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Abstract 25 

The tremendous diversity in microbial species that colonise the mucosal surfaces of the 26 

human body is only now beginning to be fully appreciated. Distinguishing between the 27 

behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in 28 

the body is a complex, and exquisitely fine-tuned process central to mucosal health. The 29 

fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an 30 

asymptomatic carriage rate of approximately 60% in the human population. While normally 31 

a benign member of the microbiota, overgrowth of C. albicans often results in localised 32 

mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection 33 

that often causes death in the absence of effective immune defence. C. albicans triggers 34 

numerous innate immune responses at mucosal surfaces, and detection of C. albicans 35 

hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated 36 

molecular patterns and cytokines that function to reduce fungal burdens during infection. 37 

This review will summarise our current understanding of innate immune responses to C. 38 

albicans at mucosal surfaces. 39 
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1. Introduction 49 

In the past, mucosal surfaces were often considered to be merely a static barrier 50 

between the body and the external environment. However, recent research has now 51 

redefined mucosal barriers and the epithelial cells that comprise them as highly complex 52 

and dynamic structures capable of initiating and modulating several crucial host responses 53 

required to maintain tissue homeostasis during health and disease. The mucosal surfaces of 54 

the human body provide a varied and challenging niche for bacteria, fungi and viruses. The 55 

incredible diversity within the microbial communities that colonise the host mucosa makes 56 

differentiating between harmless commensalism and pathogenic behaviour difficult, 57 

particularly in the context of pathobionts, which can remain passive for extended periods of 58 

time before displaying pathogenic behaviour that is damaging to the host.  59 

Fungi, particularly Candida species, are frequently isolated from the skin [1] and the 60 

mucosal surfaces of the body [2]. While C. albicans is often regarded as the most pathogenic 61 

of the Candida species, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei and others 62 

contribute significantly to morbidity and mortality. Indeed, the recent emergence of fungal 63 

pathogens such as C. auris [3] highlight the prominence of Candida species and the 64 

unrelenting threat they pose to human health. 65 

The morphological plasticity of C. albicans is a central virulence trait that facilitates 66 

mucosal pathogenesis. Overgrowth of C. albicans hyphae at mucosal surfaces occurs when 67 

host defences are diminished, resulting in localised mucosal infection. C. albicans infections 68 

of the oral cavity [2] present as creamy-white fungal plaques on the oral mucosa 69 

(pseudomembranous candidiasis), painful reddened lesions on the tongue (erythematous 70 

candidiasis) and smooth or nodular lesions on any mucosal surface within the mouth 71 

(chronic hyperplastic candidiasis). Growth of C. albicans on mucosal surfaces and abiotic 72 
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substrates results in the formation of biofilms, which are of increasing concern in medical 73 

settings [4, 5]. Regular contact between Candida biofilm and the hard palate of the oral 74 

cavity can result in Candida-associated denture stomatitis, and lifestyle choices (particularly 75 

smoking) can result in median rhomboid glossitis of the tongue. Candida species are 76 

frequently isolated from the gastrointestinal tract [6], which is widely regarded as the 77 

primary tissue from which the majority of systemic infections are acquired (usually following 78 

surgery or major abdominal trauma). Thus, mucosal colonisation by Candida species (and C. 79 

albicans in particular), is a major risk factor for potential life-threatening candidaemia. 80 

The skin [1, 7] and mucosal surfaces of the body have evolved a number of incredibly 81 

sensitive and discerning mechanisms that allow appropriate immune defence to be initiated 82 

and controlled in response to changes in microbial behaviour. This article will review our 83 

current understanding of innate defences against C. albicans at mucosal surfaces.  84 

 85 

2. The role of the mycobiome in relation to anti-fungal immunity 86 

With the recent advances made in high-throughput sequencing technologies, 87 

researchers are now able to accurately characterise the complex microbial communities 88 

that develop within human habitats. The astonishing extent and complexity of these 89 

communities that has been revealed in these studies has suggested a level of importance in 90 

human health and disease that is only now beginning to be understood, with the 91 

“superorganism” or “holobiont” hypotheses being proposed [8]. However, despite the 92 

advances being made in this field, attention has largely focussed on the bacterial 93 

components of these rich microbial communities.  94 

To date, the fungal communities, or mycobiome, have yet to be systematically 95 

investigated in the same way. There are several reasons for this.  First, despite their 96 
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considerable biomass, fungi account for a relatively small percentage of the genes within 97 

the microbiome as compared to bacteria and archaea [9, 10]. Second, isolation of high-98 

quality nucleic acids in sufficient quantities from fungal cells in a microbial community is 99 

challenging due to the complex cell wall structures that fungal cells possess, and requires a 100 

combination of enzymatic, chemical and mechanical lysis steps that vary with different fungi 101 

[11]. Finally, discrimination between the different fungal taxa is dependent on the 102 

databases and reference genome catalogues that are available. These databases are 103 

currently either incomplete or, in the case of reference genome catalogues, not available at 104 

present [12, 13]. However, the data that is available points to a critical role for the 105 

mycobiome and fungal components within it, in human health and disease [6, 14-16].  106 

Indeed, microbiome analysis of HIV-positive and -negative individuals reveal long-107 

term shifts in the mycobiome but not the bacteriome [17]. While some taxa, such as 108 

Candida and Penicillium appeared in all individuals, HIV-negative individuals were 109 

specifically associated with Pichia, Cladosporium and Fusarium species, while HIV-positive 110 

individuals showed the presence of Alternaria, Epicoccum and Trichosporon. Moreover, 111 

species common to both cohorts, including Candida, show differences in their relative 112 

abundance. These changes arise from complex interactions between individual taxa of the 113 

mycobiome and demonstrate that the Pichia spp associated with a healthy mycobiota 114 

produce factors that suppress the growth of pathogenic fungi such as Candida spp that 115 

show greater prevalence in HIV-positive individuals [17]. Thus, the loss of Pichia in HIV-116 

positive individuals may in part, explain the prevalence of oral candidiasis associated with 117 

HIV-positive status, as a natural inhibitor of Candida is lost. 118 

In general, changes in the mycobiota are associated with modulation of immune 119 

responses and disease progression [6, 18], as well as maintenance of microbial population 120 
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architecture and host metabolic function [19]. Furthermore, components of the mycobiota 121 

interact with bacteria to impact on disease [15]. For example, the microbiota of Crohn’s 122 

disease patients contains an abundance of Candida tropicalis compared with healthy 123 

controls, and positively correlates with the production of anti-Saccharomyces cerevisiae 124 

antibodies; a diagnostic biomarker of Crohn’s disease [15]. Furthermore, both Serratia 125 

marcesens and Escherichia coli are elevated in Crohn’s patients, while “beneficial” bacteria 126 

(e.g. Faecalibacterium prausnitzii) show a significant decrease in their abundance.  127 

Strikingly, the abundance of S. marcesens, E. coli and C. tropicalis in patients with 128 

Crohn’s disease positively correlate with one another; the biomass and thickness of these 129 

triple species biofilms are significantly greater than those of single and double species 130 

biofilms, with enrichment in the number of C. tropicalis hyphae that bind directly to both 131 

bacteria through fimbrial connections [15]. Thus, specific interkingdom microbial 132 

interactions may be key determinants in Crohn’s disease. Although there is mounting 133 

evidence that links changes in the micro/mycobiota with disease, there remains much to 134 

understand regarding the complex interactions between the mycobiota, the remaining 135 

microbiota, and the host. In order for C. albicans to cause disease at a mucosal surface, it 136 

must first interact with epithelial cells. The interactions that occur between C. albicans and 137 

epithelial cells are described below. 138 

 139 

3. Interaction of Candida albicans with the host mucosa 140 

3.1 Adhesion to epithelial cells 141 

Attachment of C. albicans yeast and hyphae to epithelial cells is a prerequisite for 142 

colonisation and accordingly, a risk factor for the development of mucosal infection. 143 

Attachment of C. albicans to mucosal sites of the body can be mediated either directly or 144 
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indirectly through association with bacterial and fungal components of the microbiota. 145 

While C. albicans yeast cells are capable of interacting with and adhering to the host mucosa 146 

[20], the switch to hyphal growth invokes extensive transcriptional reprogramming of the 147 

fungus [21, 22], leading to changes in the composition of the fungal cell wall [23] that enable 148 

a more robust interaction with the epithelial surface to be established and maintained [24]. 149 

Two key C. albicans hypha-associated adhesins in this process are Als3p and Hwp1p, which 150 

mediate direct attachment to epithelial cells.  151 

The Agglutinin-Like Sequence (Als) family of C. albicans adhesins contains eight 152 

members (Als1-7p and Als9p) which are GPI-linked to β-1-6 glucans in the fungal cell wall. 153 

Each member of the Als family contains an N-terminal substrate-binding domain, a highly 154 

variable central serine/threonine-rich domain comprised of numerous 36 amino acid 155 

tandem repeat sequences, and a C-terminal domain containing the GPI anchor [25]. The Als 156 

proteins of C. albicans exhibit a complex pattern of morphology-dependent and -157 

independent expression that varies between individual clinical specimens, in vivo disease 158 

models, and fungal culture conditions in vitro [25, 26].  159 

Als3p is strongly upregulated during epithelial infection [27], and disruption of ALS3 160 

reduces epithelial adhesion in vitro. Similarly, an als2Δ/PMAL2-ALS2 mutant (where the one 161 

remaining wild type copy of ALS2 in a heterozygous ALS2 knockout is placed under the 162 

control of a regulatable promoter) also exhibited reduced epithelial adhesion [28]. In 163 

contrast, deletion of C. albicans ALS5, ALS6 or ALS7 increases fungal adhesion to the 164 

epithelium [29], indicating that the Als proteins have varied roles in mediating adherence to 165 

host mucosa. However, despite these findings, conflicting observations have been made 166 

regarding the precise role of ALS1, ALS2 and ALS4-6 in epithelial attachment [30-32]. 167 
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The structural similarity that exists between specific C. albicans proteins and those of 168 

the host can in some instances be exploited to confer an advantage to the fungus. Hyphal 169 

Wall Protein 1 (Hwp1p) is a hypha-associated adhesin that is strongly expressed during 170 

colonisation and infection of the oral mucosa [27, 33]. The amino acid sequence of the 171 

Hwp1p N-terminal domain closely resembles that of natural substrates for mammalian 172 

transglutaminase enzymes [34]. By mimicking a natural host substrate, C. albicans exploits 173 

host transglutaminase activity, which covalently couples the N-terminal domain of Hwp1p to 174 

the epithelial surface [35]. Hwp1p has a greater affinity for terminally differentiated 175 

epithelial cells that display SPR3 and keratin 13 when compared with less differentiated cells 176 

[36], and deletion of HWP1 results in reduced epithelial adhesion and virulence in a murine 177 

model of oropharyngeal candidiasis (OPC) [35, 37]. However, while the role of Hwp1p in 178 

mucosal infection is clearly established, it plays a minimal role in systemic infection and is 179 

therefore habitat specific [38]. 180 

C. albicans Int1p is an adhesin with structural similarity to human leukocyte integrin. 181 

Int1p is required for hyphal growth, intestinal colonisation in mice and virulence in vivo [39]. 182 

Heterologous expression of INT1 in the non-adherent yeast Saccharomyces cerevisiae 183 

confers adhesion to epithelial cells [39, 40], confirming the role of Int1p as a primary 184 

adhesin. Phenotypes associated with INT1 expression are complex and dose dependent, as 185 

reintegration of a single copy of wild type INT1 into an int1Δ/Δ null mutant background 186 

restores hyphal growth but not epithelial attachment [39].  187 

While only a handful of C. albicans proteins have been identified that mediate 188 

epithelial adhesion directly, numerous factors have been identified that exert an indirect 189 

influence on epithelial attachment. Collectively, these factors affect multiple pathways and 190 

processes including the expression and appropriate presentation of adhesins on the fungal 191 
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cell wall, and the activation of hypha-associated transcriptional circuitry required to induce 192 

the expression of morphology-dependent genes required for enhanced epithelial 193 

interaction. The factors that indirectly influence the interaction of C. albicans with host 194 

mucosa are presented in Table 1.  195 

 196 

Table 1. Factors that indirectly influence attachment of C. albicans to epithelial cells. 197 

Gene Function Epithelial 
Adhesion of 
Null Mutant 

Epithelial 
Cell Type 

Reference 

BIG1 Endoplasmic reticulum 
protein 

Decreased HeLa [41] 

BST1 Inositol deacylase Decreased Caco-2 
KB 

[42] 

CDC10 Septin protein Decreased HeLa [43] 

CFL1 Ferric reductase Decreased HeLa [44] 

CSF4 Putative glycosidase Decreased FaDu [45] 

EAP1 GPI-anchored cell wall 
protein 

Decreased HEK293 [46] 

EFG1 Transcription factor Decreased Caco-2 [47] 

IFF4 GPI-anchored cell wall 
protein 

Overexpression 
increases 
adherence 

FaDu [48] 

IPT1 Sphingolipid biosynthesis Decreased Gingival [49] 

IRS4 Cell wall integrity Decreased HT-29 
HeLa 
FaDu 

[50] 

KRE5 Glucosyl transferase Decreased HeLa [51] 

MNT1 Mannosyl transferase Decreased Buccal [52] 

MNT2 Mannosyl transferase Decreased Buccal [53] 

MP65 Putative β-glucanase 
enzyme 

Decreased Buccal 
Caco-2 

[54] 

NOT5 Putative transcriptional 
complex component 

Decreased Buccal [55] 

PDE2 Phosphodiesterase Decreased Buccal [56] 

PGA1 Putative GPI-anchored 
protein 

Decreased HT-29 [57] 

PHR1 β-(1, 3)-
glucanosyltransferase 

Decreased TR146 
Caco-2 

[58] 

PMT1 Protein 
mannosyltransferase 

Decreased Caco-2 
 

[59] 

PRA1 Zinc sequestration Decreased HEK293 [60] 

SAP1 Aspartic proteinase Decreased Buccal [61] 

SAP2 Aspartic proteinase Decreased Buccal [61] 

SAP3 Aspartic proteinase Decreased Buccal [61] 
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SAP4-6 Aspartic proteinases Increased Buccal [61] 

SAP9 Aspartic proteinase Increased Buccal [62] 

SAP10 Aspartic proteinase Decreased Buccal [62] 

SET1 Methyl transferase Decreased FaDu 
HT-29 

[63] 

SUN41 Putative glycosidase Decreased Caco-2 [64] 

TUP1 Transcriptional 
corepressor 

Decreased SCC15 [65] 

VAC1 Putative vesicle transport 
protein 

Decreased SK-LMS-1 [66] 

 198 

3.2 Epithelial recognition of C. albicans 199 

Physical recognition of C. albicans by host mucosa is achieved through the 200 

interaction of epithelial pattern recognition receptors (PRRs) with pathogen-associated 201 

molecular patterns (PAMPs). Fungal PAMPs include cell wall proteins which contain 202 

conserved structural motifs that are projected from the cell wall into the extracellular 203 

environment, and intracellular molecules such as nucleic acids. Toll-like receptors (TLRs), C-204 

type lectin receptors (CLRs) and nucleotide-binding domain leucine-rich receptors (NLRs) 205 

comprise the three main families of PRR. A successful PRR-PAMP interaction activates 206 

epithelial signalling pathways that contribute to innate defence against fungal infection. 207 

While the involvement of PRRs in anti-fungal responses is well documented for myeloid cells 208 

[67] (and see sections 7 and 8), relatively little is known about the PRRs involved during 209 

epithelial recognition of C. albicans. 210 

The epithelial ephrin type-A receptor 2 (EphA2) is a recently identified non-classical 211 

PRR that binds to exposed β-glucans of C. albicans yeast and hyphae [68]. β-glucan-induced 212 

phosphorylation of EphA2 is dependent upon fungal burden, and a yeast locked 213 

(efg1/cph1Δ/Δ) C. albicans mutant stimulates EphA2 phosphorylation within 15 min, 214 

indicating that epithelial recognition of fungus through EphA2 is morphology-independent. 215 

Activation of EphA2 results in phosphorylation of MEK1/2 and p38 (leading to downstream 216 
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activation of c-Fos), phosphorylation of signal transducer and activator of transcription 3 217 

(Stat3), and secretion of human beta defensin-2, chemokine (C-C motif) ligand 20 (CCL20), 218 

interleukin (IL)-1α, IL-1β and IL-8 [68]. Thus, epithelial recognition of C. albicans β-glucan via 219 

EphA2 results in antifungal and pro-inflammatory responses. The importance of EphA2-220 

mediated innate recognition of C. albicans in vivo is highlighted by the observation that 221 

immune competent EphA2-/- knockout mice have higher fungal burdens in the oral cavity 222 

when compared to wild type mice [68]. 223 

All TLRs (except TLR7) are expressed by reconstituted human oral epithelium, and all 224 

except TLR5 and TLR7 are detectable in buccal epithelial cells from healthy donors [69]. 225 

Epithelial TLR4 in particular, plays a direct role in mucosal defence against C. albicans 226 

infection, a process that is dependent upon an intimate relationship with neutrophils. While 227 

infection of oral epithelial cells with C. albicans in vitro results in cellular damage and a 228 

robust pro-inflammatory response, expression of TLR4 remains unchanged compared to 229 

uninfected cells [69]. However, in the presence of polymorphonuclear leukocytes, epithelial 230 

cells secrete immune modulators that stimulate a robust PMN-mediated upregulation of 231 

epithelial TLR4, concomitant with a reduction in epithelial damage and protection against 232 

fungal invasion [69]. 233 

 234 

3.3 Invasion of mucosal barriers 235 

Invasion of mucosal barriers by C. albicans is commensurate with localised infection. 236 

While yeast and hyphal morphologies of C. albicans are capable of adhering to the host 237 

mucosa, it is predominantly the hyphal form of the fungus that invades into the epithelial 238 

surface. C. albicans uses two temporally and mechanistically distinct mechanisms of 239 

invasion that together enable the fungus to access the superficial and underlying epithelial 240 
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tissues. These mechanisms are receptor-mediated induced endocytosis and active 241 

penetration. 242 

 243 

3.4 Receptor-induced endocytosis 244 

Once attached to the epithelial surface, the hyphae of C. albicans invade mucosal 245 

barriers by initiating a dynamic and complex host-driven process called receptor-induced 246 

endocytosis (RIE) [70, 71]. Indeed, the invading fungus remains completely passive during 247 

RIE, as hyphae that are rendered metabolically inviable by thimerosal treatment are still 248 

endocytosed by epithelial cells [71]. Endocytosis of C. albicans hyphae is triggered by 249 

epithelial recognition of fungal invasins expressed on the hypha cell wall, and occurs within 250 

4 h of initial contact with epithelial cells [72].  251 

 While several host receptors are implicated in the process of fungal endocytosis, 252 

only two fungal invasins have been identified as triggers of internalisation: the adhesin 253 

Als3p, and Ssa1p (a member of the heat shock protein (HSP) 70 family of proteins) 254 

expressed on the C. albicans cell wall [73, 74]. Disruption of either ALS3 or SSA1 result in 255 

reduced invasion of epithelial cells and attenuated virulence in a murine model of OPC [73-256 

75], with Als3p in particular playing a dominant role in this process. Als3p and Ssa1p are 257 

recognised by the epithelial receptor E-cadherin [73, 74], an interaction that stimulates a 258 

dynamic, hypha-induced reorganisation of epithelial clathrin, dynamin and cortactin that 259 

culminates in the formation of pseudopods that surround the fungus and facilitate 260 

internalisation [76]. Interestingly, inhibition of E-cadherin receptor activity results in a 261 

partial, but not complete block of fungal endocytosis [77], suggesting the involvement of 262 

additional host epithelial receptors and/or pathways in fungal internalisation. Indeed, 263 
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remodelling of the actin cytoskeleton in rabbit corneal epithelial cells is dependent on the 264 

small GTPases Cdc42, Rac1, RhoA and the tight junction protein ZO-1 [78].  265 

Recognition of C. albicans Als3p and Ssa1p can also occur through interaction with a 266 

heterodimeric receptor complex comprised of the epidermal growth factor receptor 267 

(EGFR/HER1) and HER2 expressed on epithelial cells [77]. Latex beads coated with a 268 

recombinant N-terminal region of Als3p or recombinant Ssa1p are rapidly endocytosed by 269 

epithelial cells in vitro [73, 74], identifying both proteins as ligands that stimulate epithelial 270 

internalisation. During infection of oral epithelial cells in vitro, C. albicans activates the 271 

platelet-derived growth factor BB (PDGF BB) and neural precursor-cell-expressed 272 

developmentally down-regulated protein 9 (NEDD9) pathways in a cadherin-independent 273 

manner [79]. In contrast, analysis of samples obtained during a clinical study of vaginal 274 

candidiasis revealed that the PDGF BB, but not NEDD9 pathway is activated in response to 275 

infection [79], highlighting the tissue specific nature of epithelial responses to the fungus. 276 

The aryl hydrocarbon receptor (AhR) is a cytoplasmic ligand-activated transcription 277 

factor that plays a central role in EGFR-mediated endocytosis of C. albicans in vitro and in 278 

vivo [80]. Infection of oral epithelial cells with C. albicans activates the AhR, which in turn 279 

leads to phosphorylation of Src family kinases, culminating in EGFR activation and fungal 280 

endocytosis. Inhibition of the AhR in immune-competent and immune-suppressed mice was 281 

found to reduce the severity of OPC [80], highlighting the contribution of AhR signalling to 282 

disease pathology. Given the intracellular location of the AhR, the mechanism of C. albicans-283 

mediated receptor activation is likely to be indirect. However, the specific ligand that is 284 

induced by C. albicans to activate the AhR has yet to be identified. Small interfering RNA 285 

(siRNA)-mediated depletion of EphA2 also reduces RIE of C. albicans [68]. EphA2 knockdown 286 



14 
 

and chemical inhibition of receptor activity reduce EGFR phosphorylation, suggesting that 287 

EphA2 and EGFR function in the same endocytosis pathway [68]. 288 

Knockout studies investigating the role of the transcription factor Rim101p have 289 

provided further insight into the fungal proteins required to induce the uptake of C. albicans 290 

by epithelial cells. A C. albicans rim101∆/∆ mutant was unable to efficiently initiate RIE by 291 

oral epithelial cells [81]. Notably, however, overexpression of Cht2p, Pga7p or Zrt1p in a 292 

rim101∆/∆ mutant background restored the ability of C. albicans to trigger RIE efficiently, 293 

implicating these proteins in the process of epithelial internalisation. Despite the great 294 

advances made in our understanding of RIE, the molecular signalling events that drive this 295 

epithelial response are yet to be characterised in full and the extent of receptor and 296 

pathway redundancy between mechanisms remains to be explored in detail. The C. albicans 297 

factors involved in the processes of epithelial adhesion and RIE are presented in Figure 1A. 298 

 299 

3.5 Active penetration of mucosal surfaces 300 

Mucosal surfaces vary in their structure and cellular composition depending on 301 

location within the body. The stratified mucosa of the oral and vaginal lumen comprise 302 

several layers of epithelial cells, the outermost of which are terminally differentiated, 303 

whereas the epithelium that lines the gastrointestinal (GI) tract is composed of a single 304 

(non-stratified) layer of cells. Terminally differentiated epithelial cells are non-proliferative 305 

and considered less capable of supporting RIE. In order to invade a mucosal barrier that 306 

does not readily internalise hyphae, C. albicans uses the process of active penetration. 307 

Unlike RIE, where the fungus remains passive during uptake [71], active penetration 308 

of host mucosa by C. albicans hyphae relies upon physical attributes of the fungus including 309 

turgor pressure, physical advancement of the hyphal tip, and secretion of hydrolytic 310 
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enzymes that facilitate fungal invasion through or between epithelial cells. Paradoxically, 311 

while only a single cell thick, the GI epithelium does not support fungal invasion by RIE, but 312 

by active penetration only, highlighting specific differences in epithelial responses to C. 313 

albicans. The mucosal barrier of the GI tract is coated with a layer of mucus. C. albicans 314 

hyphae secrete the aspartic proteinase Sap2p that degrades gastroinestinal mucins [82] and 315 

Sap5p that degrades E-cadherin [83], weakening the adherens junctions between epithelial 316 

cells, which may facilitate the translocation of fungus across the gut. Despite these 317 

contributions however, our understanding of the fungal proteins required for the process of 318 

active penetration remains incomplete.  319 

Surprisingly, Als3p is not essential for active penetration as an als3∆/∆ null mutant 320 

can still invade epithelial cells that are unable to endocytose hyphae [75]. However, Als3p 321 

may nevertheless provide points of anchorage on the mucosal surface which enable hyphal 322 

pressure upon the epithelial barrier to be sustained. Active penetration of C. albicans 323 

hyphae through mucosal barriers is delayed in onset compared with RIE and is also 324 

mechanistically distinct, as blocking the polymerisation of epithelial actin does not prevent 325 

the mucosa from being breached [75, 84]. In vivo, it is likely that a combination of active 326 

penetration and RIE are required for full invasion of stratified epithelial barriers. Active 327 

penetration across the outermost (terminally differentiated) epithelial layers is thought to 328 

occur first, and this is followed by RIE, when the invading fungus reaches the underlying 329 

(non-terminally differentiated) epithelial cells. 330 

 331 

4. Candidalysin: epithelial damage and innate immunity  332 

One of the hallmarks of C. albicans infection of mucosal surfaces is damage to the 333 

superficial epithelium. Damage to the oral and vaginal mucosa is mediated by Candidalysin, 334 
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a secreted dual function amphipathic peptide toxin encoded by the extent of cellular 335 

elongation gene (ECE1) [85, 86]. Candidalysin adopts an alpha helical conformation in 336 

solution and intercalates into the plasma membrane of epithelial cells, where it forms 337 

heterogeneous and transient lesions that destabilise membrane structure, causing calcium 338 

influx and release of intracellular contents (Figure 1B). Importantly, a C. albicans ece1∆/∆ 339 

null mutant and a mutant that does not express the Candidalysin-encoding region of ECE1 340 

(ece1∆/∆+ECE1∆184-279), form hyphae, adhere to and invade epithelial cells normally, but do 341 

not cause damage or the secretion of pro-inflammatory cytokines. Moreover, both mutants 342 

are attenuated in a murine model of OPC and a Zebrafish swim bladder model of mucosal 343 

infection [85].  344 

Epithelial recognition of Candidalysin triggers mucosal immunity predominantly 345 

through MAPK signalling, activating the p38 and ERK1/2 pathways that in turn activate the 346 

AP-1 transcription factor c-Fos and MAPK phosphatase 1 (MKP1) respectively, alerting the 347 

host to the transition from colonising yeast to invasive, toxin-producing hyphae (Figure 1C). 348 

Low concentrations of Candidalysin (<15 µM) trigger the release of pro-inflammatory 349 

cytokines but do not cause epithelial damage, whereas higher concentrations (70 µM) of 350 

toxin induce pro-inflammatory responses and cause extensive damage, demonstrating that 351 

Candidalysin has dual functionality in a concentration-dependent manner. 352 

Candidalysin-induced activation of epithelial cells culminates in the release of 353 

cytokines including granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-354 

colony stimulating factor (GM-CSF), IL-1α, IL-1β and IL-6 (Figure 1D). C. albicans ECE1 and 355 

Candidalysin mutants induce significantly lower levels of neutrophils to the site of infection 356 

in vivo when compared to wild type controls [85, 86]. 357 
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A host receptor for Candidalysin-induced signalling has yet to be identified; however, 358 

epithelial activation is not mediated through classical PRRs such as Toll-like receptors or C-359 

type lectin receptors [87]. Intriguingly, Candidalysin can permeabilise synthetic lipid bilayers 360 

that do not contain an endogenous receptor [85], suggesting that the toxin may damage 361 

epithelial cells and activate innate immune responses through distinct mechanisms. 362 

A model of mucosal infection has been proposed [85] in which the hyphae of C. 363 

albicans invade the epithelial surface, creating an invasion "pocket" [75] into which 364 

Candidalysin is secreted. During the initial stages of infection, the concentration of 365 

Candidalysin is insufficient to cause appreciable plasma membrane damage, but is 366 

nevertheless recognised by the epithelial cells of the host mucosa, stimulating an innate 367 

immune response. As infection progresses however, the concentration of Candidalysin 368 

within the invasion pocket increases to damage-inducing levels, causing membrane lesions 369 

that facilitate infection. 370 

Vulvovaginal candidasis (VVC) is a disease of immune competent women. 371 

Approximately 75% of women will experience at least one episode of VVC in their lifetime 372 

[88], while almost 9% will suffer from recurrent infection [89]. Symptomatic VVC is 373 

characterised by itching, burning, and pain at the vulvovaginal mucosa, often accompanied 374 

by odorless vaginal discharge [90]. In contrast to the oral epithelium, recruitment of 375 

neutrophils to the site of infection during VVC does not result in fungal clearance but rather, 376 

causes an acute exacerbation of symptoms [91]. 377 

Similar to TR146 oral epithelial cells, treatment of A431 vaginal cells with 378 

Candidalysin causes damage, c-Fos/p-MKP1 signalling and cytokine secretion [86]. Notably, 379 

fungal burdens remain equivalent in mice that receive an intravaginal challenge of wild type 380 

C. albicans or strains unable to express and secrete Candidalysin. However, a significant 381 
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decrease in neutrophil recruitment, damage, and pro-inflammatory cytokine expression was 382 

observed in response to strains unable to produce the toxin, identifying Candidalysin as the 383 

driver of immune pathology in the vaginal environment [86]. Thus, Candidalysin plays a 384 

crucial role in the activation of innate defences against C. albicans hyphae at disparate 385 

mucosal sites in the body. 386 

The pathogenicity of natural C. albicans isolates is perhaps, unsurprisingly, correlated 387 

with the degree of epithelial damage caused, and release of the damage-associated cytokine 388 

IL-1α. Highly variable murine oral responses were observed from several isolates of C. 389 

albicans, including differences in neutrophil recruitment and the robustness of 390 

inflammatory responses [92]. Notably, from a panel of hypha-associated genes tested (ALS3, 391 

SAP4, SAP5, SAP6, HWP1 and ECE1), only significant differences in ECE1 expression 392 

(Candidalysin) was observed between isolates. However, ECE1 expression did not always 393 

correlate with a strains’ ability to damage epithelial cells [92], but this could be due to 394 

differences in adhesion and hypha formation in the individual strains tested and by the 395 

utilisation of a single ECE1 primer set to assess ECE1 gene expression in all strains.  396 

 397 

5. Antimicrobial peptides, alarmins and cytokine responses 398 

A multitude of host factors are known to be rapidly induced in response to C. 399 

albicans infection, including antimicrobial peptides (AMPs), which are among the first 400 

molecules to be released from the mucosal surface. The cathelicidins are a family of broad-401 

spectrum AMPs that are expressed by a variety of epithelial and immune cells. Human 402 

cathelicidin (LL-37) and its murine equivalent (mCRAMP), are induced in response to C. 403 

albicans where they bind to the cell wall of the fungus, resulting in permeabilisation of the 404 

fungal plasma membrane [93]. Following secretion, LL-37 can be further processed into 405 
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shorter peptide fragments (designated RK-31 or KS-30) capable of killing C. albicans with 406 

equal or greater efficacy when compared to full-length LL-37 [94]. However, cathelicidin 407 

does not confer systemic or subcutaneous protection against C. albicans [93]. 408 

Lactoferrin (Lf) also possesses anti-fungal activity and, like LL-37, can be cleaved into 409 

distinct peptides to enhance functionality. Full-length Lf, together with two Lf-derived 410 

peptides (lactoferricin and lactoferrampin), exert candidacidal activity through mechanisms 411 

that involve disruption of the fungal plasma membrane [95-99]. Full-length Lf also induces 412 

apoptosis-like processes within the fungus [100] and sequestration of iron to induce 413 

fungistasis [101].  414 

In contrast to Lf, the cationic salivary protein histatin 5 does not lyse C. albicans 415 

directly, but binds to β-glucans and cell wall proteins including Ssa1p and Ssa2p [102-105].  416 

Once histatin 5 is bound to the C. albicans cell wall, it is transported into the fungus by two 417 

key polyamine transporters (Dur3p and Dur31p) [106, 107], where it exerts fungicidal 418 

activity by disrupting osmotic homeostasis and cell cycle control [102, 108]. 419 

The defensins are a family of cysteine-rich AMPs that exhibit anti-microbial activity 420 

against a wide range of organisms. Several members of the defensin family possess potent 421 

anti-C. albicans activity, including β-defensin 2 and 3 which kill C. albicans through a poorly 422 

defined mechanism that does not involve membrane disruption [109], as well as α-defensin 423 

6 which blocks adhesion of C. albicans to intestinal epithelial cells [110]. The importance of 424 

defensins against C. albicans in vivo is demonstrated by the observation that mice lacking β-425 

defensin 3 are highly susceptible to OPC [111]. 426 

Vitamin D is receiving increasing attention as a potent anti-microbial molecule 427 

involved in pro-inflammatory responses and cytokine regulation [112, 113] that can 428 

counteract pathogen-induced transcriptional changes in host monocytes [114]. Vitamin D3 429 
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exhibits direct anti-C. albicans activity [115], and although the precise mechanism(s) of 430 

action in vivo remain to be determined, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the 431 

hormonal form of Vitamin D, induces potent upregulation of LL-37 in tongue and lung 432 

epithelial cells, monocytes and neutrophils [116, 117]. 433 

Alarmins are endogenous intracellular proteins that are released from host cells 434 

following severe trauma and tissue damage. The S100A8 and S100A9 alarmins are released 435 

from the oral and vaginal mucosa in response to C. albicans infection and contribute to (but 436 

are not essential for), recruitment of neutrophils that function to resolve the symptoms of 437 

infection in the oral, but not vaginal lumen in a strain specific manner [86, 92, 111, 118, 438 

119]. 439 

In addition to AMPs and alarmins, numerous cytokines play a crucial role in the 440 

induction and regulation of innate immune defence against C. albicans. Signalling mediated 441 

through IL-1 and its related cytokines is critical for the induction of effective anti-C. albicans 442 

immunity. Absence of the IL-1 receptor significantly impairs expression of the neutrophil 443 

recruiting molecules CXCL1, CXCL2, CXCL5 and G-CSF and subsequent neutrophil migration 444 

[120]. Furthermore, IL-1 receptor deficient mice (Il1r1-/-) have significantly higher fungal 445 

burdens in the oral cavity at 3, 7, 14 and 21 days post-infection when compared to wild type 446 

controls [121]. 447 

IL-17 has emerged as one of the most important cytokines in mucosal anti-fungal 448 

immunity, with manifold functionality. Produced by a variety of lymphoid-derived cells (both 449 

innate and adaptive) IL-17 has a dramatic impact on innate immunity. While there are 450 

several isoforms of IL-17, each with distinct biological functions, it is IL-17A and IL-17F which 451 

play key roles in antifungal immunity. Although it has been suggested that neutrophils may 452 

produce IL-17, this does not appear to be the case during OPC [122]. However, one of the 453 
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more important roles of the IL-17 cytokines is to activate a neutrophil response. This 454 

involves secretion of chemokines that will recruit neutrophils (e.g. CXCL1/2 and CXCL5), as 455 

well as cytokines that activate neutrophils once they have been recruited to the site of 456 

infection (e.g. G-CSF) [123]. 457 

IL-17 is a potent inducer of anti-microbial peptide (AMP) secretion, notably β-458 

defensins 1 and 3 in mice [111, 123], as well as histatins [124, 125]. Thus, given the 459 

importance of these AMPs during Candida infection [111, 126], the multiple roles of IL-17 in 460 

mediating protection against C. albicans are clearly established. IL-17A also affects the 461 

epithelial cells of the GI tract directly, where it regulates expression of occludins required for 462 

epithelial tight junctions and barrier integrity [127, 128]. Collectively, the multiple 463 

functionalities of IL-17 cytokines act to drive and regulate a number of essential and non-464 

redundant host mechanisms required for effective defence against C. albicans infection at 465 

mucosal surfaces. 466 

Collectively, AMPs, alarmins and cytokines exert numerous protective functions at 467 

mucosal surfaces in response to C. albicans infection, and although our understanding of 468 

these complex processes continues to improve, there is much still to learn, particularly with 469 

respect to fungi.  470 

 471 

6. Mucosal inflammasome responses to C. albicans 472 

Inflammasomes are cytosolic multi-protein complexes that play a critical role in 473 

immunity. They are comprised of a PRR (either a nucleotide-binding domain leucine-rich 474 

receptor (NLR), or an Absent In Melanoma-2 (AIM2) receptor), and are activated in response 475 

to innate recognition of exogenous and endogenous PAMPs and danger-associated 476 

molecular patterns (DAMPs). NLRs contain an N-terminal region comprised of either a PYRIN 477 



22 
 

or CARD domain, a central nucleotide-binding oligomerisation domain and a C-terminal 478 

leucine-rich repeat sequence [129, 130]. Physical association between a NLR and an adaptor 479 

protein (apoptosis-associated speck-like protein containing a CARD (ASC)), results in the 480 

recruitment and autocatalytic activation of pro-caspase-1, which subsequently cleaves the 481 

inactive cytokine zymogens pro-IL-1β and pro-IL-18 [131], to yield biologically active 482 

molecules. 483 

While numerous inflammasomes exist [132], those most closely associated with 484 

innate defence against C. albicans at mucosal surfaces are the NLRP3 and NLRC4 complexes 485 

[121, 133]. Tissue specific roles have been ascribed to the NLRP3 and NLRC4 486 

inflammasomes; the NLRP3 inflammasome is present in both haematopoietic and stromal 487 

compartments and plays a crucial role in the prevention of fungal dissemination during oral 488 

infection in vivo [121] while the NLRC4 complex is important for mucosal defence [133]. 489 

The production of active IL-1β from the oral mucosa in response to C. albicans is 490 

dependent upon both NLRP3 and NLRC4, and buccal mucosal tissues upregulate NLRP3 and 491 

NLRP4 expression within 72 h during the innate immune response to C. albicans infection 492 

[133]. Moreover, Nlrp3-/- and Nlrc4-/- knockout mice exhibit a significant reduction in the 493 

expression of IL-17A, IL-17F and antimicrobial peptides in the oral cavity, while the fungal 494 

burden of Nlrc4-/- mice is significantly higher during OPC when compared to wild type 495 

controls [133], highlighting the importance of inflammasome complexes, particularly NLRC4, 496 

for oral defence against C. albicans infection in vivo. 497 

 498 

7. Neutrophils in antifungal innate immunity 499 

Many protective innate immune responses at mucosal surfaces are mediated by 500 

myeloid cells, most notably neutrophils and macrophages, which rapidly infiltrate the site of 501 
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infection. Activation of neutrophils and macrophages is triggered by direct recognition of 502 

fungal PAMPs [134], by chemokines and AMPs, by cytokines released from epithelial cells in 503 

response to Candidalysin (e.g.IL-1α/β, G/GM-CSF, IL-8, CCL20, β-defensin-2/3 and S100A8/9) 504 

[85, 87, 123], and by IL-17 released from resident innate Th17 cells or γδ T cells [135]. 505 

Neutrophils and macrophages express a range of PRRs including TLR2, TLR4, DC-SIGN, 506 

Mincle, Dectin-2 and Dectin-3 that recognise C. albicans cell wall mannoproteins, TLR9 that 507 

responds to DNA, and Dectin-1 that interacts with cell wall β-glucans, leading to their full 508 

activation [134, 136-138].  509 

Activation of PRRs by cognate PAMPs triggers the MAPK and NF-κB intracellular 510 

signalling pathways through the activation of MyD88, the inflammasome complex and SYK 511 

[134]. This signalling leads to downstream production of pro-inflammatory cytokines and 512 

antimicrobial factors, phagocytosis and a unique method of cell death termed NETosis [134, 513 

139]. However, the PAMPs described above are not the only factors that stimulate 514 

neutrophil responses. Indeed, the secreted aspartic proteases (Saps) of C. albicans have also 515 

been shown to recruit neutrophils [140]. Furthermore, the production of IL-17 from innate 516 

type 17 cells (Figure 1E) and potentially, γδ T cells, in response to IL-1α/β released from 517 

epithelial cells will also lead to activation of infiltrating neutrophils [135], and a key role for 518 

IL-1 in coordinating responses to OPC has also been identified [120]. 519 

The classical method of neutrophil-mediated killing of C. albicans hyphae is 520 

phagocytosis followed by a lethal oxidative burst. The interaction between Dectin-1 and 521 

insoluble β-glucan leads to the formation of a phagocytic synapse that greatly improves the 522 

phagocytosis of C. albicans yeast and short hyphae [141]. However, hyphae that are too 523 

large to be phagocytosed by neutrophils remain a threat to mucosal tissues. To destroy 524 

these larger filaments, neutrophils can undergo NETosis, forming Neutrophil Extracellular 525 
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Traps (NETs) [142]. NETosis involves the cell “exploding” to release a web of chromatin 526 

coated with granule enzymes, antimicrobial peptides (e.g. calprotectin), and histones [142-527 

144] (Figure 1F). Although both yeast and hypha morphologies of C. albicans trigger NETosis, 528 

the neutrophil response to hyphae is by far the most rapid. 529 

Several C. albicans-associated triggers of NETosis have been identified, including 530 

reactive oxygen species (ROS) [145], fibronectin [146] and β-glucan, either through Dectin-531 

1/SYK signalling [147], or through the complement receptor (CD11b/CD18) [146, 148]. The 532 

mechanisms of NETosis are now beginning to be elucidated, and appear to involve both 533 

autophagy and chromatin de-condensation through the ROS-activated peptidylarginine 534 

deiminase 4 (PAD4) [149, 150]. As well as killing fungi, NETs are also capable of slowing 535 

hyphal growth, potentially through the sequestration of micronutrients (e.g. zinc) [143].  536 

 537 

8. Macrophages in antifungal innate immunity 538 

Although neutrophils are the dominant myeloid cell recruited to the foci of infection, 539 

macrophages also infiltrate and perform similar protective functions, phagocytosing the 540 

fungus after PRR-PAMP interaction [151], albeit with a lower efficiency of killing when 541 

compared to neutrophils.  542 

Intriguingly, C. albicans has been observed to survive within macrophages and even 543 

escape [152]. Often, this escape involves the formation of hyphae that physically pierce 544 

through the membrane of the phagolysosome and rupture the ingesting macrophage [153], 545 

although C. albicans can also escape macrophages in a non-lytic fashion [154] akin to the 546 

vomocytosis process described for Cryptococcus neoformans. Whatever the mechanism of 547 

escape, macrophages play a lesser role during disseminated C. albicans infection in mice 548 

when compared with neutrophils [134, 138].  549 
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Nevertheless, macrophages phagocytose C. albicans and respond through NLR-PAMP 550 

interactions that stimulate inflammasome assembly (resulting in the secretion of biologically 551 

active IL-1β), and yet another unique form of cell death termed pyroptosis [155]. Notably, 552 

the induction of macrophage pyroptosis by C. albicans is both a temporally and 553 

mechanistically distinct means of escape that precedes hypha-mediated exfiltration [156], 554 

and provides an important source of biologically active IL-1β (Figure 1G). 555 

 556 

9. Innate immune memory 557 

Conventional wisdom has it that while adaptive immunity ‘learns’ and has memory, 558 

innate immunity has no memory. However, recent findings have begun to overturn this 559 

paradigm. From the mid 1950’s onwards, numerous reports observed that administration of 560 

the Bacillus Calmette-Guérin (BCG) vaccine conferred improved resistance to other non-561 

related pathogens, including Staphylococcus aureus [157], Salmonella [158] and C. albicans 562 

[159]. Similar observations have been made following infection of mice with an avirulent 563 

strain of C. albicans, which resulted in improved protection against virulent C. albicans and 564 

pathogenic bacteria, through a macrophage-dependent, but T cell-independent mechanism 565 

[160, 161]. Further to these findings is the landmark observation that mice which receive a 566 

sub-lethal infection of C. albicans are protected for up to 2 weeks against a subsequent 567 

lethal re-infection in a monocyte-dependent, but T and B cell independent manner [162].  568 

Intriguingly, macrophages demonstrate marked plasticity in their effector responses 569 

[163]. The importance of macrophage plasticity was made evident by Quintin et al. [162], 570 

who demonstrated that pre-exposure of macrophages to C. albicans (and particularly to cell 571 

wall β-glucan), results in “functional reprogramming” through epigenetic changes to 572 

histones [162, 164]. Further studies have demonstrated that this functional reprogramming 573 
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is driven by a Dectin-1/Raf1/NF-κB signalling circuit [165]. In addition, reprogrammed 574 

monocytes show a metabolic shift in glycolysis, akin to that seen in the Warburg effect 575 

associated with cancer [166]. The net effect of macrophage reprogramming is an increased 576 

production of pro-inflammatory cytokines including TNFα, IL-1β and IL-6. 577 

 578 

10. Innate type 17 cells 579 

The critical role that IL-17, and particularly the specific lymphocytes that produce it 580 

play in innate immunity to C. albicans has recently come to light in a series of landmark 581 

studies [111, 135, 167]. These studies demonstrate that mice with defects in the IL-17 582 

receptor or downstream signalling components are highly susceptible to OPC [111]. Equally, 583 

the genetic basis for many cases of chronic mucocutaneous candidiasis (a condition 584 

characterised by perpetual C. albicans infection of the skin, nails and mucosal surfaces), has 585 

now been identified as a collection of loss-of-function mutations in IL-17 signalling [168-586 

170], and auto-antibodies against IL-17 [171, 172]. 587 

Although IL-17 is produced by Th17 T cells of the classical adaptive immune 588 

response, it is a common mistake to regard IL-17 as a cytokine that functions purely in an 589 

adaptive capacity. Indeed, detailed and extensive research clearly demonstrates that IL-17 is 590 

produced by a broad selection of innate immune cells, including γδ-T cells, natural killer T 591 

cells (NKT), type 3 innate lymphoid cells (ILC3) and TCRβ+ ‘natural’ Th17 cells (nTh17) [173]. 592 

While ILC3s have been suggested to play a major role in protection against OPC [174], 593 

recent research has since indicated that nTh17 and γδ-T cells are the predominant source of 594 

IL-17 as Rag1-/- mice, which produce ILC3 cells but not nTh17 or γδ-T cells, have the same 595 

high susceptibility to OPC as IL-17R-/- mice [167].   596 
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The induction of innate type 17 immunity differs considerably from conventional 597 

adaptive immune responses to C. albicans, which are considered to be activated through 598 

CARD9 signalling [175].  Notably, CARD9 signalling is not required to drive innate type 17 599 

responses [176], and innate type 17 cells are observed to be activated in response to the 600 

secretion of Candidalysin from invading C. albicans hyphae [135]. Indeed, oral infection of 601 

mice with an ece1Δ/Δ C. albicans mutant (does not produce Candidalysin), fail to induce IL-602 

17 production and the characteristic activation of nTh17 cells associated with wild type 603 

responses to OPC. Furthermore, Verma et al. [135] identify a causal link between the 604 

production of IL-1 cytokines and the activation of innate type 17 responses, a finding that 605 

integrates with studies which demonstrate the key role of inflammasomes during murine 606 

OPC [121]. 607 

 608 

11. Conclusions 609 

The tremendous diversity within the microbial populations that comprise the human 610 

microbiota provides a dynamic and ever-present immunological challenge for mucosal 611 

surfaces. Numerous complex and interconnecting mechanisms function during innate 612 

recognition and mucosal responses to C. albicans. The complex molecular events that 613 

transpire to enable disparate mucosal sites to distinguish between commensalism and 614 

pathogenicity are receiving more attention now than ever. Continued research will 615 

undoubtedly increase our understanding of the essential mechanisms of innate immunity 616 

required to control this most common of mucosal pathobionts. 617 
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Figure captions 629 

Figure 1. Innate mucosal immune responses to C. albicans. 630 

A) Adhesion of C. albicans hyphae to the host epithelium is mediated through two key 631 

adhesins; Als3p and Hwp1p. The epithelial PRR EphA2 interacts with β-glucan independently 632 

of fungal morphology. EphA2, E-cadherin and EGFR/HER2 receptor complexes function 633 

during receptor induced endocytosis (RIE), most notably through the interaction of E-634 

cadherin and EGFR/HER2 with the C. albicans invasins Als3p and Ssa1p. B) Candidalysin is 635 

secreted from the hyphae of C. albicans where it inserts into the host epithelial membrane, 636 

damaging the cell through the formation of pores that result in loss of intracellular contents 637 

(i.e. lactate dehydrogenase (LDH)), and influx of calcium. C) Epithelial detection of 638 

Candidalysin activates the MAPK signalling pathway (particularly p38) which activates the 639 

AP-1 transcription factor c-Fos, driving cytokine expression. Pathway activity is fine-tuned 640 

through the action of MKP1 on p38 and JNK. D) In response to C. albicans infection, 641 

epithelial cells secrete antimicrobial peptides (AMPs) and alarmins that combat the invading 642 

fungus, together with cytokines and chemokines that recruit and activate myeloid cells 643 
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including innate type 17 cells, neutrophils and macrophages. E) Following infection with C. 644 

albicans, epithelial cells release IL-1 which activates innate type 17 cellular responses, 645 

leading to the secretion of IL-17. F) Neutrophils interact with C. albicans through PRRs (TLRs, 646 

CLRs and NLRs), then phagocytose and destroy yeast and short hyphae. Cytokine signals 647 

stimulate release of TNF-α from neutrophils which upregulates TLR4 expression on epithelial 648 

cells, conferring additional protection. Hyphae that are too large to be phagocytosed 649 

stimulate the production of neutrophil extracellular traps (NETs) through a process termed 650 

NETosis. G) C. albicans that is phagocytosed by macrophages may avoid destruction through 651 

the induction of pyroptosis and hyphal growth, allowing the fungus to escape from the 652 

macrophage. Adapted from [177]. 653 

 654 
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