Targeting Hexokine II to mitochondria to modulate energy metabolism and reduce ischemia-reperfusion injury in heart

Rianne Nederlof,1 Otto Eerbeek,2 Markus W Hollmann1, Richard Southworth3, Coert J Zuurbier1

1Laboratory of Experimental Anesthesiology and Intensive Care, Department of Anesthesiology, and 2Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, King’s College, London, United Kingdom.

Abbreviated title: mtHK as protector against IR injury

Address of correspondence:
Dr. C. J. Zuurbier
Department of Anaesthesiology,
Academic Medical Centre, University of Amsterdam
Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
Phone: + 31 (20) 566 5259; Fax: + 31 (20) 6979441
E-mail: c.j.zuurbier@amc.uva.nl
Summary:

Mitochondrially-bound hexokinase II (mtHKII) has long been known to confer cancer cells with their resilience against cell death. More recently, mtHKII has emerged as a powerful protector against cardiac cell death. mtHKII protects against IR injury in skeletal muscle and heart, attenuates cardiac hypertrophy and remodelling, and is one of the major end-effectors through which ischemic preconditioning protects against myocardial ischemia-reperfusion injury. Mechanisms of mtHKII cardioprotection against reperfusion injury entail the maintenance of regulated OMM permeability during ischemia and reperfusion resulting in stabilisation of mitochondrial membrane potential, the prevention of OMM breakage and cytochrome C release, and reduced ROS production. Increasing mtHK may also have important metabolic consequences, such as improvement of glucose-induced insulin release, prevention of acidosis through enhanced coupling of glycolysis and glucose oxidation, and inhibition of fatty acid oxidation. Deficiencies in expression and distorted cellular signalling of HKII may contribute to the altered sensitivity of diabetes to cardiac ischemic diseases. The interaction of HKII with the mitochondrion constitutes a powerful endogenous molecular mechanism to protect against cell death in almost all cell types examined (neurons, tumours, kidney, lung, skeletal muscle, heart). The challenge is now to harness mtHKII in the treatment of infarction, stroke, elective surgery and transplantation. Remote ischemic preconditioning, metformin administration and miR-155/miR-144 manipulations are potential means of doing just that.

Key words: ischemia-reperfusion injury; mPTP; cell death; diabetes; glycolysis, mitochondria

Abbreviations: AMPKamp-activated protein kinase; ANTadenine nucleotide transporter; CABGcoronary artery bypass grafting; CypDcyclophilin D; CytCcytochrome C; ERendoplasmic reticulum; G6Pglucose-6-phosphate; HKhexokinase; HSP90heat shock protein 90; IMMinner mitochondrial membrane; IRischemia-reperfusion; IPCischemic preconditioning; MImyocardial infarction; miRmicro RNA; mPTP mitochondrial permeability transition pore; mtHKmitochondrially-bound hexokinase; OMMouter mitochondrial membrane; PGC-1βPPAR gamma coactivator 1 beta; RIPCremote ischemic preconditioning; ROSreactive oxygenspecies; VDACvoltage-dependent anion channel
INTRODUCTION

The two leading causes of human mortality are cancer and cardiovascular disease. Curiously, the directed goal of therapy against these diseases is diametrically opposed: in cancer we strive to kill the tumour cells, whereas in heart disease we strive to protect cardiac cells from being killed. The question arose whether the processes that promote cell survival in cancer cells could potentially be used in promoting survival in the heart, and whether our understanding of the death processes in the heart could be harnessed in the treatment of cancer. The cancer literature has suggested that the resilience of cancer cells against cell death is, at least partly, due to highly elevated levels of HKII bound to mitochondria (Pedersen, 2007). Knowing that mitochondrial dysfunction has emerged as a major mediator of cell death in ischemia-reperfusion injury of the heart, we considered the possibility that HKII is one of the critical regulators of mitochondrial dysfunction in cardiac IR injury. This consideration was primarily based on the pioneering work by others demonstrating the pivotal role of HK in mitochondrial function and cell death in non-cardiovascular research fields.

Instrumental in these HK pioneering studies were the discoveries of HK binding to and regulation of mitochondrial VDAC (Fiek et al., 1982; Brdiczka, 1990; Forte et al., 1987; Rostovtseva et al., 2005; Rostovtseva et al., 2008A), and the regulatory role of HK in mitochondrial pore formation (Nakshima et al., 1986; Marzo et al., 1998).

Various work by us and others have now clearly demonstrated that mitochondrially-bound HKII is indeed a major determinant of infarct size and may constitute one of the end-effectors of ischemic preconditioning. Mitochondrial hexokinase II (and I) affects mitochondrial membrane potential and ROS production, regulates mPTP, and may also determine the direction of cardiac metabolic flux. This review summarizes current knowledge about the role of mitochondrially-bound hexokinase in cardioprotection and cardiac ischemia-reperfusion injury, adding mtHKII as a new target that may prove useful in the quest to reduce mortality due to cardiovascular disease.

The Hexokinase Family

The first step in the metabolism of glucose is its phosphorylation upon entrance into the cell. Sufficient and rapid phosphorylation is important to maintain the steep gradient of glucose concentration over the plasma membrane to drive continuous glucose uptake through the GLUT transporters, as well as to render glucose polar, and therefore incapable of exiting the cell: Glucose phosphorylation is catalyzed by the enzyme hexokinase, of which four isozymes are present within mammalian tissue. HKI, II and III are isozymes of 100 kDa, displaying high affinity for glucose (Km ≤ 0.3 mM) and product inhibition for G6P (Ki ≤ 0.1 mM), whereas HKIV (glucokinase) is 50 kDa in size, has low affinity for glucose (half-saturation at about 8 mM glucose) and does not show product inhibition at physiological levels of G6P (Wilson, 2003). Importantly, HKI and II contain a hydrophobic amino terminal mitochondrial binding motif, which is not present in the HKIII and IV isoforms.

HKI is ubiquitously expressed in almost all mammalian tissues, is largely unresponsive to hormonal and prevailing metabolic conditions, and can be considered more of a house keeping protein. Surprisingly, despite being a glycolytic enzyme, and with glycolysis mainly being thought of as a cytosolic process, HKI is predominantly associated with mitochondria (Crane et al., 1953; Johnson, 1960, Abraham et al., 1964). It is suggested (Wilson, 1995, John et al., 2011) that HKI principally performs a catabolic function, channelling glucose into glycolysis for ATP production. In contrast, HKII is more variably located in either the cytosol or at the mitochondrial outer membrane, and is mostly expressed in insulin-sensitive tissue.
such as heart, skeletal muscle and adipose tissue. When situated in the cytosol it directs glucose into glycogen synthesis, while when bound to mitochondria it primarily directs glucose into glycolysis (John et al., 2011). HKII expression levels and localization are highly regulated by (patho) physiology, hormones and metabolic state (Wilson, 2003; Heikkinen et al., 2000). In contrast to the abundance of HKI and HKII, HKIII shows low expression in most mammalian tissues, being most highly represented in lung, liver and spleen (Heumann et al., 1974; Furuta et al., 1996). Finally, HKIV is traditionally regarded as a glucose-sensing enzyme (although other HK isoforms also display glucose-sensing properties), associated with regulating insulin-release by pancreatic β-cell. This glucokinase is mainly expressed in liver and the pancreas, but can also be found in certain parts of the brain and gut (Postic et al., 2001).

Mitochondrial Hexokinase in Cancer

As early as 1924, the pioneering work of the Nobel prize winner Otto Warburg (Warburg, 1924) associated malignant, aggressive tumour growth with increased rates of aerobic glycolysis and increased lactate production, a signature now known as the Warburg effect (Pedersen, 2007). It took another fifty years to demonstrate mitochondrial HKII as a key molecular governor of this increased glycolysis (Bustamante et al., 1977; Bustamante et al., 1981), with the expression of HKII (sometimes HKI) being increased often more than 100-fold. Activation of the PI3K/Akt pathway, one of the most frequently mutated pathways in cancer (Shaw et al., 2006), and activation of PKA and PKC pathways, also commonly seen in cancers, may explain this increased HKII expression. DNA demethylation and HKII gene amplification has also been suggested to play a role (Mathulpa et al., 2009), as has the increased expression of hypoxia-inducible factor HIF1α (Keith et al., 2012; Semenza et al., 2003). Although Warburg originally hypothesized that the increased reliance of tumours on glycolysis was due to impairments in mitochondrial function, it is now known that this is not the case. Mitochondria from tumours can still have normal oxidative phosphorylation with intact ATP synthetic capacity; however, they are often reprogrammed towards biosynthetic pathways supporting tumour proliferation, such that glucose and glutamine become important substrates feeding rewired anabolic pathways (Ward et al., 2012). Thus, the increased HKII expression and its binding to mitochondria not only facilitates increased aerobic glycolysis and lactate production (John et al., 2011), but also the channelling of glycolytic substrates into biosynthetic pathways for which mitochondria play a crucial role. The increase in the proportion of HKII that is bound to mitochondria also provides the cancer cell with resilience to cell death. The exact mechanism of this protection has not yet been elucidated, but it is known that glucose is necessary in order for mtHKII to inhibit apoptosis, indicating that this is an active process requiring glucose phosphorylation (Gottlob et al., 2001). Targeting the binding between HKII and mitochondria is currently actively pursued as a possible treatment against aggressive proliferative tumours. Such targeting may be achieved with 3-bromopyruvate (Mathupal et al., 2009), methyl jasmonate (Goldin et al., 2008), dichloroacetate (Michelakis et al., 2010), the antifungal compounds clotrimazole and bifanazole (Penzo et al., 1998), and some traditional Chinese medicinal plants (Wei et al., 2013). However, such treatment comes with a price. Our recent data (Smeele et al., 2011A) showing the high sensitivity of heart towards disruption of mtHKII binding and the immediate development of cardiac cell death, is a direct warning against any such treatment being a global, whole-body treatment. A nice example of this phenomenon is the use of anthracyclines in cancer chemotherapy, which, while very effective in cancer treatment have to be very carefully titrated because of their severe cardiotoxicity. It has been suggested that

This article is protected by copyright. All rights reserved.
this cardiotoxicity may be mediated in part by mito-HK dissociation via inhibition of Akt signalling (Pastorino et al., 2005). Thus it is of paramount importance that these drugs target the cancer cell through localized delivery to the tumour (Ko et al., 2012) or using compounds that are only taken up by the cancer cell through selective cancer-expressed transporters (Birsoy et al., 2013).

Mitochondrial hexokinase and protection in non-cardiac tissues

Although the primary focus of this review is on the heart, mitochondrial hexokinase has been shown to protect against stressors in several other organs and tissues. We demonstrated that decreased (mitochondrial) HKII increased IR injury in skeletal muscle (Smeele et al., 2010; Smeele et al., 2012). In fact, skeletal muscle IR injury was very sensitive to reductions in HKII (50% HKII reduction increased IR-induced cell necrosis from 36% to 76%; Smeele et al., 2012), probably because HKII is the major HK isoform in skeletal muscle. Bryson et al. (2002) and Gall et al. (2011) showed that increased HK activity protects kidney epithelial cells against oxidant injury, whereas Ahmad et al. (2002) demonstrated that HKII protected human lung epithelial cells against hyperoxia and oxidative stress. Finally, mtHKII protects against neurodegeneration in models of Parkinson’s disease (Gimenez-Cassina et al., 2009; Corona et al., 2010). Therefore, it seems that the interaction of HK with mitochondria constitute an endogenous cellular protective mechanism against cell death that is operative in many tissues and organs.

Mitochondrial Hexokinase and Metabolism

Early observations (Bessman et al., 1980; Wilson, 1995), later supported by various other researchers, demonstrated that mitochondrial HKII uses mitochondrial ATP preferentially. This one major metabolic consequence of HK translocation to the mitochondria is that the ATP sensitivity of glucose phosphorylation is shifted from a cytosolic to a mitochondrial ATP source. Surprisingly, however, it remains unknown what the metabolic consequences of this translocation per se are in terms of oxygen consumption and energy substrate selection in intact organs/tissues. The role of mtHK in cell death, however, is better understood. Several seminal studies have now clearly shown the association between mtHK disruption and cell death, induced by stimuli such as H2O2 and/or UV irradiation in cellular studies (Gottlob et al., 2001; Pastorino et al., 2002; Bryson et al., 2002; Ahmad et al., 2002) or ischemia-reperfusion in intact organs and tissues (Smeele et al., 2011A, 2012; Pasdois et al., 2013). There are indications that enhancing mtHKII may increase glucose-mediated oxidative phosphorylation and therefore overall energy production in permeabilised human fibres from dilated atria (Roosima et al., 2013). These findings are in line with older literature showing that hexokinase can display high control strength over respiration in isolated mitochondria (Groen et al., 1982). Interestingly, it has also been suggested that an increased translocation of HKI to mitochondria increases the glucose sensitivity of the pancreatic β-cell to release insulin (Rabuazzo et al., 1997). Whether mtHK may affect cardiac (and skeletal muscle) insulin sensitivity is unknown. Clearly, more work needs to be done to answer these important questions as to how mtHKII affects metabolism of the intact heart.

Older literature indicates that mtHK not only affects glucose metabolism, but may also regulate cardiac fatty acid oxidation. Mitochondrial hexokinase inhibits palmitoyl-CoA
synthetase through competition for ATP and thereby inhibiting palmitate activation at the OMM in isolated mitochondria (de Jong et al., 1970). The reported decrease in mtHK associated with diabetes (Katzen et al., 1970) may therefore be a contributing factor to the often increased fatty acid metabolism in diabetic hearts. The reciprocal relationship was demonstrated by Southworth et al. who showed that perfusion of isolated hearts with fatty acids dislodged HKI and HKII from mitochondria (Southworth et al., 2007). Thus, mtHK seems to be an ideal localization hub for the well-known competition between glucose and fatty acid metabolism and the regulation thereof.

Mitochondrial hexokinase in Cardiovascular Diseases (Figure 1)

HKI and HKII are both present in the heart. In adult mouse heart, HKI and HKII contribute approximately equally to total cardiac hexokinase activity (Smeeele et al., 2011B), depending on the age and the nutritional/pathophysiological condition of the animal. Few data are available for human heart, except for a recent report by Roosimaa et al. (2013) which indicates that in non-dilated human atrial tissue, HKI is the most abundant isoform. In mouse and human skeletal muscle (Smeeele et al., 2011B; Mandarino et al., 1995) however, HKII accounts for >80% of total HK activity.

IPC Protection against I/R injury through increased mtHKII: The discovery that short, non-lethal periods of ischemia activate an endogenous cardiac protection program against long, lethal, periods of ischemia led to a highly intensified research effort to elucidate the cellular mechanisms. This phenomenon was called ischemic preconditioning (IPC; Murry et al. 1986). Subsequent research demonstrated that IPC cellular signalling converged on the mitochondrion, and was associated with alterations in glycolysis (Murphy et al., 2008; Murry et al., 1986). Work from our laboratory at that time also noticed this interaction between glycolysis and mitochondrial function following non-lethal periods of ischemia. We demonstrated that the activation of mitochondrial oxygen consumption, due to an instantaneously increased cardiac workload (Zuurbier et al., 1997; Van Beek et al., 1998), was slowed following non-lethal periods of ischemia. However, no such slowing was observed when glycolysis was bypassed using high concentrations of pyruvate or lactate (Zuurbier et al., 2002). In other words, the changes observed in mitochondrial function following non-lethal ischemia were precipitated through changes evoked in glycolysis. After having established that the alterations in glycolysis were not due to alterations in the pentose phosphate pathway (Zuurbier et al., 2004), translocation of HK with non-lethal periods of ischemia became a likely candidate (Zuurbier et al., 2009). Finally, we demonstrated that reversible ischemia such as IPC induced a translocation of the glycolytic enzyme HK to the mitochondria (Zuurbier et al., 2005; Gürel et al., 2009). This lead us to the hypothesis that IPC could, at least partly, be attributed to increased HKII trafficking to the mitochondria (Zuurbier et al., 2009). This hypothesis was confirmed by subsequent studies showing loss of IPC protective effects with a peptide blocking mito-HKII binding (Smeeele et al., 2011A), and increased IR injury with partial deletion of the HKII gene in both heart and skeletal muscle (Smeeele et al., 2010, 2012; Wu et al., 2011). This work was recently confirmed by findings in Halestrap's laboratory, showing a close correlation between cardiac infarct size and the extent of mitochondrial HKII dissociation (Pasdois et al., 2013).

IR, post-MI, regeneration: HK expression and cellular localisation changes dramatically during and after periods of ischemia. During prolonged cardiac ischemia there is an increase in cytosolic HK activity (Correa et al., 2008), that can be explained by solubilisation of HKII (but not HKI) from the mitochondria (Gürel et al., 2009; Pasdois et al., 2011). The
mechanism of HK detachment from the mitochondria during ischemia is, at least partly, related to acidification and increases in G6P (Pasdois et al., 2013). The endogenous adaptation following ischemia in cardiac tissue is associated with increases (~30-70%) in total and mitochondrial HK (McFalls et al., 2002; Wu et al., 2011; Yeih et al., 2011; Miyamoto et al., 2010). Large increases (200-300%) in HK activity were also observed in regenerated skeletal muscle 2 weeks after the IR insult (Smeele et al., 2012). It thus seems that following an ischemic episode there is increased HK expression, presumably enhancing biosynthetic pathways for regeneration and growth and to offer protection against recurrent episodes of ischemia.

Hypertrophy and Heart failure: During pressure overload-induced cardiac hypertrophy, mtHKII and total HKII protein content have been shown to increase (Wu et al., 2012; Riehle et al., 2011). Increased HKII expression was also recently reported in dilated human atria (Roosima et al., 2013). Genetic reductions in HKII resulted in exaggerated cardiac hypertrophy in a pressure-overload model (Wu et al., 2012). These data suggest that the increased HKII expression in pressure-overloaded hearts is an adaptive response, possibly attenuating hypertrophy through diminishing oxidative stress (Wu et al., 2012). Therapeutic enhancement of tissue HKII during this hypertrophic stage may therefore be a potentially beneficial approach. Interestingly, while mild pressure-overload results in a relatively compensated hypertrophy associated with increases in HKII, the same procedure in animals deficient for PGC-1β resulted in decreased HKII levels, decompensated hypertrophy, and evidence of increased oxidative stress (Riehle et al., 2011). This data suggest that PGC-1β, a regulator of mitochondrial biogenesis and genes encoding for mitochondrial metabolism, is needed to maintain cardiac function following pressure overload by possibly preserving HKII expression and preventing oxidative stress. Cardiac HKII has also been shown to be severely reduced in a pacing-induced heart failure model in pigs (Lionetti et al., 2009). While these data suggest that the development of heart failure is associated with decreases in HKII, further studies are warranted to examine whether the reduced HKII protein levels are cause or consequence of cardiac failure.

Hyperglycemia and Diabetes: Hyperglycemia in the clinical condition is currently viewed as an important risk factor for poor clinical outcome. In addition, the presence of hyperglycemia in the pre-diabetic state is a strong predictor of developing diabetic disease. Acute hyperglycemia has been shown to induce the detachment of HK from mitochondria (Da-Silva et al., 2004; Pasdois et al., 2013), which may underlie its pathology. During the development of diabetes, there is a shift in cardiac metabolism away from glucose metabolism towards fatty acid metabolism. This shift is generally associated with significant decreases in cardiac and muscle HKII protein content without alterations in HKI protein content (Katzen et al., 1970; Vestergaard et al., 1995). The diabetic heart displays an altered response to IR and IPC, with short-term diabetes frequently offering protection against IR and attenuated IPC potential, and long-term diabetes resulting in worsened outcome after IR and loss of IPC protective effects (Miki et al., 2012). It is possible that changes in cardiac HK contribute to such an altered response of diabetic heart to IR and IPC. Indeed, we have demonstrated that the increased protection against IR and the attenuation of IPC in the short-term type I diabetic heart are associated with altered mitochondrial HK binding characteristics (Gurel et al., 2013). These data suggest that the known association between diabetes mellitus and ischemic cardiovascular disease may partly stem from alterations at the level of cardiac HKII expression. More work is needed to fully explore the role of HKII in diabetic cardiomyopathy.
Mechanisms of mtHKII-induced protection against IR injury (Figure 2):

There is currently no consensus concerning the exact mechanism of mtHK protection against IR injury. Below we restrict our discussion to those four mechanisms for which experimental evidence can be found. The overarching action of mtHK is its regulatory role in the homeostatic cross-talk between the mitochondria and the cell. This cross-talk is set by the degree of permeability of the OMM and the IMM to extramitochondrial metabolites. The permeability of the OMM is determined by VDAC, the mitochondrial binding partner of HK. HK, at least partly, regulates the permeability of VDAC for many important metabolites such as ATP, ADP, NADH (Rostovtseva et al., 2005). The permeability barrier of the IMM to protons and ions is essential to ATP synthesis by mitochondria; loss of this permeability barrier prevents the generation of an electrochemical gradient (mitochondrial potential) that drives ATP synthesis through the F_0F_1ATPase. This loss of the IMM permeability barrier, as reflected by the opening of a non-specific pore in the IMM, the so-called mPTP, is currently considered the final event causing IR injury and irreversible cell death (Halestrap et al., 2009). The molecular identity of the mPTP was recently suggested to consist of dimers of the F_0F_1ATPase localised on the IMM (Giorgio, 2013), with HK, VDAC, ANT and CypD as important regulators of the mPTP (see also Figure 2). It is through this mPTP complex that HK mediates its decisive role in IR injury and cardioprotection. It should be noted that there may also be a role for the mitochondrial phosphate carrier (PiC) as important regulator of the mPTP (Leung et al., 2008). The reader is directed to literature that discusses this component in detail (Halestrap, 2009; Leung and Halestrap, 2008). For this review we focus primarily on how HK may affect the mPTP.

1) Prevention of conformational change in molecular mPTP regulation complex to stabilize mitochondrial membrane potential. It has been shown that mitochondrial depolarization occurs during cardiac ischemia and may be an early sign of irreversible injury (Lyon et al., 2010). Mitochondrial depolarization during ischemia and early reperfusion may cause direct mPTP opening (Bernardi, 1992), and there is evidence that mtHKII may prevent such depolarization. We have recently demonstrated that acute HKII detachment from mitochondria in the beating heart per se (without any concomitant stress signal), using medium-to-high dosage (≥ 2.5 μM) of a HKII dislodging peptide, acutely depolarized mitochondria and induced cell death, an effect which could not be explained by vascular obstruction or ensuing ischemia in the intact organ (Smeele et al., 2011A; Nederlof et al., 2013). In these conditions of normoxic perfusion with a pH > 7 buffer, this depolarization can cause immediate mPTP opening and cell death (Bernardi, 1992). Previously, Chiara et al. (2008) demonstrated that the sensitivity of isolated cardiomyocytes to ROS-induced mPTP opening was much increased with low concentrations (< 1 μM) of the HKII dislodging peptide. They hypothesized that detachment of HKII induced a conformational change in the molecular complex connecting the OMM with the IMM and the mPTP (Chiara et al., 2008). We would suggest that the HKII dislodging peptide fully opens VDAC, either due to loss of HK or other VDAC-regulating proteins, such as tubulin (Sheldon et al., 2013). VDAC is the most abundant protein of the OMM and is responsible for the transport of ADP/ATP and other metabolites (e.g, NADH, Ca$^{2+}$) across the OMM (Colombini, 2004; Rostovtseva et al., 2005; 2008A). VDAC can change between an open and “closed” state, which is almost impermeable to ADP and ATP, and may thereby regulate mitochondrial respiration. The binding of several cytosolic proteins (tubulin, Bcl-2, Bcl-xL, HK) with VDAC, in combination with OMM lipid composition and trans-membrane potential, regulate VDAC conductance. It was recently demonstrated that dimeric tubulin, known to interact with mitochondria in vivo, induced voltage-sensitive closure of VDAC, reducing ADP availability and thereby
mitochondrial respiration (Rostovtseva et al., 2008B). Preliminary data (Sheldon et al., 2013) now shows that the HKII dislodging peptide disrupts HKII and tubulin binding to VDAC in planar lipid bilayers, resulting in unregulated permeability of VDAC that may ultimately results in large ADP influx, decreasing the mitochondrial membrane potential to a critical level of spontaneous mPTP opening.

2) Stabilization of mitochondrial contact sites during ischemia preventing CytC release. mtHKII may alternatively prevent OMM rupture and/or permeabilisation by stabilization of mitochondrial contact sites. Hexokinase is preferentially bound to mitochondria at locations where the IMM comes closest to the OMM (Brdiczka et al., 2006). These contact sites contain large protein complexes consisting of VDAC, ANT, cytochrome C, benzodiazepine receptor, cyclophilin D, cardiolipin, HK and creatine kinase. In reconstituted vesicles, disruption of HK from these protein complexes increases their permeability, which could be interpreted as analogous to increased permeability of the OMM and/or mPTP (Beutner et al., 1998). It has been suggested that during ischemia, progressive acidosis and G6P accumulation dislodge HK from mitochondria (Pasdois et al., 2013). Such decrease in mtHK, together with increased Ca$^{2+}$, disrupts the contact sides resulting in an increased permeability of the OMM for cytochrome c release. Knowing that oxidized cytochrome C is an important anti-oxidant, the loss of cytochrome C will result in increased ROS production at early reperfusion (Pasdois et al., 2011, 2013), finally resulting in mPTP opening and infarction.

3) Maintaining mitochondrial ADP to inhibit mPTP and reduce ROS. The activity of HK at the mitochondrial surface rapidly returns ADP back to the inner mitochondrial compartment via VDAC and ANT, thereby ensuring high levels of ADP in the vicinity of F$_{0}$F$_{1}$ ATPase dimers at early reperfusion. This “ATP/ADP” shuttle has been shown to reduce the mitochondrial membrane potential and limit ROS production (Da-Silva et al., 2004; Santiago et al., 2008; Wu et al., 2012). The reduction in ROS production offered by active mtHK can range from >90% (going from zero to normal mtHK levels in isolated brain mitochondria; Da-Silva et al., 2004), to 70% (with activation of mtHK in isolated rat heart mitochondria; Santiago et al., 2008) and to 20% (with 40% increase in mtHKII in neonate rat cardiomyocytes; Wu et al., 2012).

4) Inhibition of ATP hydrolysis during ischemia. Maintaining HKII at the mitochondria during ischemia may impair cytosolic ATP entrance into the mitochondria (Perevoshchikova et al., 2010) during ischemia, thereby attenuating mitochondrial hydrolysis of cytosolic ATP (through reversed mode of mitochondrial F$_{1}$F$_{0}$ATP synthase). Prevention of a critical depletion of ATP by the mitochondria during ischemia can significantly reduce anaerobic glycolysis and lactate accumulation, cardiac contracture and cell death induced by IR interventions (Steenbergen et al., 1990; Jennings, 2013).

Structural obstruction of pro-apoptotic protein binding to mitochondria. It has been proposed, in cellular studies employing oxidant agents, that mtHKII may be cytoprotective through structural opposition to the mitochondrial binding of pro-apoptotic proteins such as Bax or Bad (Pastorino et al., 2002). However, we and others have been unable to show a role for Bax in mtHKII-mediated protection against IR injury in isolated hearts (Smeeele et al., 2011A; Pasdois et al., 2013) or skeletal muscle (Smeeele et al., 2012). The purely structural basis of mtHKII cytoprotection by steric hindrance is also challenged by several studies which demonstrate that glucose must be present in order for HK to offer protection against cell death (Gottlob et al., 2001; Mergenthaler et al., 2013). Furthermore, Majewski et al. (2004) demonstrate that the protection offered through hexokinase-mitochondria interaction does not necessitate the presence of Bax and Bak. Thus, it seems that Bax and Bad do not play a significant role in mtHKII protection against IR injury.
Targeting Hexokinase to Mitochondria (Figure 3)

It is clearly established in numerous cardiovascular disease models and in skeletal muscle ischemia-reperfusion interventions that the amount of HKII bound to mitochondria is a major determinant of infarct size and/or disease progression (Smeele et al., 2010, 2011A, 2012; Wu et al., 2011, 2012). In fact, the Halestrap laboratory recently reported a strong inverse correlation between the amount of end-ischemic mtHKII and infarct size in the isolated rat heart subjected to different perfusion condition: tripling of mtHKII reduced infarct size from 65% to 5% (see Fig. 9, Pasdois et al., 2013). Development of new therapies directed at increasing and/or keeping HKII at the mitochondria therefore seems like an attractive cardioprotective approach. Below we summarize the most promising interventions which have been shown to raise total HK or specifically mtHKII, for exploration of their (clinical) potential as adjunct therapy in settings of ischemia-reperfusion and possible chronic diseases such as diabetes, cardiac hypertrophy and heart failure.

“Conditioning” of the heart: In 2005 we demonstrated that an IPC stimulus immediately translocates HK to the mitochondria in isolated rat hearts (Zuurbier et al., 2005). Subsequently, we have also shown that IPC also prevents HKII detachment from mitochondria during the irreversible period of ischemia (Gürel et al., 2009). These studies were later partly confirmed by Pasdois et al. (2011, 2013). Such IPC interventions can be performed clinically for leg or arm surgeries, but applicability for the heart is not directly feasible. However, the discovery that the heart can also be protected through remote ischemic preconditioning (RIPC) or post-conditioning, opened an avenue to cardiac application of the “conditioning” phenomenon. Since the intracellular signalling pathways providing protection with IPC overlap to a large extent with those of RIPC (e.g. Li et al., 2011), it is anticipated that RIPC may also translocate HKII to mitochondria. This information is however lacking in the literature. Our currently active clinical mtHK-RIPC trial (NTR2915, Nederlands Trial Register) of RIPC in CABG patients, examines the relationship between RIPC protection and mtHKII in human atrial tissue, and will hopefully provide this much needed information.

Insulin/PI3/Akt/GSK-3β axis: Several studies have demonstrated that activation of this pathway will acutely (< 30 min) increase HKII trafficking to the mitochondria (Russell et al., 1992; Pastorino et al., 2005; Zuurbier et al., 2005, Southworth et al., 2007; Miyamoto et al., 2008) and later on increases HKII expression. Juhaszova et al. (2004) demonstrated that many cardioprotective agents confer protection through phosphorylation of GSK-3β and consequently inhibition of mPTP. Although many other studies can subsequently be found that have demonstrated cardioprotection with activation of this pathway, none of them have directly examined whether this was due to increased mtHKII (e.g. Ng et al., 2012; Terashima et al., 2010; Hausenloy et al., 2005). A disadvantage of using this pathway to advance mtHKII is of course its pleiotropic character, with unwanted side effects increasing with every step upstream above HKII. For example, insulin may increase HKII translocation to mitochondria, but at the same time may not only result in hypoglycemia, but also in hypolipidemia (Zuurbier et al., 2008). It therefore seems advisable to use more specific treatment for increasing mtHKII.

Anesthesia: The use of specific anaesthetics for providing protection against IR injury is an attractive scenario in surgeries that necessitate anaesthesia. Pre-clinical studies in healthy, young animals almost all report protective effects of certain volatile anaesthetics (sevoflurane, isoflurane) and opiates (morphine). These protective anaesthetics also commonly activate the PI3/Akt/GSK-3β axis. However, these protective effects were not always observed in clinical studies employing e.g. CABG procedures (De Hert et al., 2011). The ambiguity in the clinical
scenario potentially results from co-morbidities (diabetes, aging, and hypertrophy) and co-
medications (e.g. statins, dexamethasones, opioids, nitroglycerine, β-blockers) which disturb
the signalling pathway. Using several different anaesthetic regimens in healthy rats, we were
able to demonstrate that the cardioprotective volatile anaesthetics sevoflurane and isoflurane
did indeed maintain HK at cardiac mitochondria at a level similar to the non-anesthetised
animal (Zuurbier et al., 2008). An anaesthetic regimen of propofol-sufentanil-morphine, also
often used in the clinical arena, resulted in solubilisation of HK from the mitochondria. It can
be speculated that the divergent effects of these two clinically most used anaesthetic regimens
(volatile anaesthesia versus fentanyl-propofol anaesthesia) on mtHKII may also explain the
dissipating effect of propofol anaesthesia on RIPC protection (Kottenberg et al., 2012).
Further studies will be needed to test this hypothesis directly. In conclusion, although certain
anaesthetics may indeed offer protection through increases in mtHKII, the many cellular
signalling steps that exist between the start of protection induced by an anaesthetic agent to
the final subcellular HKII translocation is prone to be disturbed by many clinical and disease
factors, thereby decreasing its likeliness as an ideal option offering IR protection under
clinical conditions.

Metformin: The glucose-lowering anti-diabetic drug metformin has been shown to be
cardioprotective beyond its antihyperglycemic properties. It reduces infarct size in both
diabetic and non-diabetic animals (Whittington et al., 2013; Bhamra et al., 2008; Calvert et al.,
2008; Solskov et al., 2008). In addition, multiple clinical studies showed reduced
cardiovascular mortality in diabetic patients treated with metformin (El Messaoudi et al.,
2013). These cardioprotective effects may be caused by increased mtHK activity. Metformin
treatment reverses the downregulation in total HK activity, and has been shown to increase
HK translocation to the mitochondria in diabetic hearts without adversely affecting normal
hearts (Da Silva et al., 2012). Whether metformin will increases (mt)HK in hearts during IR
to afford protection remains to be examined, but 2 weeks of metformin treatment has
previously been demonstrated to increase HK activity in rat white gastronomicus muscle
(Suwa et al., 2006). This increase in HK might be explained by an increase in Akt
phosphorylation after metformin treatment during reperfusion (Bhamra et al., 2008).
However, Akt phosphorylation was not observed when metformin was given before
ischaemia (Bhamra et al., 2008; Calvert et al., 2008). Alternatively, metformin may increase
HK activity through activation of AMPK. Increases in AMPK activity have been associated
with increased HK activity in skeletal muscle (Holmes et al., 1999; Dieni & Storey, 2011).
Metformin may activate AMPK through increases in AMP resulting from inhibition of
complex I (Owen et al., 2000) and/or AMP deaminase (Ouyang et al., 2011; Vytla et al.,
2013). Metformin is one of the most long-standing prescribed drugs in diabetes, showing
relatively high efficacy. It will be interesting to elucidate whether a common mechanism of
this drug entails the translocation of HK to the mitochondria, to identify a cellular
mechanisms for its cardioprotective effects.

miR-155/miR-143 therapy: MicroRNAs (miR) have recently been discovered as yet another
level of regulation in biological function. miRs are non-protein-coding RNAs of 20-30
nucleotides, which silence gene expression at the post-transcriptional level by targeting the 3’-
untranslated region of messenger RNA. The use of miR therapeutics in cardiovascular
medicine is only starting to develop, although several studies have already demonstrated the
feasibility of such an approach (Thum, 2011). HKII has been shown to be regulated by miR-
155 and miR-143 in cancer cells (Jiang et al., 2012; Peschiaroli et al., 2012). Increases in miR-
155 induced HKII expression through activation of a HKII transcriptional activator (STAT3)
and repression of a negative regulator of HKII, miR-143. Matkovich et al. (2013) recently
demonstrated that cardiac overexpression of miR-143 was also able to suppress HKII mRNA
in the heart with no indirect target regulation. Therapies may therefore be developed which
employ synthetic complementary oligonucleotides against miR-143 and/or adeno-associated virus containing miR-155 to specifically increase cardiac HKII and offer protection during IR interventions.

Heat shock proteins: HKII has recently shown to be released from mitochondria in tumour cells during inhibition of mitochondrial HSP90 (Chae *et al.*, 2012). HSP90 has previously been demonstrated to have cardioprotective capacity (Latchman *et al.*, 2001; Xiang *et al.*, 2010) and the mitochondrial heat shock protein, tumour necrosis factor receptor-associated protein 1 (TRAP1), is known to be present in the heart (Xiang *et al.*, 2010). A therapy directed at increasing mitochondrial HSPs, either through heat treatment or gene therapy, may therefore also have cardioprotective potential by increasing mtHKII.

Detrimental effects of persistent elevated mtHKII in the heart?

The previous sections illustrate the many pro-survival effects of augmenting HKII-mitochondria binding within the heart. This raises the question that if mtHKII is such a powerful protector of the myocardium, why is HKII not permanently bound to mitochondria in the healthy heart? We hypothesize that irreversibly bound mtHK would hamper the natural occurrence of mitochondrial depolarisation needed to maintain mitochondria healthy. Since mitochondrial depolarisation is a trigger signal for mitochondrial recycling through mitophagy, prevention of depolarisation may result in accumulation of dysfunctional mitochondria and ultimately a dysfunctional heart. This is supported by the apparent benefit afforded by dichloroacetate (DCA) in the treatment of pulmonary hypertension, right heart failure (McMurtry *et al.*, 2004), hyperthyroid hypertrophy (Atherton *et al.*, 2011) and cancer (Bonnet *et al.*, 2007; Michelakis *et al.*, 2010). DCA induces mitochondrial depolarisation, which may at least partly be explained through disruption of hexokinase-mitochondrial binding (Michelakis *et al.*, 2010). The often observed hyperpolarised mitochondria in cancer cells (Bonnet *et al.*, 2007; Chen *et al.*, 1988) is consistent with their increased mtHKII as characterised by the Warburg effect. Permanently increasing mtHKII binding would also increase baseline aerobic glycolysis, and subsequently retard cellular signalling and mitochondrial activation, required for rapid responsive change in cardiac workload (Zuurbier *et al.*, 2002; Harrison *et al.*, 2003). Such retardation of mitochondrial activation may temporarily impair the free energy of ATP hydrolysis through elevation of cytosolic ADP (Van Beek *et al.*, 1998). Finally, the upregulated glycolysis caused by permanent association of HK to cardiac mitochondria would presumably switch off fatty acid oxidation through the Randle effect, resulting in a less efficient heart when oxygen is not limiting, and a redirection of fatty acids towards lipid accumulation in the heart. The chronic elevated glucose uptake may also result in an increased accumulation of glucose-6-phosphate, resulting in chronic mTOR activation concomitant with an activated ER stress response (Sen *et al.*, 2013). Interestingly, lipid accumulation, chronic mTOR activation and ER stress are all biochemical markers of cardiac failure (Sharma *et al.*, 2004; Shioi *et al.*, 2003), a known condition with elevated cardiac HK. It should be realised that the schemes discussed above are purely hypothetical, no evidence currently exists that has demonstrated detrimental effects of excessive mtHKII levels for the heart. However, future work may be devised to provide answers to these important questions of possible detrimental effects of too much mtHKII for the heart.

In conclusion, the association of HKII with mitochondria is a critical determinant of cardiomyocyte death, making it a potential drug target in the treatment of cardiovascular ischemic diseases. It seems that in HK-mitochondrial binding, the two human diseases with
the largest impact on human mortality and morbidity, cancer and cardiovascular disease, share a similar, but directionally opposing, cellular mechanism: mtHK binding is increased in malignant cancer providing it with resilience against cell death, whereas it is decreased during cardiac infarction and thereby contributes to cardiac cell death. The challenge is now to target this mechanism which governs whether cells live or die in the treatment of cardiovascular diseases, with a minimum of collateral damage.

Supported by a grant of the Dutch Heart Foundation (NHS2010B011)

Conflict of Interests: None
References

Pedersen PL (2007). Warburg, me and hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg effect”, i.e. elevated glycolysis in the presence of oxygen. J Bioeng Biomembr 39: 211-222.

Zuurbier CJ, Ince C (2002). Post-ischaemic changes in the response time of oxygen consumption to demand in the isolated rat heart are mediated partly by calcium and glycolysis. Pflügers Arch 443: 908-916.

Figure Legends

Figure 1 Schematic representation of cardiac disease states with low or high sensitivity to IR injury which is associated with protected mitochondria (high mtHK) or vulnerable mitochondria (low mtHK), respectively.

Figure 2 Schematic drawing of the mitochondrial permeability transition pore complex dictating cell death through decreases in mtHK induced by ischemia-reperfusion. The most likely mechanisms (1-4) through which disruption of hexokinase II – mitochondrial binding may cause cell death are displayed. (see text for further discussion).

Figure 3 Intracellular signalling pathways showing how different interventions (“conditioning”) and compounds such as cytokines, insulin, metformin, miRNA’s and anesthetics may increase HKII expression and/or HKII translocation to mitochondria. GPCR, G protein-coupled receptor; IR, insulin receptor; JAK, Janus kinase; SOCS1, suppressor of cytokine signalling 1; STAT3, signal transducer and activator of transcription3; AMPK, AMP-activated protein kinase; PI3K, phosphoinositide 3-kinase; Akt, protein kinase B; PKC, protein kinase C; GSK, glycogen synthase kinase; C1, complex I of the electron transport chain.
Figure 1

- "preconditioned"
- compensated hypertrophy
- post-MI
- recurrent ischemia
- dilated heart
- ischemia in "early" diabetic

↑ mtHK

protected mitochondria

- prolonged ischemia
- decompensated heart failure
- "late" diabetic
- hyperglycemia

↓ mtHK

vulnerable mitochondria

low sensitivity to IR injury

high sensitivity to IR injury
Figures 2 and 3 depict the mechanisms of cell death.

Possible mechanisms of cell death:

1. Unregulated permeability of VDAC → dissipation of \(\Delta \Psi_m \) → ↑ mPTP
2. ↑ OMM permeabilization → CytC release → ↑ ROS → ↑ mPTP
3. ↓ ATP/ADP shuttle → ↑ Δψm → ↑ ROS → ↑ mPTP
4. ↑ ATP into mitochondria →↑ ATP hydrolysis during ischemia → critical ATP depletion → ↑ mPTP