Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
SREBP1, PPARG and AMPK pathways mediated the Cu-induced change in intestinal lipogenesis and lipid transport of yellow catfish *Pelteobagrus fulvidraco*

Guang-Hui Chen, Zhi Luo, Christer Hogstrand, Kun Wu, Shi-Cheng Ling

PII: S0308-8146(18)31187-7
DOI: https://doi.org/10.1016/j.foodchem.2018.07.048
Reference: FOCH 23163

To appear in: *Food Chemistry*

Received Date: 27 September 2017
Revised Date: 8 June 2018
Accepted Date: 8 July 2018

Please cite this article as: Chen, G-H., Luo, Z., Hogstrand, C., Wu, K., Ling, S-C., SREBP1, PPARG and AMPK pathways mediated the Cu-induced change in intestinal lipogenesis and lipid transport of yellow catfish *Pelteobagrus fulvidraco*, *Food Chemistry* (2018), doi: https://doi.org/10.1016/j.foodchem.2018.07.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
SREBP1, PPARG and AMPK pathways mediated the Cu-induced change in intestinal lipogenesis and lipid transport of yellow catfish *Pelteobagrus fulvidraco*

Guang-Hui Chen\(^a\), Zhi Luo\(^{a,b,*}\), Christer Hogstrand\(^c\), Kun Wu\(^a\), Shi-Cheng Ling\(^a\)

\(^a\)Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China
\(^b\)Collaborative Innovation Center for Efficient and Health Production of Fisheries, Hunan University of Arts and Science, Changde 415000, China
\(^c\)Diabetes and Nutritional Sciences Division, School of Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK

*Corresponding author. Prof. Zhi Luo, Tel.: +86-27-8728-2113; Fax: +86-27-8728-2114; Email address: luozhi99@mail.hzau.edu.cn; luozhi99@aliyun.com (Z. Luo).

Abstract

Cu could act as a modifier and influence lipid metabolism, but the potential mechanism was not explored. Juvenile yellow catfish were fed diet containing 0.71 (low Cu), 3.93 (intermediate Cu) and 88.81 (high Cu) mg Cu kg\(^{-1}\), for 8 weeks to explore the modulation of intestinal lipid metabolism following dietary Cu addition. Using specific pathway inhibitors (Fatostatin for SREBP1, T0070907 for PPARG and Compound C for AMPK), primary enterocytes of yellow catfish were used to explore the molecular mechanisms of Cu reducing intestinal lipid deposition. Dietary Cu addition triggered Cu accumulation but suppressed lipid deposition in the fore- and mid-intestine. The reduced lipid deposition was attributable to the suppressed lipogenesis and lipid absorption, and accelerated lipid transport. The PPARG, SREBP1 and AMPK signaling pathways mediated the Cu-induced changes in lipogenesis, lipid uptake and lipid transport in the intestine of yellow catfish.

Keywords: Copper; Intestine regionalization; Lipid metabolism; Signal pathway;
Vertebrate animals

Abbreviations

ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; ANOVA, one-way analysis of variance; Apo, apolipoprotein; CC, Compound C; CD36, fatty acid translocase; CM, chylomicrons; Cu, copper; F, Fatostatin; FABP, fatty acid-binding protein; FAS, fatty acid synthase; FATP, Fatty acid transport protein; FBW, final mean body weight; FI, feed intake; G6PD, glucose 6-phosphate dehydrogenase; H&E, hematoxylin-eosin; ICDH, isocitrate dehydrogenase; ICP-AES, inductively coupled plasma atomic emission spectrometry; IBW, initial mean body weight; LPL, lipoprotein lipase; MTP, microsomal triglyceride transfer protein; ME, malic enzyme; PPAR, peroxisome proliferators-activated receptor; qPCR, real-time fluorescence quantitative PCR; SEM, standard error of means; SGR, specific growth rate; SR, survival rate; SREBP, sterol-regulator element-binding protein; T, T0070907; TG, triacylglycerol; WG, weight gain.

1. **Introduction**

Copper (Cu) is a vital trace element for all animals, including fish. It is co-factor of many enzymes and plays important roles in many physiological processes of animals (Watanabe et al., 1997). Studies have shown that dietary Cu deficiency reduced appetite and growth performance (Tan et al., 2011; Chen et al., 2015; Wang et al., 2016). In contrast, excessive Cu in diet can be toxic and cause growth retardation, oxidative stress and intestine damage (Chen et al., 2015; Wang et al., 2016).
Lipids are critical to maintain cellular energy homeostasis and serve a vast array of functions in animals, including fish. Lipid deposition and metabolism are complex processes, involved in the balance among lipogenesis, lipolysis, lipid absorption and transport. In mammals, studies showed that Cu acted as a modifier and influence lipid metabolism (Burkhead et al., 2013). In contrast, in fish, mechanistic studies on how Cu altered lipid metabolism was very scarce. Recently, Chen et al. (2015) investigated the Cu-induced changes in activities and mRNA expression of enzymes and genes involved in lipid metabolism (such as G6PD, 6PGD, ACC, FAS, PPARα, PPARγ and SREBP-1) in three tissues of yellow catfish, but not in the intestine. However, Chen et al. (2015) did not investigate the Cu-induced changes of lipid uptake and transport, and of the related signaling pathways. In fish, the intestine is the main organ for dietary Cu absorption (Handy, 1992), and lipid absorbed by the intestine is mainly derived from the diet. However, in fish, limited information was available on effects of dietary Cu levels on the intestinal lipid metabolism. Moreover, different intestinal regions possessed different characteristics of lipid absorption and transport because of their marked anatomical differences. Thus, it will be very interesting and challenging to investigate these differences in intestinal regionalization of fish fed different mineral (also Cu) diets. To this end, the present study was conducted to determine the effect of dietary Cu levels on fore- and mid-intestinal lipid deposition and metabolism in yellow catfish *Pelteobagrus fulvidraco*, which are omnivorous freshwater fish and widely cultured in China and other Asian countries. Primary enterocytes of yellow catfish were used to explore the potential signaling pathways for the Cu-induced changes of intestinal metabolic responses.

2. Materials and methods
The experiment performed on animals based on the Guide of Huazhong Agricultural University for the care and use of laboratory animals. In Expt. 1 and Expt. 2, Cu, in the form of CuSO₄·5H₂O, was added.

2.1. Expt. 1: in vivo study

2.1.1. Diet preparation

Three experimental diets were formulated with CuSO₄·5H₂O supplemented at levels of 0, 0.013 and 0.39 g kg⁻¹ diet at the expense of cellulose (Tan et al., 2011; Cheng et al., 2017), as shown in Supplementary Table 1. Dietary Cu concentrations were analyzed in triplicate using ICP-AES, and the contents were 0.71 (low Cu), 3.93 (intermediate Cu), and 88.81 (high Cu) mg Cu kg⁻¹ diet.

2.1.2. Experimental procedure

The experimental procedures were similar to our previous study (Chen et al., 2015) as described in Cheng et al. (2017). Briefly, 216 juvenile yellow catfish (initial mean weight: 0.78 ± 0.01 g, mean ± SEM, mixed sex) were randomly divided into 9 tanks, 24 fish per tank. They were provided with three experimental diets, three replicate tanks for each diet, for 8 weeks. Fish were fed to apparent satiation twice daily during the experiment. The water in the tanks was continuously aerated to maintain the dissolved oxygen level near saturation. During the experiment, water was renewed twice daily to maintain good quality.

After the 8-wk feeding experiment, 24 h after the starvation, fish were euthanized (MS-222 at 100 mg/l), counted and weighed to determine survival, WG and SGR. Then, fish were dissected, and the contents of the intestine were gently scraped off on ice. The fore-intestine (from the end of the stomach to the first loop of the intestine) and mid-intestine (from the first loop to the last loop) were used for the
following analysis, including Cu and TG contents, enzymatic activities and mRNA expression.

2.2. Expt. 2: in vitro study

2.2.1. Cell isolation and cultures

Enterocytes were isolated from yellow catfish based on the methods of Chen et al. (2009). Using primary enterocytes of yellow catfish, 3 independent experiments were conducted. In Expt. 2A, primary enterocytes received 1 of 4 treatments: control (0.01% DMSO), 10μM Cu, 10μM Fatostatin (specific inhibitor for SREBP1), 10μM Fatostatin, 10μM Cu + 10μM Fatostatin. In Expt. 2B, primary enterocytes received 1 of 4 treatments: control (0.01% DMSO), 10μM Cu, 1μM T0070907 (specific inhibitor for PPARG), 10μM Cu + 1μM T0070907. In Expt. 2C, primary enterocytes received 1 of 4 treatments: control (0.01% DMSO), 10μM Cu, 1μM Compound C (specific inhibitor for AMPK), and 10μM Cu + 1μM Compound C. The inhibitors were provided 2 h before Cu incubation. Based on the published literatures and our pilot studies, we determined the suitable concentrations of Cu and specific inhibitors (Lee et al., 2002; Wu et al., 2016; Chen et al., 2017).

2.3. Sample analysis

2.3.1. Cell viability and contents of Cu, TG and ATP

Cell viability and contents of Cu, TG and ATP were quantified based our published methods (Liu et al., 2010; Wu et al., 2016). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. TG content was measured by glycerol-3-phosphate oxidase p-aminophenol (GPO-PAP) methods using a commercial kit (Nanjing Jian Cheng Bioengineering Institute, Nanjing, China). ATP content was analyzed using an ATP Assay Kit.
Beyotime, Haimen, China). Cu content was examined by the method of ICP-AES.

2.3.2. Enzymatic activities analysis

Five intestinal lipogenic enzymes activities, such as 6PGD, G6PD, ME, ICDH and FAS, were determined as described in the study by Chen et al. (2015). One unit of enzyme activity was defined as 1 μM of substrate converted to product per minute at 28 °C and was expressed as mU mg\(^{-1}\) soluble protein. The protein concentration was determined using BSA as standard (Bradford, 1976).

2.3.3. Gene expression analysis

Gene expression level was examined using real-time quantitative fluorescence PCR (qPCR) (BIO-RAD, USA) as described by Chen et al. (2015). A specific pair of PCR primers for every gene were given in Supplementary Table 2. The qPCR conditions were followed: 95°C for 30s, followed by 40 cycles at 95°C for 5s, 57°C for 30s and 72°C for 30s. By the detection of β-actin, gapdh, rpl7, b2m, hprt, elfa and tuba, we selected the most stable two genes as endogenous control by the geNorm software under the experimental conditions. The relative expression levels were calculated using the \(2^{-\Delta\Delta Ct}\) method.

2.4. Statistical analysis

Statistical analyses were analyzed by the SPSS 19.0 software and presented as mean ± SEM. Kolmogorov-Smirnov test was used for testing the normal distribution of all data. Bartlett’s test was performed for testing the homogeneity of variances. One-way ANOVA and Duncan’s multiple range test were used to analyze the differences among three groups. The interaction of Cu and inhibitors in the \textit{in vitro} studies were performed by two-way ANOVA. It was considered significant when \(P < 0.05\).
3. Results and Discussion

3.1. Expt. 1: in vivo study

3.1.1. Growth performance and Cu contents

WG, SGR and FI were the highest but FCR was the lowest in intermediate Cu group and did not show marked changes between other two groups (Table 1), indicating that yellow catfish fed low- and high Cu diets showed growth restriction and lower feed utilization, in agreement with our earlier reports (Tan et al., 2011; Chen et al., 2015). Survival was the lowest for fish fed high dietary Cu and showed no marked changes between other two groups, revealing that excessive Cu was toxic for yellow catfish. In the fore- and mid-intestine, Cu contents increased with increasing dietary Cu levels (Fig. 1A), similar to other reports (Lundebye et al., 1999; Shaw et al., 2006).

3.1.2. Intestinal TG contents, lipogenic enzyme activities and genes expression

Intestinal TG contents declined with increasing dietary Cu levels (Fig. 1B). In the fore-intestine, dietary Cu addition tended to reduce activities of ICDH, FAS, G6PD and ME (Fig. 1C), down-regulated mRNA levels of 6pgd, g6pd, fas, fatp4, fabp2 and cd36, and up-regulated mRNA levels of mtp, apoai, apob and lpl. acca mRNA expression was unaffected by dietary Cu addition (Fig. 2). In the mid-intestine, dietary Cu addition tended to reduce activities of ICDH and FAS (Fig. 1C), and down-regulated mRNA levels of 6pgd, g6pd, fas, acca, fatp4, fabp2 and cd36, and up-regulated mRNA levels of mtp, apoai, apob and lpl (Fig. 2). In contrast, G6PD and ME activities in the mid-intestine were lowest for intermediate-Cu diet group. G6PD, 6PGD, ICDH, ME, FAS and ACC are the important lipogenic enzyme and directly
involved in fatty acids biosynthesis (Elliot and Elliot, 2009). Dietary Cu-induced reduction in activities of lipogenic enzymes and gene expression would contribute to the reduction in lipogenesis, consistent with reduced TG content. fatp4, fabp2 and cd36 are important factors in the FA transporters (Lagakos et al., 2011; Sánchez-Gurmaches et al., 2012). Cu-induced reduction in mRNA expression of fatp4, fabp2 and cd36 was assumed to reduce fatty acids uptake, which would in turn reduce TG content. In fish, similar to mammals, lipids are exported from the intestine in the form of lipoproteins (Kjær et al., 2009). ApoAI, ApoB, MTP and LPL participated in lipoprotein metabolism and played important roles in intestinal lipid transport (Nilsson-Ehle et al., 1980; Hussain et al., 2003; Gu et al., 2014). In the present study, dietary Cu-induced up-regulation of mRNA levels of apoai, apob, mtp and lpl in the fore- and mid-intestine indicate that the decrease in intestinal TG content might partially be due to the fact that Cu accelerated lipid transport in the intestine.

In the fore-intestine, compared to fish fed low-Cu diet, dietary Cu addition down-regulated mRNA levels of pparg and srebp1, and up-regulated mRNA levels of ampka1, ampkb1, ampkb2, ampkg1 and ampkg2. mRNA expressions of ppara and ampka2 were unaffected by dietary Cu addition (Fig. 2). In the mid-intestine, compared to fish fed low-Cu diet, dietary Cu addition down-regulated mRNA expression of pparg and srebp1, up-regulated mRNA levels of ampka1, ampka2, ampkb1 and ampkg1. mRNA levels of ppara, ampkb2 and ampkg2 were not significantly affected dietary Cu addition (Fig. 2). PPARα, PPARγ and SREBP 1 are key transcriptional factors which regulate lipid metabolism (Zheng et al., 2013; Wei et al., 2017). AMPK acts as an energy sensor and regulator of energy balance at the cellular and whole-body levels (Wu et al., 2017). Thus, Cu-induced changes of mRNA expression of pparg, srebp1 and ampk family members indicated that they
potentially mediated the Cu-induced regulation of lipid metabolism.

3.2. Expt. 2: in vitro study

3.2.1. Cell viability, TG and ATP contents

In order to further confirm whether pparg, srebp1 and ampk mediated the Cu-induced regulation of lipid metabolism, Fatostatin (specific inhibitor for SREBP1), T0070907 (specific inhibitor for PPARG) and CC (specific inhibitor for AMPK) were used and primary enterocytes of yellow catfish were cultured. Our study indicated that cell viability was unaffected by these inhibitors (Fig. 3A). Co-treatment with Cu and T0070907 or Compound C interacted (P-interaction < 0.05) to affect TG and ATP contents (Fig. 3B). Cu incubation reduced intracellular TG and ATP contents (Fig. 3B), and enterocyte TG content was unaffected by single Fatostatin, T0070907 or Compound C. However, Fatostatin or T0070907 pre-treatment accentuated the Cu-induced reduction in TG content, and CC pre-treatment alleviated the Cu-induced reduction in TG content. CC pre-treatment also significantly reduced the intracellular ATP content, but CC pre-treatment alleviated the Cu-evoked reduction in ATP content (Fig. 3C). These results supported that pparg, srebp1 and ampk family members mediated the Cu-induced regulation of lipid metabolism.

3.2.2. Enzymatic activities and genes expression

In order to determine the mechanism of pparg, srebp1 and ampk pathways mediated the Cu-induced regulation of lipid metabolism, we further determined many key enzymes and genes involved in lipid metabolism. Cu and Fatostatin co-treatment interacted (P-interaction < 0.05) to affect activities of ME and FAS (Fig. 4A), and the mRNA expression of acca, fas, fabp2, mtp and srebp1 (Fig. 5A). Compared to the Cu-incubated group, Fatostatin pre-treatment accentuated Cu-induced reduction of
activities of ICDH, ME and FAS, accentuated Cu-induced reduction of mRNA concentrations of *acca, fas, fabp2* and *srebp1*, and accentuated Cu-induced up-regulation of *mtp* and *lpl* mRNA concentrations, which would help reduce lipid content in enterocytes. SREBP-1 is involved in FA synthesis (Horton and Shimomura, 1999). The Cu-induced down-regulation of *srebp1* expression, as observed in the present study, would reduce lipid deposition in the intestine by decreasing lipid synthesis, as reported by Horton and Shimomura (1999). Similarly, Chen et al. (2017) found that Fatostatin pre-treatment down-regulated mRNA concentrations of *6pgd, me, fas, acc* and *srebp1* in the hepatocytes of *Synechogobius hasta* (marine teleost) exposed to Fe. Thus, these observations indicated that Cu-evoked alterations in lipid metabolism, at least in part, was via the SREBP1 pathways.

The present study indicated that co-treatment with Cu and T0070907 interacted (*P*-interaction <0.05) to affect activities of G6PG, ICDH and FAS (Fig. 4B) and mRNA concentrations of *acca, fas, fatp2, cd36, apob, lpl* and *pparg* (Fig. 5B). Compared to the Cu-incubated group, T0070907 pre-treatment accentuated Cu-induced reduction of ICDH, ME and FAS activities, accentuated the Cu-induced reduction of mRNA concentrations of *fas, fabp2, cd36, and pparg*, and accentuated the Cu-induced up-regulation of mRNA concentrations of *mtp, apob* and *lpl*. Considering that PPARG regulates the expression of the genes coding for lipogenic enzymes and mediates TG synthesis (Chen et al., 2015), the present study indicated that PPARG pathway mediated the observed changes in lipid deposition induced by Cu. Most importantly, our data provided direct evidence that PPARG pathways also mediated intestinal lipid uptake and transport.

In the present study, co-treatment with Cu and Compound C interacted (*P*-interaction <0.05) to affect activities of ICDH, ME and FAS (Fig. 4C), and the
mRNA concentrations of 6pgd, g6pd, acca, fas, fabp2, cd36, mtp, apoai, apob, ampkb1 and ampkg2 (Fig. 5C). Compared with the Cu-incubated group, Compound C pre-treatment significantly alleviated Cu-induced down-regulation of the lipogenic enzymes' activities (ICDH, ME and FAS) (Fig. 4C) and genes expression (6pgd, g6pd, acca, fas) as well as lipid absorption-related genes expression (fatp4, fabp2, cd36), and reduced the Cu-induced increase of lipid transport-related gene expression (mtp, apoai, lpl) and mRNA levels of AMPK subunits (ampkb1, ampkg2) (Fig. 5C). Thus, the Cu-induced up-regulation of gene expression of AMPK members may constitute a link between Cu and enzymatic activities/ genes expression in yellow catfish. The AMPK pathway acts as an intracellular regulator in energy homeostasis, and is activated by ATP depletion or increasing AMP/ATP ratio (Wu et al., 2016). The activation of AMPK pathway was likely attributable to cellular ATP depletion, as shown in the reduction of ATP content, also in agreement with the report by Wu et al. (2016). Other studies indicated that the changes in lipid metabolism after AMPK activation were accompanied by the reduced ACC activity in rats and mice, and decreased TG content in hepatocytes of rats (Muoio et al., 1999; You et al., 2004). Taken together, AMPK pathway took part in the activation of Cu-induced variation in lipogenesis, lipid absorption and lipid transport.

In conclusion, our study demonstrated that dietary Cu addition triggered Cu accumulation but lower TG storage in the fore- and mid-intestine of yellow catfish. The reduced lipid deposition was attributable to the suppressed lipogenesis and lipid absorption, and accelerated lipid transport. PPARG, SREBP1 and AMPK pathways mediated the Cu-induced changes in lipogenesis, lipid absorption and lipid transport in enterocytes of yellow catfish.
Conflict of Interest

The authors declare no conflicts of interest with the contents of this article.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (grant no. 31422056) and the Fundamental Research Funds for the Central Universities, China (grant no.: 2662018PY089).

Contributions of authors are as follows: Z. L and G-H. C. designed the experiment and analyzed the data with the help of Hogstrand, C.; K. W. conducted the vitro experimental; S-C. L and. D-G. Z.: assisted with conducting the feeding trial and sample analysis; Y-H. X. helped with analysis of gene expression and enzymatic activities; Z. L. and Hogstrand, C. revised the manuscript; and all authors read and approved the final manuscript.

References

Chen, F., Luo, Z., Chen, G. H., Shi, X., Liu, X., Song, Y. F., Pan, Y. X., 2016. Effects of waterborne Cu exposure on intestinal copper transport and lipid metabolism of

Handy, R.D., 1992. The assessment of episodic metal pollution. II. The effects of
cadmium and copper enriched diets on tissue contaminant analysis in rainbow trout (*Oncorhynchus mykiss*). Arch. Environ. Contam. Toxicol. 22, 82-87.

Lundebye, A.K., Berntssen, M.H.G., Bonga, S.W., Maage, A., 1999. Biochemical and

Table 1
Effect of dietary Cu levels on growth performance of yellow catfish after 8 weeks.

<table>
<thead>
<tr>
<th></th>
<th>Low Cu (0.71 mg Cu/kg)</th>
<th>Intermediate Cu (3.93 mg Cu/kg)</th>
<th>High Cu (88.81 mg/Cu kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBW, g/fish</td>
<td>0.79 ± 0.03</td>
<td>0.77 ± 0.01</td>
<td>0.77 ± 0.02</td>
</tr>
<tr>
<td>FBW, g/fish</td>
<td>1.79 ± 0.03</td>
<td>1.87 ± 0.01<sup>b</sup></td>
<td>1.71 ± 0.05</td>
</tr>
<tr>
<td>WG<sup>2</sup>, %</td>
<td>125.40 ± 6.40<sup>a</sup></td>
<td>144.22 ± 5.59<sup>b</sup></td>
<td>122.30 ± 2.60<sup>a</sup></td>
</tr>
<tr>
<td>SGR<sup>3</sup>, % day<sup>-1</sup></td>
<td>1.80 ± 0.06<sup>a</sup></td>
<td>1.98 ± 0.05<sup>b</sup></td>
<td>1.78 ± 0.03<sup>a</sup></td>
</tr>
<tr>
<td>FI, g/fish</td>
<td>1.96 ± 0.05<sup>ab</sup></td>
<td>2.01 ± 0.01<sup>b</sup></td>
<td>1.89 ± 0.02<sup>a</sup></td>
</tr>
<tr>
<td>FCR<sup>4</sup>, %</td>
<td>1.96 ± 0.02<sup>ab</sup></td>
<td>1.83 ± 0.04<sup>a</sup></td>
<td>2.01 ± 0.07<sup>b</sup></td>
</tr>
<tr>
<td>SR<sup>5</sup>, %</td>
<td>90.00 ± 1.90<sup>b</sup></td>
<td>91.11 ± 1.11<sup>b</sup></td>
<td>84.40 ± 1.10<sup>a</sup></td>
</tr>
</tbody>
</table>

¹Values are mean ± SEM (n = three replicate tanks). Different letters indicate significant differences among three treatments (P < 0.05).
IBW, initial mean body weight; FBW, final mean body weight; FI, feed intake; SR, survival rate; WG, weight gain.
²WG = 100 × (FBW – IBW)/FBW;
³SGR = 100 × (ln (FBW) – ln (IBW)) / days;
⁴FCR = FI/(FBW–IBW) + (dead fish weight - IBW);
⁵SR = 100 × (final fish number)/(initial fish number).
Fig. 1. Effect of different dietary Cu levels on Cu content (A), TG content (B) and enzyme activities (C) in the fore- and mid-intestine of yellow catfish. Values are mean ± SEM (n= three replicate tanks. For Cu content analysis, 4-6 fish sampled for each tank; For TG content and enzyme activity, six fish were sampled for each tank). Different letters indicate significant differences among three treatments.
Fig. 2. Effect of different dietary Cu levels on the mRNA levels of genes involved in lipid metabolism (A) and AMPK signaling pathway (B) in the fore- and mid-intestine of yellow catfish. Values are mean ± SEM (n= three replicate tanks, three fish were sampled for each tank). mRNA expression values were normalized to β-actin and elfa expressed as a ratio of the control (control=1). Different letters indicate significant differences among three treatments.
Fig. 3. Effects of Cu, Fatostatin, T0070907 and Compound C on cell viability (A1-A3) TG content (B1-B3) and ATP content (C) in primary enterocytes from yellow catfish. Date are presented as mean ± SEM (n=3 independent biological experiments). Different letters indicate significant differences among the treatments.
Fig. 4. Effects of Cu, Fatostatin (A), T0070907 (B) and Compound C (C) on enzyme activities involved in lipid metabolism in primary enterocytes of yellow catfish. Different letters indicate significant differences among the treatments.
Fig. 5. Effects of Cu, Fatostatin (A), T0070907 (B) and Compound C (C) on gene expression involved in lipid metabolism (A, B, C1) and AMPK signing pathway (C2) in primary enterocytes of yellow catfish. mRNA expression values were normalized to 18s and gapdh expressed as a ratio of the control (control=1). Different letters indicate significant differences among the treatments.
Highlights

1. Dietary Cu triggered Cu accumulation but suppressed lipid deposition in the fore- and mid-intestine.

2. The reduced lipid deposition was attributable to the suppressed lipogenesis and lipid absorption, and accelerated lipid transport.

3. PPARG, SREBP1 and AMPK pathways mediated the Cu-induced changes in lipogenesis, lipid uptake and lipid transport.

4. Generally similar trend was observed in Cu-induced changes of lipid metabolism between the fore- and mid-intestine.