Energy-Constrained SWIPT Networks: Enhancing Physical Layer Security With FD Self-Jamming

Xuanxuan Tang, Yueming Cai, Senior Member, IEEE, Yansha Deng, Member, IEEE, Yuzhen Huang, Member, IEEE, Wendong Yang, and Weiwei Yang, Member, IEEE

Abstract—In this paper, we investigate the secrecy performance of energy-constrained wireless powered networks with considering the passive eavesdropping scenario, where the simultaneous wireless information and power transfer based full-duplex self-jamming (SWIPT-FDSJ) scheme is developed. The maximal ratio transmission (MRT) protocol is applied at the multi-antenna source such that the wireless signals are designated to the destination directly. Besides, the energy harvesting and full-duplex (FD) self-jamming operations are adopted at the energy-constrained destination to prolong its lifetime as well as to confuse the eavesdropper. Specifically, the exact and asymptotic closed-form expressions of the connection outage probability (COP), the secrecy outage probability (SOP), and the secrecy throughput of the proposed system are obtained, based on which we optimize the time-switching ratio to maximize the secrecy throughput. We also degenerate the proposed SWIPT-FDSJ scheme to the reduced half-duplex with no self-jamming (HDNSJ) scheme. The findings suggest that in the HDNSJ scheme, adding the antenna number of the source only benefits the COP performance, but has no impact on the SOP performance. By contrast, it will promote the COP and SOP performance at the same time in the SWIPT-FDSJ scheme, which eventually results in the great improvement of secrecy throughput. In addition, we present the practical application condition of the SWIPT-FDSJ scheme. It is demonstrated that the secrecy throughput performance of the SWIPT-FDSJ scheme is much superior to the HDNSJ scheme on condition that the application condition is satisfied.

Index Terms—Energy harvesting, maximum secrecy throughput, secrecy outage probability, time-switching ratio, optimal application condition.

I. INTRODUCTION

Due to the broadcast nature of the wireless medium, it is important to address the security issue of wireless communication in practical system designs. Traditionally, the security is enhanced by encryption at higher layers [1, 2].

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61771487, 61471393, 61501507, and 61371122, the Jiangsu Provincial Natural Science Foundation of China under Grant No. BK20150719, and the China Scholarship Council. This work is done while X. Tang is a visiting student with the Department of Informatics, King’s College London.

X. Tang, Y. Cai, Y. Huang, W. Yang and W. Yang are with the College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China (email: tang_xx@126.com, caiym@vip.sina.com, yzh_huang@sina.com, ywd1110@163.com, wwyang1981@163.com). Y. Huang is also with the Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, Beijing 100166, China, and also with the School of Information and Communication, Beijing University of Posts and Telecommunications, Beijing 100876, China. The corresponding author is Yueming Cai.

Y. Deng is with the Department of Informatics, King’s College London, London WC2R 2LS, U.K. (email: yansha.deng@kcl.ac.uk).

However, with the rapid development of the computing capability, the cryptography-based methods could not ensure the absolute security any longer. Fortunately, the physical layer security technique has emerged recently and is deemed to serve as a good supplement of current cryptographic mechanism. The notion of physical layer security was first proposed by Shannon in 1949 [3] and then significantly promoted by Wyner in 1975 [4]. The basic idea of Wyner is to secure the proposed wiretap channel model by taking advantage of the difference between the physical channels of authorized user and malicious eavesdropper. Since then, enormous researches based on Wyner’s notion have been carried out in various networks, like cellular networks [5], cognitive radio (CR) networks [6], wireless sensor networks (WSNs) [7], and a variety of scenarios with single-antenna [8], multi-antenna [9, 10], multiple-input-single-output (MISO) [11] and multiple-input-multiple-output (MIMO) [12, 13], etc.

Practically, the lifetime of wireless devices may be greatly limited by the capacity of their batteries [14]. Except for increasing the battery capacity, there is a strong desire to exploit effective remote charging technologies in some energy-constrained networks like WSNs [15, 16], wireless body area networks (WBANs) [17, 18], etc. Hence, the simultaneous wireless information and power transfer (SWIPT) has recently gained much attention, because it is regarded as a promising technique to transmit both energy and information by the same electromagnetic wave [19]. For example, [20] studied the wireless energy and information transfer trade-off for limited feedback multi-antenna systems, where the adaptive energy beamforming was proposed according to the instantaneous channel state information (CSI) for maximizing the harvesting energy. However, the current circuits for wireless energy harvesting cannot extract information from the signals [21]. This has triggered extensive study on two prevalent types of energy-harvesting receivers, namely the time-switching (TS) receivers [22, 23] and the power-splitting (PS) receivers [24, 25], where part of the time or power of the received signal is allocated to energy harvesting and the remaining part is used for information processing, respectively.

Recently, the physical layer security of SWIPT networks has received increasing attention [26–28]. In [26], the secrecy performance of a single-input multiple-output (SIMO) SWIPT system was studied, where the base station transmits information to a desired information receiver and at the same time transfers energy to multiple energy-harvesting receivers. Under the assumption that the information may be wiretapped by the energy-harvesting receivers, the authors derived the
closed-form expressions for the secrecy outage probability and the average secrecy capacity, respectively. The authors in [27] proposed a robust secure transmission scheme for MISO SWIPT networks. Taking into account the channel uncertainties, the worst-case secrecy rate was maximized under transmit power constraint and energy-harvesting constraint. An efficient transmission solution for MIMO wiretap channels were presented in [28], where the non-concave problem was firstly converted into a convex optimization, and then was tackled by handling its dual problem.

The physical layer security of SWIPT networks is expected to be further enhanced when jamming operation is exploited [29, 30]. The authors in [31] studied the robust secure transmission with a cooperative jammer helping to confuse the eavesdropper, and the destination harvesting the energy from both the source and the jammer. In [32], the power allocation strategy was investigated to strengthen the security of SWIPT systems with a FD jammer. In this paper, an external jammer is required to be deployed and the energy receiver not only harvests energy but also acts as an eavesdropper.

Other works have looked at the scenarios where additional external jammer is unavailable and the user within the network harvests energy and acts as jammer itself [33–35]. In [33], the secrecy performance of FD SWIPT networks with the PS protocol was studied. A SWIPT transmission system with FD self-jamming was analyzed in [34] in the presence of a passive eavesdropper. In [35], the authors extended the research in the CR networks, where the energy collected by the receiving antenna is used for producing jamming signals. However, [33–35] only considered the single-antenna scenario, which would be not practical any longer when applied to the multi-antenna cases. Moreover, only [34] considered the performance optimization, which was only addressed by numerical simulations, and no exact demonstration for the existence of the optimum point was provided.

In this paper, we propose a new paradigm to strengthen the physical layer security for the energy-constrained SWIPT networks, where the SWIPT based full-duplex (FD) self-jamming (SWIPT-FDSJ) scheme is developed. More specifically, the FD self-jamming is designed to confuse the eavesdropper while the SWIPT is to proposed prolong the lifetime of the energy-constrained destination node. Moreover, the maximal ratio transmission (MRT) protocol is exploited at the source node so that the signals could be designated to the destination node directly. The main contributions are summarized as follows:

- We derive the exact closed-form expressions for the connection outage probability (COP), the secrecy outage probability (SOP), and the secrecy throughput, respectively. The theoretical results can indicate the impacts of the system parameters on the secrecy performance of proposed networks.

As the transmit signal-to-noise ratio (SNR) and the self-interference cancellation (SIC) goes to infinity, we derive the asymptotic expressions of the COP, the SOP, and the secrecy throughput. Moreover, the asymptotic analytical results are validated by the simulations.

- As the self-interference cancellation (SIC) goes to infinity, we further discuss the problem of time allocation optimization, and then obtain the optimal time-switching ratio. We point out that with the given application condition satisfied, the secrecy throughput performance of the proposed scheme is superior to the reduced half-duplex with no self-jamming (HDNSJ) scheme.

The remainder of the work is organized as follows: Section II describes the system model and presents the secure transmission scheme. Section III presents the exact secrecy analysis of the proposed scheme. In section IV, the asymptotic analysis under two different scenarios are carried out. Section V investigates the issue of optimal time switching ratio. Simulation results are provided in Section VI, and Section VII summarizes the contributions of this paper.

Notation: Throughout this paper, the boldface uppercase letters are used to denote matrices or vectors. \((\cdot)^{\dagger} \) denotes as the conjugate transpose operation. \(F_{s}(\cdot) \) and \(f_{s}(\cdot) \) represent the cumulative distribution function (CDF) and the probability density function (PDF) of random variable \(\gamma \), respectively. \(\mathbb{E}[\cdot] \) denotes the expectation operation. A list of the fundamental variables is provided in Table I.

II. SYSTEM MODEL

A. System Description

We consider the secrecy performance of the network as depicted in Fig. 1, which consists of a source \(S \), a destination

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{S})</td>
<td>Antenna number of (S)</td>
</tr>
<tr>
<td>(T_{0})</td>
<td>Packet/block time duration</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Time-switching ratio</td>
</tr>
<tr>
<td>(h_{a,b})</td>
<td>Channel coefficient between (a) and (b)</td>
</tr>
<tr>
<td>(\gamma_{a,b})</td>
<td>Average channel power gain of (h_{a,b})</td>
</tr>
<tr>
<td>(h_{t})</td>
<td>Channel coefficient vector between (a) and (b)</td>
</tr>
<tr>
<td>(\tilde{\gamma}_{l})</td>
<td>Self-interference channel coefficient</td>
</tr>
<tr>
<td>(h_{l})</td>
<td>Average channel power gain of (h_{t})</td>
</tr>
<tr>
<td>(\tilde{h}_{l})</td>
<td>Self-interference channel coefficient after SIC</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Amount of SIC in dB</td>
</tr>
<tr>
<td>(d_{a,b})</td>
<td>Distance between (a) and (b)</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Path loss factor</td>
</tr>
<tr>
<td>(P_{S})</td>
<td>Transmit power of (S)</td>
</tr>
<tr>
<td>(P_{J})</td>
<td>Transmit power of jamming signal</td>
</tr>
<tr>
<td>(N_{0})</td>
<td>Variance of AWGN</td>
</tr>
<tr>
<td>(\eta)</td>
<td>Energy conversion efficiency</td>
</tr>
<tr>
<td>(\omega)</td>
<td>(\omega = \alpha/(1 - \alpha))</td>
</tr>
<tr>
<td>(R_{t})</td>
<td>Transmit rate per channel use</td>
</tr>
<tr>
<td>(R_{s})</td>
<td>Secrecy rate per channel use</td>
</tr>
<tr>
<td>(\gamma_{t}^{\text{th}})</td>
<td>Predefined threshold (\gamma_{t}^{\text{th}} = 2R_{t} - 1)</td>
</tr>
<tr>
<td>(\gamma_{h}^{\text{th}})</td>
<td>Predefined threshold (\gamma_{h}^{\text{th}} = 2R_{t} - R_{s} - 1)</td>
</tr>
<tr>
<td>(P_{CO})</td>
<td>Connection outage probability</td>
</tr>
<tr>
<td>(P_{SO})</td>
<td>Secrecy outage probability</td>
</tr>
<tr>
<td>(\varsigma)</td>
<td>Secrecy throughput</td>
</tr>
</tbody>
</table>
D, and a potential eavesdropper E. S is equipped with N_S antennas, D and E are both deployed with a single receiving antenna. Specifically, D is equipped with an extra transmitting antenna to enable the FD operation\(^2\). We assume that S knows the channel state information (CSI) of D, but has no knowledge about the CSI of E. This is a typical passive eavesdropping scenario, where the malicious eavesdropper may be totally concealed thus it does not feedback its CSI to the source [12, 38]. We assume that all the channels undergo quasi-static Rayleigh fading, such that the channel coefficients keep constant during a packet time T_0 but vary independently from one packet time to another.

B. Secure Transmission: SWIPT and FD Self-Jamming

The SWIPT and FD self-jamming scheme is proposed for safeguarding the data transmission. In more detail, we apply the time-switching SWIPT technology at the destination to extend its battery lifetime [22], where each block time T_0 is split into two phases, namely, the energy harvesting (EH) phase with time period \(\alpha T_0\) and the information receiving (IR) phase with time period \((1 - \alpha)T_0\), and \(\alpha \in [0, 1]\) is the time-switching ratio.

In the EH phase, S transmits the energy-bearing signals to D using maximal ratio transmission (MRT)\(^3\) to increase the harvested energy. Thus, the received signal at D in EH phase is expressed as

\[
y_D^{EH} = \sqrt{P_S}h_{SD}(\mathbf{w}_{SD}x_1) + n_D, \tag{1}
\]

where \(P_S\) is the transmit power of S, \(h_{SD} \in \mathbb{C}^{1 \times N_S}\) represents the channel coefficient vector between S and D, with its element \(h_{i,D} \sim \mathcal{CN}(0, \bar{\gamma}_{SE})\), \(\mathbf{w}_{SD} = (h_{SD})^H/\|h_{SD}\|\) is the weight vector of MRT, \(x_1\) denotes the energy-bearing signal with \(\mathbb{E}[|x_1|^2] = 1\), and \(n_D\) represents the additive white Gaussian noise (AWGN) at D with zero mean and variance \(N_0\). Hence, the collected energy at D during EH phase can be written as\(^5\)

\[
\varepsilon_D = \eta \alpha T_0 P_S |h_{SD} \mathbf{w}_{SD}|^2, \tag{2}
\]

where \(\eta\) denotes the energy conversion efficiency.

In the IR phase, the information-bearing signals are transmitted from S to D, which may be intercepted by E. Meanwhile D sends jamming signals using its transmit antenna to confuse the eavesdropper. We note that the MRT scheme is still applied at S in this stage to maximize the receiving SNR at D. As the CSI of E is totally unknown at the legitimate network, such operation as well as the self-jamming in fact attempts to guarantee the best secrecy performance in the data transmission. As a result, the received signals at D and E in IR phase are given by

\[
y_D^{IR} = \sqrt{P_S}h_{SD}(\mathbf{w}_{SD}x_2) + \sqrt{P_J}h_I x_0 + n_D, \tag{3}
\]

and

\[
y_E^{IR} = \sqrt{P_S}h_{SE}(\mathbf{w}_{SD}x_2) + \sqrt{P_J}h_{DE} x_0 + n_E, \tag{4}
\]

where \(P_J\) is the jamming power of D, \(h_{SE} \in \mathbb{C}^{1 \times N_S}\) denotes the channel vector between S and E, with its element \(h_{i,E} \sim \mathcal{CN}(0, \sqrt{\gamma_{SE}})\) and \(i \in \{1, 2, \cdots, N_S\}\). In (3) and (4), \(x_2\) and \(x_0\) are the information-bearing signal and the jamming signal with \(\mathbb{E}[|x_2|^2] = \mathbb{E}[|x_0|^2] = 1\), \(h_I\) is the self-interference channel at D with \(\mathbb{E}[|h_I|^2] = \bar{\gamma}_I\), \(h_{DE} \sim \mathcal{CN}(0, \sqrt{\gamma_{DE}})\) represents the channel between D and E, \(n_E\) represents the additive white Gaussian noise (AWGN) at E with zero mean and variance \(N_0\).\(^6\)

We assume that the SIC is applied at the FD node D [23, 25, 45]. The receiving signal-to-interference-plus-noise ratios (SINRs) at D and E are calculated as

\[
\gamma_D = \frac{P_S|h_{SD} \mathbf{w}_{SD}|^2}{P_J|h_I|^2 + N_0}, \tag{5}
\]

and

\[
\gamma_E = \frac{P_S|h_{SE} \mathbf{w}_{SD}|^2}{P_J|h_{DE}|^2 + N_0}, \tag{6}
\]

where \(h_I\) is the self-interference channel after SIC. According to [23, 25], \(h_I\) can be treated as a complex Gaussian random variable with \(h_I \sim \mathcal{CN}(0, \sqrt{\gamma_I})\), where \([\gamma_I]_{dB} = [\bar{\gamma}_I]_{dB} - \theta\), and \(\theta\) is the amount of SIC in dB. As can be seen from (5)-(6), the jamming operation plays a dual role in the proposed scheme, similar as in [46, 47]. On the one hand, the jamming degrades the receiving performance of the eavesdropper. On the other hand, a portion of time duration must be sacrificed for collecting energy consumed by sending jamming signals.

Furthermore, as described previously, D is an energy-constrained equipment. Thereby, the jamming power must be chosen to keep the energy balanced at D statistically in

\(^5\)We note that little energy can be harvested from the AWGN in practice, hence is neglected in this paper [23, 24].

\(^6\)Without any loss of generality, the variance of AWGN at all receivers within the network is set to be the same [43, 44].
the long run\(^7\). Practically, we choose \(P_J\) according to the following expression [25]

\[
P_J = \frac{\mathbb{E}[E_J]}{(1-\alpha)T_0} = \omega \eta P_S \mathbb{E} \left[|h_{SD}w_{SD}|^2 \right], \tag{7}
\]

where \(\omega = \alpha/(1-\alpha)\). According to [49], \(\|h_{SD}w_{SD}\|^2 = \sum_{i=1}^{N_S} |h_{SD,i}|^2\) conforms to Erlang distribution with the expectation \(N_S \gamma_{SD}\). Therefore, the above expression can be rewritten as

\[
P_J = \omega \eta N_S \gamma_{SD} P_S, \tag{8}
\]

III. Exact Performance Analysis

In this section, we study the reliability and security performance of the SWIPT and FD self-jamming scheme by deriving the exact expressions of COP, SOP, and secrecy throughput, respectively.

A. COP and SOP

The COP is defined as the probability of the connection outage event that the receiving SINR at the legitimate receiver is below a predefined threshold \(\gamma_{th}^f\), where \(\gamma_{th}^f = 2^{R_S} - 1\) and \(R_S\) (bits/s/Hz) is the transmit rate per channel use\(^8\). Mathematically, the COP can be calculated as [6, 51]

\[
P_{CO} = \Pr (\gamma_D < \gamma_{th}^f) = F_{\gamma_D} (\gamma_{th}^f). \tag{9}
\]

Lemma 1: The COP of the SWIPT and FD self-jamming system is given by

\[
P_{CO} = 1 - \frac{N_0}{\omega \eta N_S \gamma_{SD} P_{SD}} \sum_{n=0}^{N_S-1} \frac{\left(N_0,\gamma_{th}^f \right)^n}{n!} e^{-\frac{N_0 \gamma_{th}^f}{\omega \eta N_S \gamma_{SD} P_{SD}}} \prod_{n=1}^{n} \frac{n!}{(n_1)!} \left(\frac{P_{SD} \gamma_{SD} \omega \eta N_S \gamma_{SD} \gamma_{th}^f}{\omega \eta N_S \gamma_{SD} \gamma_{th}^f + N_0} \right)^{n_1+1}. \tag{10}
\]

Proof: See Appendix A.

The SOP of the SWIPT and FD self-jamming system is given by

\[
P_{SO} = \Pr (\gamma_E \geq \gamma_{th}^e) = 1 - F_{\gamma_E} (\gamma_{th}^e). \tag{11}
\]

Lemma 2: The SOP of the SWIPT and FD self-jamming system is given by

\[
P_{SO} = \frac{\gamma_{SE}}{\omega \eta N_S \gamma_{SD} \gamma_{DE} \gamma_{th}^e + \gamma_{SE}} e^{-\frac{N_0 \gamma_{th}^e}{\omega \eta N_S \gamma_{SD} \gamma_{SE}}} \tag{12}
\]

Proof: See Appendix B.

\(^7\)We note that the energy consumption required by the transmit/receive circuits at the receiver is negligible in this study [21, 38, 48].

\(^8\)The design of \(R_S\) and the following \(R_E\) falls into the construction of the wiretap coding, which has been elaborated abundantly in the literatures [4, 6, 50], thus is omitted in this paper.

B. Secrecy Throughput Analysis

In the passive eavesdropping scenario, the CSI of \(E\) cannot be derived by the legitimate network and the perfect secrecy is not guaranteed. As a consequence, the metric of secrecy throughput becomes appealing which quantifies the average rate of the messages that are reliably and securely transmitted. Mathematically, the secrecy throughput is defined as the equivalent rate multiplied by the probability of a reliable and secure transmission, which can be written as [6, 51]

\[
c\ell = (1-\alpha) R_S P_{RKS}, \tag{13}
\]

where the term \((1-\alpha)\) results from the time-switching protocol at \(D\), and \(P_{RKS}\) is defined as

\[
P_{RKS} = \Pr (\gamma_D \geq \gamma_{th}^f, \gamma_E < \gamma_{th}^e). \tag{14}
\]

Theorem 1: The secrecy throughput for the SWIPT and FD self-jamming system is given by

\[
c\ell = \frac{R_S}{1+\omega} \left(1 - \frac{\bar{\gamma}_{SE}}{\omega \eta N_S \gamma_{SD} \gamma_{DE} \gamma_{th}^e + \gamma_{SE}} e^{-\frac{N_0 \gamma_{th}^e}{\omega \eta N_S \gamma_{SD} \gamma_{SE}}} \right) \times \frac{N_0}{\omega \eta N_S \gamma_{SD} P_{SD}} \sum_{n=0}^{N_S-1} \frac{\left(N_0,\gamma_{th}^e \right)^n}{n!} e^{-\frac{N_0 \gamma_{th}^e}{\omega \eta N_S \gamma_{SD} P_{SD}}} \times \prod_{n=1}^{n} \left(\frac{\left(P_{SD} \gamma_{SD} \omega \eta N_S \gamma_{SD} \gamma_{th}^e \gamma_{th}^e}{\omega \eta N_S \gamma_{SD} \gamma_{th}^e \gamma_{th}^e + N_0} \right)^{n_1+1}, \tag{15}
\]

where \(\omega = \alpha/(1-\alpha)\).

Proof: As has been described, \(w_{SD} = [w_1, \ldots, w_n, \ldots, w_{N_S}]^T\) is a normalized vector, i.e., \(\sum_{n=1}^{N_S} |w_n|^2 = 1\). Thus, \(|h_{SE} w_{SD}|\) is a unitary transformation of \(h_{SE}\). Besides, it is obviously that \(w_{SD}\) is independent of \(h_{SE}\). Moreover, the elements of \(h_{SE}\) are all Gaussian variables, namely \(h_{SE,n} \sim \mathcal{N}(0, \gamma_{SE})\) for \(n \in \{1, 2, \ldots, N_S\}\). Therefore, we can conclude that \(w_n h_{SE,n} \sim \mathcal{N}(0, \gamma_{SE})\). Hence, \(\sum_{n=1}^{N_S} w_n h_{SE,n} \sim \mathcal{N}(0, \sum_{n=1}^{N_S} |w_n|^2 \gamma_{SE}) = \mathcal{N}(0, \gamma_{SE})\), which verifies that the unitary transformation does not change the distribution of the transformed variables in \(h_{SE}\). As such, the common term of \(w_{SD}\) will not result in any correlation between \(|h_{SD} w_{SD}|\) and \(|h_{SE} w_{SD}|\). Therefore, \(\gamma_D\) and \(\gamma_E\) are independent variables [38, 55, 56]. Hence, (14) can be written as

\[
P_{RKS} = [1 - P_{CO} (\gamma_{th}^f)] [1 - P_{SO} (\gamma_{th}^e)]. \tag{16}
\]

By substituting (10) and (12) into (16) and (13) yields the result in Theorem 1.

Theorem 1 provides an analytical expression for the secrecy throughput of the system, which is in closed-form and does not involve any special functions. As a result, it allows for fast evaluation in popular mathematical software such as Matlab, thereby providing an efficient way to access the secrecy throughput of the system while avoiding the time-consuming Monte Carlo simulations.
IV. ASYMPTOTIC PERFORMANCE ANALYSIS

To further exploit the insights from the secrecy performance, the asymptotic analysis is conducted under two scenarios, namely: (A) the scenario with high transmit SNR, i.e., $\gamma_S \to \infty$; and (B) the scenario with large amount of SIC, i.e., $\theta \to \infty$.

A. The Scenario with $\gamma_S \to \infty$.

Lemma 3: The COP for the SWIPT and FD self-jamming system with $\gamma_S \to \infty$ is derived as

$$P_{CO}^{\gamma_S \to \infty} = 1 - \frac{1}{\omega n S \gamma_S SD \gamma_I} \sum_{n=0}^{N_S-1} \left(\frac{\gamma th}{\gamma SD} \right)^n \times \left(\frac{\omega n S \gamma_S SD \gamma_I th + 1}{\omega n S \gamma_S SD \gamma th + 1} \right)^{n+1}. \quad (17)$$

Proof: For $\gamma_S \to \infty$, we have

$$\gamma_S \to \infty = \left| h SD w SD \right|^2 \left(\omega n S \gamma_S SD \gamma_I th \right)^2. \quad (18)$$

As (18) is similar to (5), hence (17) can be easily obtained by following a similar proof as in Lemma 1.

Lemma 4: The SOP for the SWIPT and FD self-jamming system with $\gamma_S \to \infty$ is given by

$$P_{SD}^{\gamma_S \to \infty} = \frac{\gamma SE}{\omega n S \gamma_S SD \gamma_I th + \gamma SE}. \quad (19)$$

Proof: Under the scenario of $\gamma_S \to \infty$, we have

$$\gamma_S \to \infty = \left| h SE w SD \right|^2 \left(\omega n S \gamma_S SD \gamma_I th \right)^2. \quad (20)$$

Following the similar proof as in Lemma 2, (20) is readily derived.

Armed with the results in Lemmas 3 and 4, we proceed to investigate the corresponding secrecy throughput performance.

Theorem 2: The secrecy throughput for the SWIPT and FD self-jamming system with $\gamma_S \to \infty$ is given by

$$\zeta^{\gamma_S \to \infty} = \frac{R_s}{1 + \omega} \sum_{n=0}^{N_s-1} \left(\frac{\gamma th}{\gamma SD} \right)^n \left(\frac{\omega n S \gamma_S SD \gamma th + 1}{\omega n S \gamma_S SD \gamma_I th + 1} \right)^{n+1} \times \left(1 - \frac{\gamma SE}{\omega n S \gamma_S SD \gamma_I th + \gamma SE} \right). \quad (21)$$

Proof: By substituting (17) and (19) into (16) and (13), easily yields the result in Theorem 2.

It is worth noting that Theorem 2 presents general closed-form expressions of the asymptotic secrecy throughput which remains sufficiently tight when $\gamma_S \to \infty$ as will be demonstrated in Section VI. Hence, this new analytical expression provides an efficient way to characterize the impact of key system parameters such as antenna number of the source, distances between the nodes, and the amount of SIC on the secrecy throughput of the system, without resorting to the time-consuming Monte Carlo simulations.

B. The Scenario with $\theta \to \infty$.

Lemma 5: The SOP for the SWIPT and FD self-jamming system with $\theta \to \infty$ is the same as Eq. (12), while the COP for the SWIPT and FD self-jamming system with $\theta \to \infty$ is given by

$$P_{CO}^{\theta \to \infty} = 1 - \sum_{n=0}^{N_s-1} \frac{1}{n!} \left(\frac{\gamma th}{P S \gamma SD} \right)^n e^{-\frac{\gamma th}{P S \gamma SD}}. \quad (22)$$

Proof: As can be readily observed, when $\theta \to \infty$, the expression of γE remains unchanged. Hence, the SOP under this scenario is the same as Eq. (12). As for the COP, we have

$$\gamma_S \to \infty = \frac{P S N_0 \left| h SD w SD \right|^2}{1 + \omega \sum_{n=0}^{N_s-1} \left(\frac{\gamma th}{P S \gamma SD} \right)^n e^{-\frac{\gamma th}{P S \gamma SD}} + \frac{\gamma SE}{\omega n S \gamma_S SD \gamma_I th + \gamma SE}}. \quad (23)$$

To this end, the result in Eq. (22) could be extracted from (32) by replacing x with γth.

Based on the results in Lemma 5, we carry on studying the corresponding secrecy throughput performance.

Theorem 3: The secrecy throughput for the SWIPT and FD self-jamming system with $\theta \to \infty$ is given by

$$\zeta^{\theta \to \infty} = \frac{R_s}{1 + \omega} \sum_{n=0}^{N_s-1} \left(\frac{\gamma th}{P S \gamma SD} \right)^n e^{-\frac{\gamma th}{P S \gamma SD}} \times \left(1 - \frac{\gamma SE}{\omega n S \gamma_S SD \gamma_I th + \gamma SE} \right). \quad (24)$$

Proof: By substituting (12) and (22) into (16) and (13), we easily proved the result in Theorem 3.

We note that, the FD operation is designed to send self-jamming signals. As a result, when HDNSJ scheme is applied, there will be no need to split any time duration for harvesting energy, which acts as the energy supply for the self-jamming operation in our proposed scheme. Therefore, with $\alpha = 0$ and $\theta \to \infty$, our proposed SWIPT-FDSJ scheme can be easily reduced to HDNSJ scheme. In other words, our proposed scheme is more generalized, and the HD scheme without self-jamming is a special case of our analysis. The reduced expressions of SOP, COP and secrecy throughput for HDNSJ scheme can be easily derived from (12), (22) and (24) by letting $\omega = 0$ (i.e., $\alpha = 0$).

V. OPTIMAL TIME DURATION ALLOCATION

As mentioned previously, the time-switching ratio α is an important parameter, which directly determines the effect of the jamming protocol. We note that, there exists an optimal α maximizing the system secrecy throughput. On one hand, according to Eq. (8), a larger α indicates a higher jamming power. Hence, the eavesdropper would generally be confused and suppressed greater, thus the secrecy throughput will be improved. On the other hand, a larger α also means the decline of time duration allocated for data transmission, which in turn leads to the decrease of the secrecy throughput. Thereby, it...
must be carefully designed according to the specific environment to achieve the best secrecy throughput performance.

Mathematically, the optimization problem could be written as

\[s_{\text{max}} = \arg \max_{\alpha} \zeta(\alpha), \quad \text{subject to : } 0 \leq \alpha \leq 1. \quad (25) \]

Noting that \(\alpha \) is monotonically increased with \(\omega \). Therefore, the above problem could be reformulated as

\[s_{\text{max}} = \arg \max_{\omega} \zeta(\omega), \quad \text{subject to : } 0 \leq \omega < \infty. \quad (26) \]

Unfortunately, it is too involved to reveal the monotonicity and convexity in Eq. (14) with respect to \(\omega \). In order to make it traceable, we use the asymptotic result with \(\theta \to \infty \), namely Eq. (24) instead. As a result, the optimization problem is expressed as

\[s_{\text{max}} = \arg \max_{\omega} \zeta^{\theta \to \infty}(\omega), \quad \text{subject to : } 0 \leq \omega < \infty. \quad (27) \]

Theorem 4: The optimal value of time-switching ratio \(\alpha \) and the corresponding maximum secrecy throughput for the SWIPT and FD self-jamming system with \(\theta \to \infty \) are given by (28) and (29), respectively

\[\alpha^* = \begin{cases} 0, & \frac{\omega}{1 + \omega}, \\ \frac{\kappa_1}{\kappa_1 + \kappa_2}, & \kappa_2 \geq \frac{\kappa_1}{1 + \kappa_1}, \end{cases} \quad (28) \]

\[s_{\text{max}}^{\theta \to \infty} = \max_{\alpha} \frac{N_\gamma - 1}{n} \left(\frac{N_\gamma \gamma_{th}}{P_s \gamma SD} \right)^{\alpha} e^{-\frac{N_\gamma \gamma_{th}}{P_s \gamma SD}}, \quad (29) \]

where

\[g_{\text{max}} = \begin{cases} (1 - \kappa_2), & \kappa_2 \leq \frac{\kappa_1}{1 + \kappa_1}, \\ \frac{1}{1 + \omega}(1 - \frac{\kappa_1 \kappa_2}{\omega^2 + \kappa_1}), & \kappa_2 > \frac{\kappa_1}{1 + \kappa_1}, \end{cases} \quad (30) \]

with

\[\begin{align*} \omega^* &= -\kappa_1 \left(1 - \kappa_2\right) + \sqrt{\kappa_1 \kappa_2 \left(1 + \kappa_1 \kappa_2 - \kappa_1\right)} \\ \kappa_1 &= \frac{\gamma_{th}^S \gamma_{th}^D}{\gamma_{th}^S \gamma_{th}^D \gamma_{th}^D \gamma_{th}^D} \\ \kappa_2 &= e^{-\frac{\gamma_{th}^S \gamma_{th}^D \gamma_{th}^D \gamma_{th}^D}{\gamma_{th}^S \gamma_{th}^D \gamma_{th}^D}}. \end{align*} \quad (31) \]

Proof: See Appendix C.

It is highlighted that \(\alpha^* = 0 \) indicates that no energy is harvested, and thus no jamming signal is exploited. Therefore, \(\alpha^* = 0 \) actually degenerates to the conventional case with no SWIPT and jamming. In other words, Theorem 4 gives the application condition of the proposed scheme, namely \(\kappa_2 > \kappa_1/(1 + \kappa_1) \), and at the same time provides the maximum secrecy throughput of it when the condition is satisfied. We note that the application condition is totally determined by the transmit SNR, the antenna number of the source, the energy conversion efficiency, and the average channel gains of both the authorized and malicious links.

VI. NUMERICAL RESULTS

In this part, we present the numerical results to demonstrate the impacts of various system parameters on the secure performance of the SWIPT and FD self-jamming system. As it is shown from these figures, the theoretical results are in exact agreement with the numerical simulations, which show the correctness of the analysis. Without any loss of generality, the key simulation parameters are listed in Table II unless otherwise stated.

Figs. 2 and 3 examine the impact of \(\gamma_S \) and \(\theta \) on the COP of the SWIPT and FD self-jamming system. As depicted in these two figures, the COP first decreases significantly and then reaches a performance floor with increasing \(\gamma_S \) and \(\theta \). It is also found from Fig. 2 that the exact COP expression in (10) matches the asymptotic result with \(\theta \to \infty \) in (17) very well in the low and medium regime of \(\gamma_S \), and then deviates it with approaching the other asymptotic expression with \(\gamma_S \to \infty \), namely (22), when the transmit SNR is high enough. Generally speaking, a larger amount of SIC is needed to reach the performance floor when a larger transmit SNR is provided. The similar phenomenon is also observed for \(\theta \) in Fig. 3.

Figs. 4 and 5 illustrate the COP and SOP of the SWIPT and FD self-jamming system with different \(N_S \). As we can see from Fig. 4, the COP is an increasing function of \(N_S \) and an obvious performance enhancement is achieved with
the increase of \(N_S \). In addition, as in Fig. 2 and 3, Eqs. (17) and (22) provide good approximations of the exact theoretical result in the corresponding cases. On the contrary, we find in Fig. 5 that the SOP goes an inverse trend when comparing \(N_S \) grows, it is not as distinct as that in COP. It is worth noting that, some meaningful insights are found from Fig. 2-5 when comparing the proposed SWIPT-FDSJ scheme with the reduced HDNSJ scheme. Obviously, the introducing of FD self-jamming has a negative impact on the COP performance, which however becomes very slight with the increase of \(\theta \). By contrast, the self-jamming operation has improved the SOP performance significantly, as a distinct performance gap is observed in Fig. 5 between the two group lines (blue and red). Specifically, it is observed that in the HDNSJ scheme, it is useless to decrease the SOP by increasing \(N_S \). We note that, in the considered passive eavesdropping scenario, the legitimate nodes do not have the CSI of the eavesdropper, so that beamforming methods could not be used to interfere it as much as possible. However, in our proposed SWIPT-FDSJ scheme, the SOP performance can be greatly boosted by increasing \(N_S \).

Fig. 6 plots the secrecy throughput of the SWIPT and FD self-jamming system for various \(N_S \) and \(\eta \). As can be observed, the larger \(N_S \) and \(\eta \) are, the larger the secrecy throughput is. This is readily understandable, because a larger \(N_S \) or \(\eta \) indicates a larger power of jamming signal, so that the eavesdropper is better confused. Furthermore, we see that the secrecy throughput improves significantly with increasing \(N_S \). By contrast, the enhancement with a larger \(\eta \) is almost
under the given parameters is α that the secrecy throughput performance of the proposed α value of throughput achieves its maximum value when the optimum α self-jamming system for various κ three curves satisfying \exists existence of an optimum point of α first and then drop with the increase of κ. As can be expected, three curves are listed in Table III. As can be expected, three curves satisfying $\kappa_2 - \kappa_1/(1 + \kappa_1)$ are monotonically decreasing, which all satisfy the condition of $\kappa_2 - \kappa_1/(1 + \kappa_1) \leq 0$. Whereas, the remaining three curves satisfying $\kappa_2 - \kappa_1/(1 + \kappa_1) > 0$ all go up at first and then drop with the increase of α, indicating the existence of an optimum point of α for maximizing the secrecy throughput performance.

Fig. 7 plots the secrecy throughput of the SWIPT and FD self-jamming system for various γ_S and η. In this figure, the optimum condition of secrecy throughput in Theorem 4 is verified by presenting six curves, whose values of $\kappa_2 - \kappa_1/(1 + \kappa_1)$ are listed in Table III. As can be expected, three curves corresponding to $\gamma_S=8$ dB, $\eta=0.3$ and 0.6 and $\gamma_S=10$ dB, $\eta=0.3$ are monotonically decreasing, which all satisfy the condition of $\kappa_2 - \kappa_1/(1 + \kappa_1) \leq 0$. Whereas, the remaining three curves satisfying $\kappa_2 - \kappa_1/(1 + \kappa_1) > 0$ all go up at first and then drop with the increase of α, indicating the existence of an optimum point of α for maximizing the secrecy throughput performance.

Fig. 8 plots the secrecy throughput of the SWIPT and FD self-jamming system for various α. The optimum value of α under the given parameters is $\alpha^*=0.6188$. As shown in this figure, the secrecy throughput varies with the changing of α. Obviously, the secrecy throughput is not a monotonically increasing function with α as it is generally the largest when $\alpha=0.5$ comparing to $\alpha=0.2$ and 0.8. Furthermore, the secrecy throughput achieves its maximum value when the optimum value of α is applied, which is in exact agreement with the result in Theorem 4. In addition, it is easy to observe that the secrecy throughput performance of the proposed SWIPT-FDSJ is much better than that of the reduced HDNSJ scheme. In particular, the secrecy throughput of the reduced HDNSJ scheme approaches to zero with the increase of γ_S. By contrast, the secrecy throughput of the proposed SWIPT-FDSJ scheme approaches to a performance floor, which again indicates the superiority of our proposed SWIPT-FDSJ scheme when compared to the reduced HDNSJ scheme.

Fig. 9 plots the secrecy throughput of the SWIPT and FD self-jamming system for various R_i and R_s/R_t. It is readily to observe that for a fixed value of R_s/R_t, the secrecy throughput upgrades to its peak as R_i reaches its optimal, and then goes downwards. This phenomenon could be explained as follows. For a fixed value of R_s/R_t, increasing R_i indicates a corresponding increase of R_s, which results in the increase of COP and the decrease of SOP ultimately.
When a low R_t is used, increasing COP is not distinct so that the secrecy throughput keeps increasing. However, after R_t reaches the optimal value, the secrecy throughput falls because the increase of COP becomes dominant, as it is hard for $S-D$ link to afford a reliable transmission any longer. Moreover, subject to a fixed R_t which results to a constant COP, the secrecy throughput with R_s/R_t is also a concave function, following a similar trend with R_t. We note that, the peak of secrecy throughput and the corresponding optimal point of R_s/R_t both promote as a larger γ_S is provided.

VII. Conclusions

In this paper, a new paradigm for safeguarding energy-constrained SWIPT networks was presented and the secrecy performance of the system was analyzed with the passive eavesdropping. The main idea of the scheme was that, the destination node harvested energy transmitted from the source with the MRT protocol, and then utilized it to send jamming signals to confuse the malicious eavesdropper. The exact closed-form expressions of the COP, the SOP, and the secrecy throughput were derived and their asymptotic analysis under two scenarios were carried out. Moreover, the optimal time duration allocation was conducted and the application condition as well as the maximum secrecy throughput of the proposed SWIPT-FDSJ scheme and its reduced HDNSJ scheme were provided. The results depicted that the application condition was totally determined by the system parameters, namely the transmit SNR, the antenna number of the source, the energy conversion efficiency, and the average channel gains of both the authorized and malicious links. Besides, it was proved that the secrecy throughput performance of the SWIPT-FDSJ scheme is much better than the reduced HDNSJ scheme when the application condition is satisfied.

APPENDIX A

PROOF OF LEMMA 1

Without loss of generality, we define $\gamma_{SD} = P_S ||h_{SD}w_{SD}||^2/N_0$, $\gamma_{JI} = P_J|h_J|^2/N_0$. As depicted in [49], the CDF of γ_{SD} is as follows

$$F_{\gamma_{SD}}(x) = 1 - \sum_{n=0}^{N_S-1} \frac{1}{n!} \left(\frac{N_0x}{P_S \gamma_{SD}} \right)^n e^{-\frac{N_0x}{P_S \gamma_{SD}}}.$$ \hspace{1cm} (32)

Obviously, the PDF of γ_{JI} can be expressed as

$$f_{\gamma_{JI}}(y) = \frac{N_0}{P_S \gamma_{JI}} e^{-\frac{N_0y}{P_S \gamma_{JI}}}.$$ \hspace{1cm} (33)

According to (9), we have

$$F_{\gamma_J}(x) = \int_0^x F_{\gamma_{SD}}(x+y) f_{\gamma_{JI}}(y) dy.$$ \hspace{1cm} (34)

By applying the binomial theorem [52] in (32), we derive

$$F_{\gamma_{SD}}(x+y) = 1 - \sum_{n=0}^{N_S-1} \frac{1}{n!} \left(\frac{N_0x}{P_S \gamma_{SD}} \right)^n e^{-\frac{N_0x}{P_S \gamma_{SD}}} \times \sum_{n_1=0}^{n} \frac{n}{n_1} y^{n_1} e^{-\frac{N_0y}{P_S \gamma_{SD}}}.$$ \hspace{1cm} (35)

Substituting (33) and (35) into (34), and with the aid of [53, Eq.(3.381.4)], we obtain

$$F_{\gamma_{SD}}(x) = 1 - \frac{N_0}{P_J \gamma_{JI}} \sum_{n=0}^{N_S-1} \frac{1}{n!} \left(\frac{N_0x}{P_S \gamma_{SD}} \right)^n \sum_{n_1=0}^{n} \frac{n}{n_1} e^{-\frac{N_0y}{P_S \gamma_{SD}}}.$$ \hspace{1cm} (36)

Replacing x with γ_{JI}^t, and recalling (8) yields the result in Lemma 1.

APPENDIX B

PROOF OF LEMMA 2

For the notation convenience, we denote $\gamma_{SE} = P_S ||h_{SE}w_{SD}||^2/N_0$, $\gamma_{JE} = P_J|h_{JE}|^2$. As depicted in [54, 55] and the proof of Theorem 1, γ_{SE} is an exponentially distributed random variable and the CDF of which can be written as

$$F_{\gamma_{SE}}(x) = 1 - e^{-\frac{N_0x}{P_S \gamma_{SE}}}.$$ \hspace{1cm} (37)

In addition, the PDF of γ_{JE} is readily to be given by

$$f_{\gamma_{JE}}(y) = \frac{N_0}{P_J \gamma_{DE}} e^{-\frac{N_0y}{P_J \gamma_{DE}}}.$$ \hspace{1cm} (38)

Hence, the CDF of γ_{JE} can be calculated as

$$F_{\gamma_{JE}}(x) = \int_0^x F_{\gamma_{SE}}(x+y) f_{\gamma_{JE}}(y) dy.$$ \hspace{1cm} (39)

Substituting (37) and (38) into (39), and after some simple manipulations, the CDF of γ_{JE} is obtained as

$$F_{\gamma_{JE}}(x) = 1 - \frac{P_S \gamma_{SE}}{P_S \gamma_{SE} + P_J \gamma_{DE}} e^{-\frac{N_0x}{P_S \gamma_{SE}}}.$$ \hspace{1cm} (40)

Substituting (37) and (40) into (11) easily leads to the result in Lemma 2.
APPENDIX C

PROOF OF THEOREM 4

For the better explanation, we denote
\[g(\omega) = \frac{1}{1 + \omega} \left(1 - \frac{\kappa_1 \kappa_2}{\omega + \kappa_1} \right). \]

By taking the derivative of above equation, we obtain
\[\frac{dg(\omega)}{d\omega} = -\frac{h(\omega)}{(1 + \omega)^2(\omega + \kappa_1)^2}, \]

where
\[h(\omega) = [\omega + \kappa_1 (1 - \kappa_2)]^2 + \kappa_1 \kappa_2 (\kappa_1 - 1 - \kappa_1 \kappa_2). \]

As we see, \(h(\omega) \) is a quadratic function. Also, it is readily observed that \(\kappa_1 > 0 \) and \(1 - \kappa_2 > 0 \). Thereby, it is the value of \(h(0) \) that solely determines the trend of \(g(\omega) \). For a better comprehension, we plot the diagrams of \(h(\omega) \) and \(g(\omega) \) versus \(\omega \) in Fig. 10 under different cases of \(h(0) \geq 0 \) and \(h(0) < 0 \).

We note, \(h(0) < 0 \) yields
\[\kappa_2 > \frac{\kappa_1}{1 + \kappa_1}, \]

and when \(\kappa_2 > \kappa_1/(1 + \kappa_1) \), \(\frac{dg(\omega)}{d\omega} = 0 \) yields
\[\omega^* = -\kappa_1 (1 - \kappa_2) + \sqrt{\kappa_1 \kappa_2 (1 + \kappa_1 \kappa_2 - \kappa_1)}. \]

Based on the above analysis, the results in Theorem 4 could be readily derived.

REFERENCES

Xuanxuan Tang received his B.S. degree in Communication Engineering from the College of Communications Engineering, PLA University of Science and Technology, Nanjing, China, in 2014. He is currently pursuing toward the Ph.D. degree in Information and Communications Engineering at the College of Communications Engineering, Army Engineering University of PLA, Nanjing, China. His current research interest includes cooperative communications, wireless sensor networks, Internet of Things, physical layer security, energy harvesting, full-duplex, and cognitive radio systems.

Yueming Cai (M’05-SM’12) received his B.S. degree in Physics from Xiamen University, Xiamen, China in 1982, the M.S. degree in Micro-electronics Engineering and the Ph.D. degree in Communications and Information Systems both from Southeast University, Nanjing, China in 1988 and 1996, respectively. His current research interests include MIMO systems, OFDM systems, signal processing in communications, cooperative communications and wireless sensor networks.
Yansha Deng (S'13-M'17) is currently a Lecturer (Assistant Professor) in department of Informatics, King’s College London, U. K. She received the Ph.D. degree in Electrical Engineering from the Queen Mary University of London, UK in 2015. From 2015 to 2017, she was a Post-Doctoral Research Fellow with King’s College London, UK. Her research interests include molecular communication, internet of things, and 5G wireless networks. She was a recipient of the Best Paper Awards from ICC 2016 and Globecom 2017. She is currently an Editor of IEEE Transactions on Communications and IEEE Communication Letters. She has also served as TPC member for many IEEE conferences, such as IEEE GLOBECOM and ICC.

Yuzhen Huang (S’12-M’16) received his B.S. degree in Communications Engineering, and Ph.D. degree in Communications and Information Systems from College of Communications Engineering, PLA University of Science and Technology, in 2008 and 2013, respectively. Now, he has been with the Artificial Intelligence Research Center, National Innovation Institute of Defense Technology, and currently as an Research Associate. He also is a Post-Doctoral Research Associate with the School of Information and Communication, Beijing University of Posts and Telecommunications, Beijing. His research interests focus on channel coding, MIMO communications systems, cooperative communications, physical layer security, and cognitive radio systems. He has published nearly 70 research papers in international journals and conferences. He and his coauthors have been awarded a Best Paper Award at the WCSP 2013. He received an IEEE Communications Letters exemplary reviewer certificate for 2014.

Wendong Yang received the B.S. degree in Communications Engineering and the Ph.D. degree in Communications and Information Systems both from College of Communications Engineering, PLA University of Science and Technology, Nanjing, China in 2004 and 2009 respectively. His current research interest includes MIMO systems, OFDM systems, cooperative communications and cognitive radio.

Weiwei Yang (S’08-M’11) obtained his B.Sc. degree, M.Sc. degree, and Ph.D. degree in Telecommunications from PLA University of Science and Technology, Nanjing, China in 2003, 2006, and 2011, respectively. Currently he is an Associate Professor in College of Communication Engineering, Army Engineering University of PLA. His research interests include cooperative communications, cognitive radio, and physical layer security. He is also co-recipient of Best Paper Award from WCSP 2011. He also served as a publication Co-Chair of WCSP 2015, track chairs of IEEE CIC ICC 2017 and WCSP 2015, and TPC members of WCSP 2011/2014/2017, GC 2016 Workshops, GC 2017 Workshops and ICC 2016-Workshops, etc. He is a co-author of the book “Handbook of Cognitive Radio” published by Springer in 2017.