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RESEARCH NOTE

ER stress regulates alkaline phosphatase 
gene expression in vascular smooth muscle cells 
via an ATF4-dependent mechanism
Malgorzata Furmanik1,2 and Catherine M. Shanahan1* 

Abstract 

Objective: Vascular calcification is the deposition of hydroxyapatite crystals in the blood vessel wall. Osteogenic dif-
ferentiation of vascular smooth muscle cells (VSMCs) plays a key role in this process. Increased expression of alkaline 
phosphatase (ALP) occurs in some in vitro models of VSMC calcification and is thought to be crucial for mineralization, 
however, little is known about the transcriptional regulation of ALP in VSMCs. Recently, ALP upregulation was shown 
to coincide with endoplasmic reticulum (ER) stress-mediated vascular calcification, specifically with expression of the 
transcription factor ATF4. As no direct links between ALP expression and ER stress have previously been demonstrated 
in VSMCs, the aim of this study was to investigate whether ATF4 interacts directly with the ALP promoter.

Results: The present study shows that ALP mRNA and activity were significantly increased by ER stress treatment of 
human primary VSMCs in vitro and that this was ATF4-dependent. Bioinformatics analysis predicted two ATF4 binding 
sites in ER-stress responsive regions of the ALP promoter (− 3631 to − 2048 bp from the first intron). However, we 
found that ATF4 does not bind within this fragment of the ALP promoter region.
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Introduction
Vascular calcification is the deposition of hydroxyapa-
tite crystals in the blood vessel wall [1, 2]. The presence 
of vascular calcification results in vascular stiffness and 
increased risk of cardiovascular and all-cause mortality. 
Vascular smooth muscle cells (VSMCs) play a key role in 
regulating vascular calcification via processes that have 
also been implicated in bone formation [3] including 
apoptosis [4], release of exosomes [5], loss of calcification 
inhibitors [6] and osteogenic differentiation [7].

Alkaline phosphatase (ALP, TNAP, ALPL), a key 
inducer of mineralization in bone, catalyses dephospho-
rylation of pyrophosphate resulting in inactivation of this 
calcification inhibitor and providing phosphate ions for 
hydroxyapatite crystal formation. ALP is ubiquitously 

expressed in tissues and increased levels in serum and 
the vasculature have been linked to vascular calcification 
[8, 9]. Increased expression of ALP also occurs in some 
in vitro models of VSMC calcification where it is thought 
to be crucial for mineralisation [10–12]. Previous stud-
ies identified transcription factor binding motifs on the 
human ALP promoter (TATA box, Sp1 binding site [13], 
vitamin D response element-like motifs, TATA boxes, 
E-box-like sequences, Sp1 binding site [14]) and mouse 
promoter (enhancer sequence and E-box [15]). Addition-
ally, several transcription factors (DIF-1 [16], forkhead 
transcription factor FKHR [17], Dlx5 [18] and p107 ret-
inoblastoma family transcription factor [19]) have been 
shown to bind the ALP promoter and regulate ALP 
expression in osteoblasts. Despite this, little is known 
about the regulation of this enzyme in VSMCs.

The endoplasmic reticulum (ER) is an organelle where 
secreted and transmembrane proteins are folded and 
mature. ER stress occurs when the influx of unfolded 
proteins to the ER is larger than its capacity to fold them, 
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resulting in activation of a signalling pathway called the 
unfolded protein response (UPR) [20]. The UPR is medi-
ated by ER stress transducers: IRE1, ATF6 and PERK. 
Each of these transducers activates a distinct signalling 
pathway, which together comprise the UPR. Transcrip-
tion factor AFT4 is preferentially translated when PERK 
is activated. Importantly, ER stress and the UPR have 
been shown to be crucial for bone development [21–25]. 
More recently, ALP upregulation has been shown to 
coincide with ER stress-mediated vascular calcification 
and ALP expression and activity levels have been shown 
to be ATF4-dependent in calcifying VSMCs  [11, 12, 26, 
27]. Therefore, in the present study we set out to inves-
tigate whether there is a direct interaction of ATF4 with 
the ALP promoter in response to ER stress.

Main text
Materials and methods
Expanded “Materials and Methods” are available in Addi-
tional file 1.

Cell culture and treatments
Human primary VSMCs were of aortic origin, collected 
from an adult donor with local ethics committee approval 
(Cambridge Local Research Ethics Committee LREC 
97/084), characterised and archived in the laboratory. All 
human materials were handled in compliance with the 
Human Tissue Act (2004, UK). Cells were treated with 
0.2  μg/ml thapsigargin (TG, Sigma, T9033) or 0.4  μg/ml 
tunicamycin (TM, Sigma, T7765). SiRNA gene knock-
down was carried out using HiPerfect (Qiagen) and 3 pmol 
siRNA oligonucleotide smartpool (GE Dharmacon).

Gene expression analysis
Gene expression was analysed with quantitative real 
time PCR (ALP F: ACG AGC TGA ACA GGA ACA ACGT 
R: CAC CAG CAA GAA GAA GCC TTTG, ATF4 F: CAA 
CAA CAG CAA GGA GGA TGC CTT  R: TGT CAT CCA 
ACG TGG TCA GAA GGT , GAPDH F: CGA CCA CTT 
TGT CAA GCT C R: CAA GGG GTC TAC ATG GCA AC) 
and western blotting (anti-ATF4, Santa Cruz, sc-200 and 
anti-Rabbit IRDye680 RD, Li-Cor, 926-68071).

Alkaline phosphatase activity assay
ALP activity was measured in cell lysates colorimentri-
cally at 405  nm using pNPP substrate (Sigma), normal-
ised to protein concentration and expressed as μM of 
pNP generated per minute.

Promoter analysis
The sequence corresponding to the − 122 to − 4556 
(counting from the first nucleotide of the initia-
tion codon) of the ALP promoter was analysed with 

Matinspector (Genomatix) for the presence of transcrip-
tion factor binding sites. ALP promoter constructs [14] 
and pRL-TK renilla luciferase vector (Promega) were 
transfected into VSMCs using Lipofectamine LTX. Lucif-
erase assays were carried out using the Dual-Luciferase 
Reporter Assay kit (Promega). DNA binding assays using 
nuclear extracts were performed as described previ-
ously [28], using biotinylated forward and normal reverse 
primers (F: GGA GTG TAG TGG CGT GAT CT, R: GCA 
ATA GAG TGG GAC CCT GT).

Mass spectrometry
Samples were analysed using liquid chromatography–
tandem mass spectrometry (LC–MS/MS). Raw mass 
spectrometry data were analysed in Proteome Discoverer 
(ThermoScientific; v1.3.0.339) utilising the Mascot data-
base. Samples were searched against Uniprot database to 
identify proteins.

Data analysis
All results represent 3 independent experiments, unless 
stated otherwise. Graphs show mean with SEM. Where 
appropriate t-tests or one way ANOVA with Tukey’s or 
Dunnett’s post hoc tests were performed. Statistical sig-
nificance is indicated with asterisks: * denotes p between 
0.05 and 0.01, ** denotes p between 0.01 and 0.001,  
*** denotes p < 0.001.

Results
ALP expression and activity are ATF4‑dependent
ALP mRNA levels were upregulated in VSMCs treated 
with ER stress inducers tunicamycin (TM) and  thapsi-
gargin (TG) (Fig. 1a). ER stress activation was confirmed 
by western blotting for ER chaperones Grp78 and Grp94 
(Fig.  1c, d). ALP activity was significantly increased 
(twofold) by tunicamycin treatment, but did not change 
with  thapsigargin  treatment (Fig.  1b), suggesting only 
tunicamycin triggered signalling events that lead to the 
activation of the enzyme.

SiRNA knock-down of IRE1, PERK and ATF6 caused 
small, but insignificant decreases in ALP expression. In 
contrast, knock-down of ATF4 caused a twofold decrease 
in ALP mRNA expression (Fig. 1e, f ) corresponding to a 
decrease in ALP activity (Fig. 1g). ATF4 knock-down also 
blocked the increase in ALP activity induced by tunica-
mycin but had no effect on activity at baseline or in thap-
sigargin-treated cells.

ER stress induces ALP promoter activity
To determine whether ALP promoter activity was 
regulated by ER stress, luciferase assays were per-
formed with 10 constructs containing fragments 
of the 5′-upstream region of the human ALP gene 
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spanning from − 122 to − 4556 (Fig. 2a, the full anno-
tated sequence can be found in Additional file  1: Fig-
ure S1). Results showed that constructs 1, 3, 5, 6, 7, 9 

and 10 contained regions of the ALP promoter that 
were transcriptionally active in VSMCs and lucif-
erase was activated further in  constructs 3, 5, 6 and 7 

Fig. 1 ALP expression and activity are ATF4-dependent in VSMCs. VSMCs were treated with 0.4 μg/ml TM or 0.2 μg/ml TG for 24 h. a ALP mRNA 
levels measured by qPCR. b ALP activity. c, d Western blotting for Grp78 and Grp94 chaperones indicated that ER stress was activated. e QPCR 
analysis of ALP mRNA expression in VSMCs treated with IRE1, ATF6, PERK or ATF4 siRNA or non-targeting siRNA (Neg Ctrl) and then TM or TG for 
24 h. f QPCR analysis of ATF4 mRNA expression in VSMCs treated with ATF4 siRNA or non-targeting siRNA. g ALP activity in VSMCs treated with ATF4 
siRNA or non-targeting siRNA. * p < 0.05, ** p < 0.01, *** p < 0.001

Fig. 2 ALP promoter activity in VSMCs in response to ER stress and ATF4 knock-down. a Schematic showing ALP promoter constructs for luciferase 
assay. Construct 1 is the full length fragment, constructs 2–10 were derived by deleting increasing portions of the full length. Based on [14]. b 
Activity of luciferase expressed from ALP promoter constructs in VSMCs, n = 1. VSMCs were transfected with constructs for 24 h and then treated 
with 0.4 μg/ml TM or 0.2 μg/ml TG for 24 h. c–f Activity of luciferase expressed from ALP promoter constructs 3, 5, 6 and 7 in VSMCs treated with 
ATF4 siRNA or non-targeting siRNA, n = 3

(See figure on next page.)
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by  thapsigargin  treatment, and construct 6 and 7 also 
by tunicamycin (Fig. 2b).

To examine whether ATF4 plays a direct role in activa-
tion of these responsive fragments luciferase assays were 
performed with simultaneous ATF4 siRNA knock-down. 
Despite achieving consistent knock-down, the results of 
the luciferase assays were inconclusive with no statisti-
cally significant differences (Fig. 2c–f).

ALP promoter contains ER stress‑related transcription factor 
binding sites
Transcription is regulated by both positive and negative 
factors and based on the luciferase assays it was possible 
to infer which sequences activate (enhancers) and which 
suppress (silencers) transcription of the ALP promoter 
(Fig.  3b). Potential silencers were present in fragments 
2, 4 and 8, surrounded by sequences that activate tran-
scription while the promoter fragment shared by con-
structs 3–7 contained a sequence that was highly active 
in VSMCs and inducible by ER stress.

To examine known ER stress responsive consensus 
binding sites within the ALP promoter bioinformatics 
analysis with Genomatix Matinspector was performed. 
Several binding sites for ATF6, ATF4, CHOP and XBP1 
were predicted in the full length sequence Fig.  3a and 
these sites were mapped onto the luciferase constructs 
(Fig. 3b). ATF6, XBP1, and CREB/ATF binding sequence 
were scattered in activator regions of various constructs. 
Two ATF4 binding sites were predicted, one localised in 
a silencer sequence and one in an enhancer, in a region 
encompassed by constructs 1–5. However, there was no 
clear enrichment of these sequences in fragments 3 and 
7 that were ER stress responsive. This suggests that indi-
rect interactions of ER stress-related transcription factors 
with other, directly binding, factors are responsible for 
increased activity in ER stress conditions.

ATF4 does not bind the ALP promoter
The promoter fragment containing both potential ATF4 
binding sites (Fig. 3a, arrowed) was amplified using bioti-
nylated primers, conjugated onto magnetic streptavi-
din beads and incubated with VSMC nuclear extracts. 
Western blotting of eluted proteins did not detect ATF4 
(Fig. 3c) despite its presence in the start lane, suggesting 
ATF4 did not bind.

For more sensitive detection we subjected eluted pro-
teins to liquid chromatography–mass spectrometry 
(LC–MS/MS) (Additional file 1: Figure S2). A thapsigar-
gin-treated nuclear extract was used for the proteomic 
experiment to increase the chance of finding protein-ALP 

promoter interactions relevant to ER stress. The mass 
spectrometry analysis identified 447 different proteins 
with 95% or more probability, for which more than 1 pep-
tide was present, in both lanes. Results indicate that no 
ATF4 was detected (Additional file 2) nor were any of the 
other predicted ER stress-related transcription factors.

Discussion
This study shows that ALP mRNA and activity were 
significantly increased by ER stress in human primary 
VSMCs in vitro. siRNA knock-down showed that ATF4 is 
required for ER stress-induced ALP expression and lucif-
erase reporter assays identified regions of the ALP pro-
moter responsive to ER stress. Bioinformatics predicted 
two ATF4 binding sites within these fragments however 
DNA binding assays and MS failed to show ATF4 bind-
ing, suggesting ATF4 regulation is not via direct pro-
moter interactions.

There are several possible explanations for this: (1) bio-
informatics predictions may not be accurate, (2) ATF4 
may not be a direct regulator of ALP expression, but 
could act via other, unknown downstream factors that 
were downregulated after ATF4 knock-down and (3) 
the ATF4-responsive element could be located outside 
the examined promoter fragment [29]. This is supported 
by the fact that tunicamycin caused an increase in ALP 
mRNA expression and enzyme activity levels, but did not 
consistently induce promoter activity.

Our results also suggest that tunicamycin and  thapsi-
gargin regulate ALP via different pathways and this is in 
line with studies showing that in VSMCs these two com-
pounds can have differential effects on gene expression 
[30].

The proteomics results also suggest indirect regulation 
by ER stress. The responsive fragments contained a TCF/
LEF binding site (data not shown, [16]) and β-catenin, 
which was identified by proteomics, activates transcrip-
tion by forming a complex with TCF and LEF [31, 32]. 
β-Catenin belongs to the Wnt signalling pathway cru-
cial for bone formation, and has been implicated in vas-
cular calcification [33]. Importantly, ER stress has been 
shown to activate β-catenin in embryonic stem cells [34] 
suggesting that β-catenin could be a regulator of ALP 
expression in VSMCs in response to ER stress but this 
requires further testing.

Limitations
The main limitation of this study is the lack of consist-
ent data for ALP promoter activity after ATF4 knock-
down. However, using a direct approach of proteomics 
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Fig. 3 ATF4 does not bind the ALP promoter in VSMCs. a ER stress-related transcription factor binding sites mapped to the ALP promoter. b 
Schematic of ALP promoter constructs with potential regions activating (red) and inhibiting (blue) transcription in VSCMs, based on luciferase 
assay results. ‘+’ denotes degrees of activation, ‘−’ denotes lack of promoter activity. c The fragment of the ALP promoter containing potential ATF4 
binding sites was amplified using biotinylated primers and conjugated onto magnetic streptavidin beads. The beads were then incubated with 
VSMC nuclear extracts, washed and proteins were eluted off the DNA and analysed by Western blotting. Coomassie gel demonstrates that even 
though ATF4 was not detected in the pulldown sample, other proteins were present. N = 3, figure shows representative images
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we did not find ATF4 binding the examined fragment 
of ALP promoter. It is also possible that ATF4 is a reg-
ulator of the ALP promoter, but our analysis did not 
encompass the right region of the promoter.
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