most dysregulated...
in human cancer and, additionally, plays important roles during normal physiology (Dhillon et al., 2007; Zhang and Liu, 2002). Extracellular growth factors (FGFs, EGF and PDGF, among others) bind to and activate receptor tyrosine kinases, causing a downstream phosphorylation cascade (RAS-RAF-MEK-ERK), which eventually leads to transcription of target genes controlling cellular proliferation, differentiation, apoptosis and senescence. Gain-of-function mutations in components of the pathway, such as BRAF p.V600E and KRAS p.G12D, have been identified in numerous tumours and cancers (Dhillon et al., 2007). These mutations lead to the overactivation of the MAPK/ERK pathway and increase cell proliferation and survival, resulting in cell transformation and tumourigenesis. In pituitary tumours, biochemical evidence indicates that this pathway is activated in many types of pituitary adenoma in humans (Dworakowska et al., 2009). However, mutations in components of the pathway have been identified only in papillary craniopharyngioma (PCP); specifically, the BRAF p.V600E mutation is present in the vast majority of the tumours analysed (Brastianos et al., 2014).

In this manuscript, we have addressed the role of MAPK/ERK pathway during normal pituitary development and in tumourigenesis by conditionally activating this pathway in RP progenitors during embryonic development. Our results demonstrate that persistent activation of the pathway leads to a drastic increase in the proliferative embryonic development. Our results demonstrate that persistent pathway during normal pituitary development and in tumourigenesis

RESULTS

Severe anterior lobe hyperplasia and neonatal lethality in Hesx1Cre/+;BrafV600E/− and Hesx1Cre/+;KrasG12D/− mutants

We have previously shown that the Hesx1-Cre mouse line drives robust Cre-mediated activity in the developing pituitary gland by 9.0 dpc (Andoniadou et al., 2007; Gaston-Massuet et al., 2011; Jayakody et al., 2012). To assess the role of the MAPK/ERK pathway during development, we crossed the Hesx1Cre/+ mice with either BrafV600E/− or KrasG12D/− animals (Mercer et al., 2005; Tuveson et al., 2004). Genotypic analysis of 10.5-18.5 dpc embryos showed no statistically significant variation from the expected Mendelian ratios (Table S1). In contrast, genotyping of postnatal mice from birth to 3 weeks failed to identify any viable Hesx1Cre/+; BrafV600E/− or Hesx1Cre/+;KrasG12D/− mice (Table S1). Histological examination revealed the presence of expanded airway structures in both mouse models at 18.5 dpc, suggesting that abnormal lung development could be the cause of the perinatal death observed (Fig. S1) (Tang et al., 2011).

Haematoxylin and Eosin staining of Hesx1Cre/+;BrafV600E/− and Hesx1Cre/+;KrasG12D/− mutants at 10.5 dpc revealed no gross morphological defects in the developing RP of these mutants compared with control littermates (Fig. 1A-C). The first clear evidence of a morphological defect, typically anterior pituitary hyperplasia, was observed at 12.5 dpc and was further pronounced by 14.5 dpc (Fig. 1D-I). At 18.5 dpc, a fully penetrant phenotype of severe anterior pituitary hyperplasia with branched cleft was observed in all embryos analysed (Fig. 1J-L). Cell counts of dissociated pituitaries at 18.5 dpc revealed a total of 96,000±2.7% in the Hesx1Cre/+;BrafV600E/−mutant (P<0.01), 101,666±4.3% in the Hesx1Cre/+;KrasG12D/−mutant (P<0.01) and 67,200±3.5% in control wild-type mice (Fig. 1M).

The posterior lobe was present and apparently normal in Hesx1Cre/+;BrafV600E/− and Hesx1Cre/+;KrasG12D/− mutant pituitaries (Fig. 1J-L). These data suggest that RP induction occurs normally in the Hesx1Cre/+;BrafV600E/− and Hesx1Cre/+;KrasG12D/− mutants, followed by an increase in proliferation, leading to hyperplasia of the anterior pituitary by the end of gestation.

The MAPK/ERK pathway is regulated temporally and spatially during normal pituitary development

The expression patterns of Braf and Kras mRNA and pERK1/2 protein expression, as a readout of activated MAPK/ERK pathway, were respectively analysed by in situ hybridisation and immunostaining on histological sections of wild-type, Hesx1Cre/+; BrafV600E/− and Hesx1Cre/+;KrasG12D/− embryos. At 10.5 dpc wild-

Fig. 1. Abnormal pituitary morphogenesis in Hesx1Cre/+;KrasG12D/− and Hesx1Cre/+;BrafV600E/− mutants. Haematoxylin and Eosin staining of sagittal (A-I) or transverse (J-L) histological sections of the developing pituitary gland in control and mutant embryos; genotypes and stages are indicated. (A-C) At 10.5 dpc, Rathke’s pouch (RP) is morphologically comparable between genotypes. (D-I) The developing pituitary is enlarged and dysmorphic in the mutant compared with the control pituitary at 12.5 and 14.5 dpc (arrowheads). (J-L) At 18.5 dpc, the cleft is expanded and ramified in the mutant pituitaries (arrowheads in K,L). The anterior lobe (AL), intermediate lobe (IL), posterior pituitary (PP) and neonatal lethality in Hesx1Cre/+;BrafV600E/− and Hesx1Cre/+;KrasG12D/− mutants. Haematoxylin and Eosin staining of sagittal (A-I) or transverse (J-L) histological sections of the developing pituitary gland in control and mutant embryos; genotypes and stages are indicated. (A-C) At 10.5 dpc, Rathke’s pouch (RP) is morphologically comparable between genotypes. (D-I) The developing pituitary is enlarged and dysmorphic in the mutant compared with the control pituitary at 12.5 and 14.5 dpc (arrowheads). (J-L) At 18.5 dpc, the cleft is expanded and ramified in the mutant pituitaries (arrowheads in K,L) compared with the control (J). The posterior pituitary (PP) is comparable between genotypes. AL, anterior lobe; IL, intermediate lobe. (M) Quantification of total numbers of cells in the control, Hesx1Cre/+;KrasG12D/− and Hesx1Cre/+;BrafV600E/− pituitaries at 18.5 dpc, showing a significant increase in the mutants (**P<0.01, Student’s t-test). Data are means±s.e.m. Scale bars: 200 μm.
type embryos, Braf and Kras mRNA were clearly detected in the prospective hypothalamus, including the posterior diencephalon and pre-optic area, in addition to the developing RP (Fig. 2A,D). At 12.5 and 14.5 dpc, transcripts were detected throughout the developing pituitary, including the infundibulum, periluminal epithelium and anterior lobe (Fig. 2B,E; data not shown). At 18.5 dpc, the expression domain of Kras and Braf was restricted to the periluminal area, including the intermediate lobe and marginal zone, with scattered cells dispersed throughout the anterior lobe (Fig. 2C,F). The expression patterns of Braf in Hesx1Cre/+;BrafV600E/+ (Fig. 3A-C) and Kras in Hesx1Cre/+;KrasG12D/+ (data not shown) mutants were comparable with those in wild-type embryos.

These expression patterns of mRNA expression did not correlate with pERK1/2 detection at all embryonic stages. At 10.5 dpc, pERK1/2 expression was comparable between genotypes in both the developing hypothalamus and RP (Fig. 4A,E,I), corresponding with Braf and Kras mRNA expression (Fig. 2). In contrast, at 12.5 and 14.5 dpc, very few pERK1/2+ cells were detected, despite the broad expression of Braf and Kras mRNA in mutant and wild-type embryos (Fig. 4B,C,F,G,J,K) as well as the extensive expression of BRAF-V600E mutant protein throughout the Hesx1Cre/+;BrafV600E/+ pituitary (Fig. 3D-F). At 18.5 dpc, the expression of pERK1/2 was noticeably increased in both Hesx1Cre/+;BrafV600E/+ and Hesx1Cre/+;KrasG12D/+ mutants compared with the control pituitaries (Fig. 4D,H,L), and correlated with the in situ data (Figs 2 and 3; data not shown). Together, these expression studies demonstrate that the MAPK/ERK pathway is temporally regulated with the highest levels observed at 10.5 and 18.5 dpc. In addition, we show that most of the cells upregulating the pathway are located in the epithelium lining the cleft, an area enriched for Sox2+ undifferentiated embryonic precursors and stem cells (Andoniadou et al., 2013).

Overactivation of the MAPK/ERK pathway results in abnormal terminal differentiation of specific hormone-producing cells

To assess the effects of the overactivation of the MAPK/ERK pathway in Rathke’s pouch (RP) induction, cell lineage commitment and terminal differentiation, we performed detailed expression analyses at 10.5, 14.5 and 18.5 dpc in both mutants in comparison with controls. The expression of Fgf10, Bmp4 and Shh within the hypothalamus is required for Lhx3 activation in RP progenitors (Ericson et al., 1998; Treier et al., 1998, 2001). At 10.5 dpc, the expression domains of these markers were indistinguishable between mutants and controls, supporting the notion that early RP induction occurs normally in the Hesx1Cre/+;BrafV600E/+ pituitary (Fig. 3D-F). At 18.5 dpc, the expression of pERK1/2 was noticeably increased in both Hesx1Cre/+;BrafV600E/+ and Hesx1Cre/+;KrasG12D/+ mutants compared with the control pituitaries (Fig. 4D,H,L), and correlated with the in situ data (Figs 2 and 3; data not shown). Together, these expression studies demonstrate that the MAPK/ERK pathway is temporally regulated with the highest levels observed at 10.5 and 18.5 dpc. In addition, we show that most of the cells upregulating the pathway are located in the epithelium lining the cleft, an area enriched for Sox2+ undifferentiated embryonic precursors and stem cells (Andoniadou et al., 2013).
and Hesx1Cre/+;KrasG12D/+ mutant embryos (Fig. S2). Immunostaining against POU1F1 (PIT1), NR5A1 (SF1) and TPIT, markers of specific cell-lineage precursors of the anterior pituitary, revealed evident defects in the Hesx1Cre/++;BrafV600E/+ mutants relative to control embryos at 14.5 dpc (Fig. 5A-I). Specifically, the proportion of PIT1+ cells was significantly reduced relative to total cells (control, 29%; Braf mutant, 4%; P=0.001), SF1+ cells were almost absent (control, 4%; Braf mutant, 0.5%; P≤0.05) and TPIT+

Fig. 4. Temporal and spatial regulation of pERK1/2 expression developing pituitary. Immunofluorescent staining against pERK1/2 on histological sections of control and mutant pituitaries; genotypes and stages are indicated. (A-D) Abundant pERK1/2+ cells are detected in the hypothalamus (Hyp) and Rathke’s pouch (RP) at 10.5 dpc, but only very few cells express pERK1/2 at 12.5 and 14.5 dpc. At 18.5 dpc, most of the signal is restricted to the intermediate lobe (IL) and marginal zone (MZ) of the anterior lobe. (E-L) A similar expression pattern is observed in both Hesx1Cre/+;KrasG12D+/+ (E-H) and Hesx1Cre/+;BrafV600E+/+ (I-L) mutant pituitaries. However, the pERK1/2 signal is markedly increased in 18.5 dpc pituitaries (H,L) relative to the control (D). Insets show the outlined areas at higher magnification. Scale bars: 200 μm.

Fig. 5. Cell-lineage commitment is disrupted in Hesx1Cre/+;KrasG12D/+ and Hesx1Cre/+;BrafV600E/+ mutants. Immunostaining (green) against the commitment markers PIT1, SF1 and TPIT on sagittal histological sections of mutant and control embryos at 14.5 dpc. (A-I) The expression of TPIT (A,D,G) and SF1 (B,E,H) are markedly reduced in the mutant pituitary, especially in the Hesx1Cre/++;BrafV600E/+ mutant, relative to the control. In contrast, TPIT expression is elevated in the mutant pituitary, more apparent in the Hesx1Cre/++;BrafV600E/+ genotype (C,F,I). Blue staining is DAPI. (J) Quantification analyses demonstrate the significant reduction of PIT1+ and SF1+ cells in both mutants relative to the control pituitary, but the increase of TPIT+ cells is significant only in the Braf mutants (*P≤0.05, **P≤0.01, ***P≤0.001, Student’s t-test). Data are means±s.e.m. Scale bar: 200 μm.
cells were increased (control, 10%; Braf mutant, 26%; P = 0.001) (Fig. 5J). In the Hesx1Cre++;KrasG12D+ mutants, PIT1+ and SF1+ cell lineage precursors were also significantly reduced (PIT1+: control, 29%; Kras mutant, 13%; P ≤ 0.001; SF1+: control, 4.5%; Kras mutant, 0.6%; P ≤ 0.05), albeit to a lesser extent than in Hesx1Cre++;BrafV600E+ mutants. Numbers of TPIT+ cells were similar (control, 10%; Kras mutant, 12%; P = 0.6156) (Fig. 5J).

Total numbers of hormone-producing cells were calculated by adjusting the proportion of each of these cell types to the size of the pituitary gland of the Hesx1Cre++;BrafV600E+ and control embryos at 18.5 dpc (see Materials and Methods). We reasoned that this approach could avoid any bias in the quantitative analysis due to the hyperplasia observed in the mutant pituitaries; for example, numbers of a particular cell type could be the same in mutant and controls but distributed in more histological sections in the mutant pituitary, hence seeming proportionally reduced. Overall, specific immunostaining revealed abnormal terminal differentiation of hormone-producing cells in both Hesx1Cre++;BrafV600E+ and Hesx1Cre++;KrasG12D+ mutants, although the effects were more accentuated in the former (Fig. 6A-R). Specifically, numbers of somatotrophs (GH+) (wild type, 23560; Braf mutant, 3185), lactotrophs (PRL+) (wild type, 17604; Braf mutant, 3233) and thyrotrophs (TSH+) (wild type, 4043; Braf mutant, 664) (i.e. the Pit1 cell lineage) were significantly reduced, and gonadotrophs (FSH+) (wild type, 6134; Braf mutant, 1686) and LH+ (wild type, 1564; Braf mutant, 23) almost completely absent in Hesx1Cre++;BrafV600E+ mutant pituitaries relative to controls (Fig. 6S). Immunostaining against αGSU (wild type, 6861; Braf mutant, 2977) confirmed the reduction of thyrotrophs and gonadotrophs in the mutant pituitaries (Fig. S3). In contrast, total numbers of corticotrophs (ACTH+) (wild type, 15958; Braf mutant, 28778) appeared significantly elevated in Hesx1Cre++;BrafV600E+ mutants (Fig. 6S). Abnormal differentiation was also observed in the Hesx1Cre++;KrasG12D+ mutant pituitaries, but to a lesser extent, with a reduction in numbers of thyrotrophs (wild type, 4043; Kras mutant, 1371), gonadotrophs (FSH+) (wild type, 6134; Kras mutant, 4044) and lactotrophs (wild type, 1764; Kras mutant, 6710). Similar to Hesx1Cre++;BrafV600E+ mutant pituitaries, elevated numbers of corticotrophs were also observed in Hesx1Cre++;KrasG12D+ mutant pituitaries (wild type, 15958; Kras mutant, 21370) (Fig. 6S). Furthermore, absolute quantification of mRNA transcripts using quantitative RT-PCR from 18.5 dpc control, Hesx1Cre++;BrafV600E+ pituitaries revealed a...

Fig. 6. Terminal differentiation of hormone-producing cells is impaired in Hesx1Cre++;KrasG12D+ and Hesx1Cre++;BrafV600E+ mutants. Immunostaining against pituitary hormones (green) on transverse histological sections of mutant and control embryos at 18.5 dpc. (A-R) Numbers of GH+ (somatotrophs) (A-C), PRL+ (lactotrophs) (D-F), TSH+ (thyrotrophs) (G-I), as well as FSH+ and LH+ (gonadotrophs) cells (J-O) appear reduced in the Braf and Kras mutants relative to the control pituitary. Blue staining is DAPI. (P-R) ACTH+ cell numbers (corticotrophs and melanotrophs) look increased in the mutant pituitaries compared with the control. (S) Quantitative analyses demonstrate a significant reduction of all of the hormone-producing cells in the Hesx1Cre++;BrafV600E+ mutant pituitary, except for ACTH+ cells, which are markedly increased relative to controls. Hesx1Cre++;KrasG12D+ mutant pituitaries show a significant decrease in the number of only PRL+, TSH+ and FSH+ cells, and ACTH+ cell number is also increased. (T) Absolute quantitative RT-PCR analysis of Gh and Acth mRNA expression in mutant and control pituitaries at 18.5 dpc. Significance is only reached for Gh expression, but there is a trend towards an increase in Acth expression (**P ≤ 0.05, ***P ≤ 0.01, ****P ≤ 0.001, Student’s t-test). Data are mean±s.e.m. Scale bar: 200 μm.
significant decrease in \(Gh\) and a trend towards increased \(Acth\) mRNA in both mutant genotypes (Fig. 6T), in agreement with the cell counts. Together, these analyses demonstrate that cell-lineage commitment and terminal differentiation are severely disrupted upon activation of the MAPK pathway in RP embryonic precursors, with an overall reduction of hormone-producing cells at the end of gestation.

Increased proliferation of the developing pituitary in \(Hesx1^{Cre^+};Braf^{V600E/+}\) and \(Hesx1^{Cre^+};Kras^{G12D/+}\) embryos

Analysis of cell proliferation of RP progenitors was carried out at 12.5, 14.5 and 18.5 dpc in \(Hesx1^{Cre^+};Braf^{V600E/+}\), \(Hesx1^{Cre^+};Kras^{G12D/+}\) and control pituitaries. Quantitative analysis of the proliferation index using Ki67 staining, a marker of cycling cells, revealed no difference at 12.5 dpc, with around 70% of total cells being Ki67+ (Fig. 7A-C,J). However, a significant increase in Ki67+ cells at 14.5 and 18.5 dpc was observed in both mutant genotypes, relative to stage-matched controls (Fig. 7D-J). Of note, while the Ki67 proliferation index decreased gradually in control pituitaries from 72% at 12.5 dpc to 22% at 18.5 dpc, this progressive quiescence was not observed to the same degree in the \(Hesx1^{Cre^+};Kras^{G12D/+}\) or \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutants. At 18.5 dpc, the proportion of proliferating cells fell to only 42% in \(Hesx1^{Cre^+};Kras^{G12D/+}\) and 55% in \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutant pituitaries (Fig. 7J). Increased proliferation was also confirmed by immunostaining against Cyclin D2, which controls G1/S cell cycle progression and is mainly expressed in RP progenitors in the periluminal epithelium (Bilodeau et al., 2009). Quantification of Cyclin D2-expressing cells out of total DAPI-stained nuclei within the periluminal epithelium revealed an increased trend in both mutant genotypes at 12.5 dpc compared with stage-matched controls (Fig. S4).

Activation of the MAPK/ERK pathway results in expansion of the Sox2+ stem cell compartment

The restricted expression of pERK1/2 and increased proliferation of periluminal cells, prompted us to assess whether the Sox2+ cells could be the main population responding to the overactivation of the MAPK/ERK pathway in our mouse models. Histological sections of \(Hesx1^{Cre^+};Braf^{V600E/+}\), \(Hesx1^{Cre^+};Kras^{G12D/+}\) and control pituitaries were analysed by immunostaining at different developmental stages. At 12.5 dpc, the proportion of Sox2+ cells was initially similar between genotypes at around 80% of total cells (Fig. 8A-C,J). However, in control embryos, the number of Sox2+ cells fell to 21% by 18.5 dpc (\(P=0.0004\)) (Fig. 8G,J). Strikingly, in \(Hesx1^{Cre^+};Kras^{G12D/+}\) and \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutant pituitaries, the high proportion of Sox2+ cells found at earlier developmental time points was maintained, falling to only 53% (\(P=0.0519\)) and 72% (\(P=0.068\)) of total cells at 18.5 dpc, respectively. This suggests a trend towards a decrease in Sox2+ cell numbers although not statistically significant (Fig. 8H-J). Further to this, levels of Sox2 mRNA were observed to be significantly increased in \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutants by quantitative RT-PCR (Fig. 8K). Corroborating the histological findings, the clonogenic potential in \(Hesx1^{Cre^+};Kras^{G12D/+}\) and \(Hesx1^{Cre^+};Braf^{V600E/+}\) pituitaries at 18.5 dpc was nearly three and five times higher, respectively, than in controls when analysed in stem-cell-promoting medium (Fig. 8L,M).

The described defects suggest that the MAPK pathway may control the balance between self-renewal and differentiation of Sox2+ progenitors during development. To further characterise this defect, we performed a pulse-chase experiment with the nucleotide analogue EdU, which is incorporated during the S phase of the cell cycle. Specifically, we injected EdU at 14.5 dpc, when most of the replicating cells are Sox2+ progenitors, and analysed the pituitaries 48 h later at 16.5 dpc, when progenitors have exited cell cycle to commit to specific cell lineages (Fauquier et al., 2008; Bilodeau et al., 2009). This was performed in both control and \(Hesx1^{Cre^+};Braf^{V600E/+}\) embryos, owing to their more pronounced phenotype.

In control embryos, ~25% of the initially labelled EdU cells expressed the commitment marker PIT1 and around 21% expressed SOX2 (Fig. 9A,C,D,F). In contrast, in \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutants, the percentage of EdU+/PIT1+ cells dropped to 3% and the proportion of EdU+/Sox2+ cells was elevated to 40% (Fig. 9B,C,E,F). Despite the significant increase in ACTH+ cells in the mutant pituitary at 18.5 dpc, the proportion of EdU+/PIT1+ positive in this tracing experiment remained similar between genotypes (8% in controls and 9% in mutants) (Fig. 9H,I). This tracking experiment also revealed a higher proportion of EdU+/Ki67+ cells in the \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutants (25%) relative to the controls (18%) (Fig. 9J-L). To assess which cells were labelled at 14.5 dpc, we performed a short pulse experiment by injecting EdU in pregnant females at 14.5 dpc and analysed the embryos 2 h later. This analysis confirmed that the majority of the EdU+ cells expressed SOX2, specifically 74% of labelled EdU+ cells expressed SOX2 in the control and 87% in the \(Hesx1^{Cre^+};Braf^{V600E/+}\) mutants pituitaries, suggesting a trend towards an increase, although not significant (\(P=0.1599\)) (Fig. S5A-C). In the control pituitary, 6% of the EdU+...
cells expressed PIT1 and 1.4% expressed TPIT, while in the mutant pituitary these proportions were 0.1% for PIT1 and 3.7% for TPIT, both significantly different ($P=0.0246$, PIT1 and $P=0.0490$, TPIT) (Fig. S5D-I). Three conclusions can be drawn from these EdU studies: (1) the activation of the MAPK/ERK pathway drives self-renewal versus differentiation of Sox2+ cells; (2) there is a blockade in the differentiation of Sox2+ cells into PIT1 progenitors; and (3) there is no bias in the differentiation of Sox2+ cells into the TPIT cell lineage; rather, TPIT progenitor respond to the pathway activation by increasing proliferation. Together, these data demonstrate that the activation of the MAPK pathway in embryonic precursors results in significant expansion of the Sox2+ cell population and increased clonogenic potential. In addition, we show that an abnormal balance between self-renewal and differentiation contribute to these defects.

Sox2+ cells represent the major proliferating cell population in human papillary craniopharyngioma

Higher numbers of organ-specific stem cells with reduced differentiation potential can lead to tumorigenesis in many organs, including the pituitary gland (Gaston-Massuet et al., 2011). As $BRAF$ p.V600E is the sole genetic event associated with human papillary craniopharyngioma (PCP), we hypothesised that overactivated MAPK in these tumours may lead to similar cellular alterations to those observed in the $Hesx1^{Cre/+}$,$Kras^{G12D/+}$ and $Hesx1^{Cre/+}$,$Braf^{V600E/+}$ mutant pituitaries, i.e. expansion of the Sox2+/Sox9+ cells with decreased differentiation capacity.

PCPs are non-functional tumours, which do not express pituitary hormones (Louis et al., 2016). In a series of archival formalin-fixed paraffin-embedded (FFPE) PCP specimens ($n=5$), we confirmed the presence of p.BRAF(V600E) mutations (Table S2) and expression of BRAFV600E in all tumour cells (Fig. 10B). pERK1/2 staining was more restricted and focused in areas around the fibrovascular cores (Fig. 10E). Most of the cells in the tumours were positive against a pan-cytokeratin antibody recognising cytokeratins, but cells from the basal layer were negative (Fig. 10C). This was further evidenced by immunostaining against cytokeratin 19 (Fig. 10D). Double immunostaining revealed that the squamous epithelial tumour components robustly expressed SOX2 and SOX9 in a graded manner, with the highest expression observed in basal cells immediately in contact with the fibrovascular cores and a progressive loss of signal in cells away from the SOX2+/SOX9+ areas (Fig. 10F-H). Quantification analyses demonstrated that \sim16% of these Sox2+ cells expressed Ki67 (Fig. 10I-L). Moreover, up to 91% of all cycling cells within the tumour (excluding host-derived stroma) co-expressed SOX2, suggesting that proliferating SOX2+ cells may be driving PCP growth (Fig. 10L).

For comparison purposes, we assessed the proliferative potential of Sox2+ cells during normal human embryonic pituitary development and adulthood. At CS20 (Carnegie stage 20; gestational day 49), an embryonic stage that is analogous to 14.5 dpc in mouse, human foetal pituitaries were predominantly SOX2+/SOX9+ and almost the majority of these cells expressed Ki67 (Fig. S6A-C,J-L). In contrast, adult human pituitary samples contained very few SOX2+ cells in the anterior lobe (Fig. S6D-I), which very rarely expressed Ki67 with an almost mutual exclusivity between these two markers (Fig. S6M-R). These
observations suggest that, as in the mouse model, the activation of the MAPK pathway in human PCP tumours result in increased proliferative capacity and reduced terminal differentiation of the SOX2+ cells.

DISCUSSION

In this article, we show that the overactivation of the MAPK pathway in RP embryonic precursors results in increased sustained proliferation and impaired terminal differentiation of Sox2+ cells during development. Consequentially, by the end of gestation, the pituitary gland contains vast numbers of Sox2+ cells, leading to an enlargement of the pituitary stem cell compartment. Because the Hesx1-Cre mouse line drives Cre-mediated recombination in the anterior hypothalamus, we cannot completely rule out a hypothalamic contribution to the observed phenotype. However, the normal hypothalamic patterning at 10.5 dpc supports a more relevant role for the dysregulation of the MAPK/ERK pathway in the developing RP. Of translational relevance, we reveal the presence of a population of Sox2+ cells in human PCP tumours endowed with proliferating capacity but unable to differentiate into hormone-producing pituitary cells.

Our data suggest that the activation of the MAPK/ERK pathway by FGF ligands is crucial during pituitary development. The FGF family of secreted factors binds to tyrosine kinase FGF receptors...
FGFRs to signal through the MAPK/ERK and other pathways (Ornitz and Itoh, 2015). Several FGFs, including Fgfr8, Fgfr10 and Fgfr18 are expressed in the developing ventral diencephalon around 9.5-10.5 dpc (Treier et al., 1998, 2001), and loss-of-function mutants of FGF and FGFR2 demonstrate that FGF signalling is required for normal proliferation of RP progenitors and pituitary morphogenesis (De Moerlooze et al., 2000; Ohuchi et al., 2000). *Ex vivo* culture of RP tissue exposed to FGFs and FGF inhibitors has revealed a crucial function for the pathway in controlling both RP proliferation, and its downregulation is required for normal PIT1-cell lineage specification (Ericson et al., 1998; Norlin et al., 2000). Of note, transgenic ectopic expression of Fgfr8 in the developing pituitary using a Cga (a-GSU) promoter results in pituitary hyperplasia and expansion of ACTH-expressing cells (corticotrophs and melanotrophs) with a concomitant severe loss of gonadotrophs, somatotrophs, thyrotrophs and gonadotrophs (Treier et al., 1998), a phenotype resembling our mouse models that activate the MAPK-ERK pathway. The data presented here raise the possibility that other ligands such as EGF, PDGF and TGFα, which, like FGFs, can activate the MAPK/ERK pathway, might be important during pituitary development. Alternatively, it is also possible that FGF is the only secreted signal activating the MAPK/ERK pathway in RP. Further analyses are required to clarify the contributions of other signals besides FGFs.

We reveal a crucial function of the MAPK/ERK pathway in the control of the stem cell compartment in the pituitary by the end of gestation. The proportion of Sox2+ cells is drastically increased and comprises almost three-quarters of the entire cell population in the

Human Papillary Craniopharyngioma

<table>
<thead>
<tr>
<th>H&E</th>
<th>α-BRAF V600E</th>
<th>α-Pan-Cytokeratin</th>
<th>α-Cytokeratin19</th>
<th>α-pERK1/2</th>
</tr>
</thead>
</table>

Fig. 10. Human PCP tumours contain a population of cycling SOX2+ cells. Analysis of histological sections of human PCP tumours. (A,A') Haematoxylin and Eosin staining showing the presence of fibrovascular cores (black asterisks) lined by a layer of basal cells (arrowheads) and large areas of suprabasal squamous epithelium (white asterisks). (B,B') Immunohistochemistry revealing the expression of BRAF-V600E in a PCP tumour. Staining is present (light brown) in the vast majority of tumour cells. Black asterisks indicate the presence of fibrovascular cores. (C,C') Immunohistochemical detection using a pan-cytokeratin antibody. Most of the tumour cells show positive staining (dark brown) with the exception of the basal cell layer (arrowheads) surrounding the fibrovascular cores (black asterisks). (D,D') Specific staining (light brown) against cytokeratin 19 showing absent staining in the basal layer cells (arrowheads) surrounding fibrovascular cores (asterisks). The difference in the staining, from light to dark brown, is due to technical reasons (e.g. antibody used, manual or automatized immunohistochemistry). (E,E') Immunofluorescence staining of pERK1/2 showing expression restricted to the cells surrounding the fibrovascular cores (white arrowheads), with some positive cells within the fibrovascular cores (white asterisk). Outlined areas in A-E are shown in A'-E'. Outlined areas in A'-E' are shown in the insets in A'-E'. (F-H) Double immunofluorescent staining shows the co-expression of SOX2 and SOX9 in cells surrounding the fibrovascular cores, with stronger signal in the basal cells. (I-K) Double immunofluorescence staining reveals the co-expression of SOX2 and Ki67 in basal cells. (L) Quantification of SOX2+Ki67+ double-positive cells as a proportion of either the SOX2+ or Ki67+ populations in human PCP. Data are mean±s.e.m. of SOX2+ Ki67+ and Ki67+ SOX2+ cell quantifications. Scale bars: 200 μm; 100 μm in insets.
Materials and Methods

Mice

The $\text{Hesx1}^{\text{Cre}^{+/-}}$, $\text{Braf}^{\text{V600E}^{+/-}}$, and $\text{Kras}^{\text{G12D}^{+/-}}$ mice have previously been described (Andoniadou et al., 2007; Mercer et al., 2005; Tuveson et al., 2004). In both the $\text{Braf}^{\text{V600E}^{+/-}}$ and the $\text{Kras}^{\text{G12D}^{+/-}}$ mouse lines, the expression of the oncogenic protein is activated upon Cre-mediated recombination. Genotyping of mice and embryos was carried out by PCR on ear punch biopsies or pieces of tissue from embryos digested in DNA cleavage lysates (Anachem) as per manufacturer’s instructions. The data presented in this work are representative of examples of at least three individual embryos per genotype. All the experiments performed in mice were carried out according to UK Home Office guidance and approved by a local ethical committee.

Histology and in situ hybridisation on histological sections

Haematoxylin and Eosin staining was performed as previously described (Gaston-Massuet et al., 2011). Histological processing of embryos and in situ hybridisation on paraffin sections was performed as previously described (Gaston-Massuet et al., 2008; Sajedi et al., 2008). The antisense riboprobes used in this study (Fgf10, Shh, Bmp4 and Lhx3) have been described (Gaston-Massuet et al., 2008; Sajedi et al., 2008; Jayakody et al., 2012; Trowe et al., 2013). Full-length Braf and Kras antisense riboprobes were obtained from Source Bioscience (PX00099A07 and IRAV968D072D, respectively).

edU labelling

For edU labelling of embryonic pituitaries, pregnant females at 14.5 dpc were subjected to a single intra-peritoneal injection of EdU at a dose of 100 µg/kg and embryos dissected either 2 h later for short-term tracing experiments or 48 h later at 16.5 dpc for longer term tracing. Double immunostaining against specific markers (SOX2, PIT1, TPIT and Ki67) and EdU was conducted using the Click-It EdU imaging kit (Invitrogen) according to manufacturer’s instructions.

Immunohistochemistry and immunofluorescence

Embryos were fixed in 4% PFA and processed for immunodetection as previously described (Jayakody et al., 2012; Andoniadou et al., 2013). Detection of hormones was carried out using antibodies for α-GH (NHPH AFP-5641801), α-ACTH (10C-CR1096M1), α-TSH (NHPH AFP-1274789), α-PRL (NHPH AFP-425-10-91), α-LH (NHPH AFP-C697013P) and α-FSH (AFP-7798-1289) (Developmental Studies Hybridoma Bank) at a 1:1000 dilution. Detection of pituitary lineage commitment was performed using antibodies for α-PIT1 (a gift from S. Rhodes, Indiana University School of Medicine, Indianapolis) and α-PIT2 (a gift from J. Drouin, Montreal Clinical Research Institute, Montreal) at a 1:1000 dilution. α-SOX2 (GT15098, Immune Systems) and α-SOX9 (AB5535, Millipore) were used at a dilution of 1:250 and 1:500, respectively. Proliferation marker antibodies α-Ki67 (ab16667, Abcam) and α-Cyclin D2 (SC-593, Santa Cruz) were used at a dilution of 1:100 and 1:1200, respectively. Detection of activated MAPK signalling cells was performed using α-pERK1/2 (9101, Cell Signalling) at a dilution of 1:250 and 1:500. Detection of cyclin D2 antibody was detected using α-pan-cyclin A immunoregulating cyclotamins 5, 6, 8, 17 and 19 (DNMF116; Dako M0821) at a dilution of 1:300, and an antibody specifically recognising cyclotatin 19 (Dako clone RK108; M088). Detection of oncogenic Braf was performed using an α-BRAF V600E antibody (Spring Bioscience; E19290) at a dilution of 1:50.

Cell counting in vivo

All cell counting analysis were performed in three to five non-consecutive histological sections immunostained using the relevant antibodies. PIT1,
SF1, TPIT, KI67, SOX2 and Cyclin D2 expressing cells were determined by taking the proportion of positive cells relative to total DAPI-positive nuclei. Around 4000 to 7000 DAPI-positive cells and 300 to 1000 marker-positive (PTIT+, SF1+, TPIT+, KI67+, SOX2+ and Cyclin D2+) cells were counted for each genotype. For analysis of EdU-tracing experiments, the proportions of SOX2-, PTIT- or KI67-positive cells were determined relative to the EdU-positive cell population. Around 500-1500 EdU-positive cells and 200-600 marker-positive cells were counted for each genotype. Analysis of hormone-producing cell populations (GH+, PRL+, TSH+, FSH+, LH+, ACTH+ and αGSU+) was assessed through the relative proportion of hormone-positive population to total DAPI-positive nuclei in a section. These proportions were then applied to average cell counts of dissociated pituitaries to determine an approximation of the absolute numbers of these populations in the pituitary. Around 5500-8500 DAPI-positive cells and 200-2500 marker-positive cells were counted for each genotype.

Assessment of clonogenic potential
Pituitaries from Hesx1Cre+/+, Brfα+/−/−, Hesx1Cre+/+, KrasG12D+/− and control littersmates were dissected at 18.5 dpc and the posterior lobe was removed. Anterior pituitaries were dissociated mechanically into a single cell suspension following incubation in an enzyme mix (0.5% w/v collagenase type 2, Lorne Laboratories), 0.1% trypsin (Gibco) and 50 µg/ml DNase1 (Worthington) with 2.5 µg/ml Fungizone (Gibco) in Hank’s balanced salt solution (HBSS, Gibco) for 4 h at 37°C. Cells were then washed in HBSS, suspended in pituitary stem cell medium and seeded at densities of 2000, 4000 and 8000 cells per well of a six-well plate for adherent culture. Cells were cultured for 3 days at which point they were fixed with 4% PFA and colonies were stained for Haematoxylin, as adherent culture. Cells were cultured for 3 days at which point they were fixed with 4% PFA and colonies were stained for Haematoxylin, as adherent culture. The proportion of fixed with 4% PFA and colonies were stained for Haematoxylin, as adherent culture.

RNA extraction and quantitative real-time PCR
Pituitaries from Hesx1Cre+/+, Brfα+/−/−, Hesx1Cre+/+, KrasG12D+/− and control littersmates were dissected at 18.5 dpc. The posterior lobe of the pituitary was discarded, and the intermediate and anterior lobes were processed for total RNA extraction using the RNeasy Micro kit (Qiagen). Approximately 1 µg of total RNA was reverse transcribed to cDNA using the iScript Reverse Transcription Kit and random hexamers (Bio-Rad). Quantitative real-time PCR reactions were run in triplicate using the Taq SYBR Green (Bio-Rad) and repeated for a minimum of three independent samples for each genotype. Primer sequences are available on request. The absolute number of mRNA copies was determined for each sample by comparison of obtained Cq values with that of a standard of known copy number for each transcript investigated. Variations in input cDNA used for each reaction were accounted for by normalising differences in Gapdh expression between samples and genotypes, and applying this normalisation factor to absolute copy numbers obtained for each mRNA species of interest. Primer sequences can be found in Table S3.

Human pituitaries and papillary craniopharyngioma samples
Anonymised archival frozen and FFPE specimens of PCP were accessed through Brain UK (University of Southampton, UK). Human foetal pituitary tissue was accessed through the Human Developmental Biology Resource (HDBR, Newcastle and London, UK), Anonymised post-mortem human adult pituitary was accessed from the Medical Research Council Edinburgh Brain and Tissue bank and Royal Victoria Infirmary (Newcastle, UK) (Ethical approval 14/LO/2265).

Detection of BRAF p.V600E mutations in papillary craniopharyngioma tumours
DNA was diluted fivefold with nuclease-free water (Ambion). Each digital PCR reaction was made up to 20 µl with 2 µl diluted DNA, 10 µl ddPCR Supermix for Probes (No dUTP; Bio-Rad), forward and reverse primers, dual-labelled probes for wild-type and mutant templates, and nuclease-free water. Sequences for the BRAF-V600E assay oligonucleotides are from Hindson et al. (2011), and were used at the concentrations stated. Reactions were partitioned into ~23,000 droplets with Droplet Generation Oil for Probes (Bio-Rad) using the QX200 Droplet Generator (Bio-Rad). All samples were tested in duplicate, with no-template controls included in all columns. Standard cycling conditions, as recommended by the manufacturer were used with a Tm of 60°C. Results were analysed with QuantaSoft software, v1.7. A mean of 19,080 droplets were successfully read in each well, including controls. Two droplets positive for wild-type template were seen in the negative controls, indicating a negligible degree of contamination.

Statistics
Mendelian ratios were evaluated using the chi-squared test. Clonogenic potential of control, Hesx1Cre+/+, KrasG12D+/− and Hesx1Cre+/+, KrasG12D+/− pituitaries was evaluated using a paired t-test. Total cell counts of control and mutant pituitaries and quantitative real-time PCR data were analysed by unpaired t-test.

Acknowledgements
We thank the Developmental Studies Hybridoma Bank (University of Iowa) and the National Hormone and Peptide Program (Harbor–University of California, Los Angeles Medical Center) for providing some of the antibodies used in this study. The human embryonic and foetal material was provided by the Joint Medical Research Council (JRC)/Wellcome Trust Human Developmental Biology Resource (www.hdr.org) (099175/Z/12/Z). PCP tissue samples were also obtained from Plymouth Hospitals NHS Trust as part of the UK Brain Archive Information Network (BRAIN UK), which is funded by the Medical Research Council and The Brain Trust Charity. Adult pituitary tissue was obtained from the Medical Research Council Edinburgh Brain and Tissue Bank and from Dr Abhijit Joshi (Royal Victoria Infirmary, Newcastle, UK).

Competing interests
T.F. is a co-founder, shareholder and manager of Inivata. Inivata is a company focused on developing assays for circulating tumour DNA analysis. All the other authors declare no competing interests.

Author contributions

Funding
This work was supported by the Medical Research Council (MRC) (MR/M000125/1 and MR/L016729/1), by the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children National Health Service Foundation Trust and by University College London. J.R.A. is a Cancer Research UK Clinical Research Training Fellow. S.H. holds a Wellcome Trust PhD Fellowship. J.P.M.-B. is a Great Ormond Street Children Hospital Charity Principal Investigator. Deposited in PMC for release after 6 months.

Supplementary information
Supplementary information available online at http://dev.biologists.org/lookup/doi/10.1242/dev.150490.supplemental

References

