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Abstract. An extended special factor of a word x is a factor of x whose
longest infix can be extended by at least two distinct letters to the left
or to the right and still occur in z. It is called extended bispecial if it
can be extended in both directions and still occur in z. Let p(n) be
the maximum number of extended bispecial factors over all words of
length n. Almirantis et al have shown that 2n — 6 < p(n) < 3n — 4
[WABI 2017]. In this article, we show that there is no constant ¢ < 3
such that p(n) < cn. We then exploit the connection between extended
special factors and minimal absent words to construct a data structure
for computing minimal absent words of a specific length in optimal time
for integer alphabets generalising a result by Fujishige et al [MFCS 2016].
As an application of our data structure, we show how to compare two
words over an integer alphabet in optimal time improving on another
result by Charalampopoulos et al [Inf. Comput. 2018|.
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1 Introduction

We begin with basic definitions and notation, generally following [14]. Let « =
x[0]z[1] ... xz[n—1] be a word of length n = |z| over a finite ordered alphabet X' of
size o, i.e. o0 = | X|. In particular, we consider the case of an integer alphabet; in
this case each letter is replaced by its rank such that the resulting word consists
of integers in the range {1,...,n}. In what follows we assume without loss of
generality that X = {0,1,...,0 — 1}. We also define ¥, to be the alphabet of
word z and o, = |X,|. For two positions ¢ and j on z, we denote by z[i..j] =
x[i] ... z[j] the factor (sometimes called subword) of x that starts at position i
and ends at position j (it is empty if j < i), and by e the empty word, word of
length 0. We recall that a prefiz of z is a factor that starts at position 0 (z[0. . j])
and a suffiz is a factor that ends at position n — 1 (z[i..n — 1]). A factor of x is
called proper if it is not x itself. If a word y is both a proper prefix and a proper
suffix of a non-empty word z, then y is called a border of x. A factor z[i.. j] of
x that is neither a prefix nor a suffix of z is called an infiz of x.
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Let w = w[0..m — 1] be a word, 0 < m < n. We say that there exists an
occurrence of w in x, or, more simply, that w occurs in x, if w is a factor of x.
Every occurrence of w can be characterised by a starting position in z. Thus we
say that w occurs at (starting) position ¢ in  when w = z[i..i+m — 1].

A factor u # € of a word x is called bispecial if there exist a,b, ¢, d € X with
a # b and ¢ # d such that au, bu, uc and ud occur in . The notion of special
factors has been extensively studied in literature, mainly in the case of infinite
words or infinite languages [19, 20, 18, 4,8-10|. We extend this definition here as
follows. We call extended left-special the factors ayb, where a,b € X, y # ¢ is a
factor of x and cy occurs in z for some ¢ € X ~\ {a}. Similarly, we call extended
right-special the factors ayb, where a,b € Y| y # ¢ is a factor and yd occurs in z
for some d € X ~ {b}. Factors that are both extended left-special and extended
right-special are called extended bispecial. The following result is known.

Lemma 1 ([2]). For any word x of length n the number of extended right-special
factors is no more than 3n — 2 — 20,.

By symmetry the same bound holds for extended left-special factors. It also
holds for extended bispecial factors, since these are a subset of extended right-
special factors. In [2], the authors provide a word with a linear number of ex-
tended bispecial factors: ba”~?b which has 2n — 6 of them. Let p(n) be the
maximum number of extended bispecial factors over all words of length n.

Theorem 2 ([2]). 2n — 6 < p(n) < 3n — 4.

The main algorithm presented in [2] computes statistically overabundant
words of a word over an integer alphabet in linear time, by first computing
all extended right-special factors of the word and then filtering out some of
them based on a simple computation. We can easily adapt the algorithm to
compute the extended left-special factors; the extended bispecial factors can be
then retrieved easily within the same complexity. We thus know the following.

Theorem 3 ([2]). Given a word of length n over an integer alphabet all ex-
tended left-, right-special and bispecial factors can be computed in O(n) time.

2 A Lower Bound on Extended Bispecial Factors

In this section, we improve the lower bound of Theorem 2.

Definition 4. A word x over an alphabet X of size o is a de Bruijn sequence
of order k if and only if all words of length k over X occur exactly once in x.

By definition, a de Bruijn sequence of order k has length o* + k — 1.

Theorem 5. There is no constant ¢ < 3 such that p(n) < cn.



Proof. In a de Bruijn sequence of order k all words over X of lengths 3 to k
(inclusive) are extended bispecial factors. In addition, by the definition of de
Bruijn sequences, the ¢* — 1 subwords of z of length k + 1 are all distinct and
each of them is an extended bispecial factor as its longest infix is of length k — 1
and hence it can be extended by all letters in X' in any direction and still occur
in . We thus have at least

k=3 k—2
) -1
a3+...+ak—|—ak—1zak—1+03~g a”:ak—1+a3-07
i=0 o—1

extended bispecial factors. By letting o = 2, the above formula becomes 2% —
1+2(2F —4) = 3. 2% — 9. We now look at the ratio of the number of bispecial
factors over the length of the sequence as k increases and have that

i 3.2F—9g
m ——— =
k:—)oo2k+]€*1

by L’Hoépital’s rule. a

3 Minimal Absent Words via Extended Special Factors

The word y is an absent word of x if it does not occur in x. The absent word y of
is minimal if and only if all its proper factors occur in x. The set of all minimal
absent words for a word z is denoted by M,. The set of all minimal absent
words of length ¢ for a word x is denoted by MZ. For example, if 2 = abaab,
then M, = {aaa, aaba,bab,bb} and M3 = {aaa,bab}. If we suppose that all
the letters of X appear in x and |z| = n, the length of a minimal absent word
of x lies between 2 and n + 1. It can be equal to n + 1 if and only if x is of the
form a™, a € X. So, if  contains occurrences of at least two different letters, the
length of any minimal absent word of x is upper bounded by n. In what follows,
we perform the computations considering all minimal absent words of length at
least 3; the ones of length 2 can be handled separately in the same manner.

The upper bound on the number of minimal absent words is O(on) and it is
tight for integer alphabets [12]; in fact, for large alphabets, such as when o > /n,
this bound is also tight even for minimal absent words of the same length [1].

In many real-world applications of minimal absent words, such as in sequence
comparison [12], data compression [17], on-line pattern matching [15], and iden-
tifying pathogen-specific signatures [24], only a subset of minimal absent words
may be considered, and, in particular, the minimal absent words of length (at
most) £. State-of-the-art algorithms compute all minimal absent words of = in
O(on) time [16, 3] or in O(n + |M;]|) time [23]. There also exist space-efficient
data structures based on the Burrows-Wheeler transform of the input that can
be applied for this computation [6, 5]. In the worst case, the number of minimal
absent words of z is @(on) and we would thus need 2(on) space to represent
them explicitly.



3.1 The Data Structure

We next present an alphabet-independent data structure that stores information
related to extended special factors. It allows for counting and reporting minimal
absent word queries in optimal time. Specifically, we show the following result.

Theorem 6. Given a word x of length n over an integer alphabet, we can con-
struct in O(n) time an O(n)-sized data structure that outputs, for a given on-line
query £, M. in O(1 + | ML) time or |[ML] in O(1) time.

Let us start with a simple but crucial lemma. It unveils the connection be-
tween extended special factors and minimal absent words (see also [4], Sect. 2).

Lemma 7. Given a minimal absent word awb of x, where a,b € X and w € X*,
either (i) w occurs as an infix of x and any word cwd, ¢,d € X, that occurs in
x is an extended left- or right-special factor of x; or (ii) wb is a prefix of x, aw
18 a suffiz of x and w occurs only twice in x.

Proof. If w occurs as infix of x at position ¢, then x[i — 1..i + |w|] # awb and
since aw and wbd occur in z, x[i —1..3+ |w|] is an extended left- or right-special
factor; this is case (i). If w does not occur as infix in z, we are at case (ii). O

Proposition 8 ([22]). In a word x of length n there is at most one minimal
absent word awb of type (i) (Lemma 7) and we can compute it in O(n) time.
Proof. The word w must be a border of x that does not occur elsewhere in z3;
this can only be the longest border w of x: any other border of x is also a border of
u [22]. We locate u and check if it has another occurrence in z in O(n) time [14],
thus retrieving this minimal absent word of type (ii), if there is one. O

Main Idea. For each word w that is the longest infix of a minimal absent word,
we compute the letters that precede it in x, the ones that succeed it and the
pairs of letters (a,b) such that awb occurs in z. The total size of these sets is
O(n) by Lemmas 1 and 7. If the minimal absent words with longest infix w are
no more than twice the number of factors of the form awb of x we pre-compute
them in O(n) time in total; otherwise we off-load the computation to the query.

Construction. Since word z is stored in internal memory, in what follows, we
assume a constant-sized representation of arbitrary-length factors and minimal
absent words of z. We first compute all extended left- and right-special factors in
O(n) time using Theorem 3. We form their union U, assign their longest infix w
as their representative, group the elements of U based on their representatives’
length, and sort them lexicographically based on the representatives in each
group. The sorting can be done in O(n) time, for all groups together, using
standard tools that exploit longest common prefix information [14] and radix
sort. We then identify in O(n) time the prefixes P, (resp. suffixes S,) of x of

3 In this case, « is called closed. Such words are an object of combinatorial interest [21].



the form wb (resp. aw), where cwd € U, a,b,¢,d € X and w € X*, that do
not occur elsewhere in x. This can also be implemented using longest common
prefix information [14]. We assign the longest proper prefix (resp. suffix) of each
element of P, (resp. Sy) as its representative.

We then group the elements of V' = UUS,UP, based on their representatives’
length and store them in each such group based on the representatives. We do
this by inferring the representatives’ lexicographical order in O(n) time by using
the same tools. The size of V' is O(n) by Lemma 1.

For each such representative w, we construct the following sets:

— B(w) = {(a, )|, € XU {e} and awf € V with representative w};

- B'(w) ={(a, B)|(, B) € B(w),a # &, 8 # e};
= L(w) = {ala € ¥, (a, §) € B(w)} and R(w) = {B|f € ¥, («, f) € B(w)}.

We also construct these sets for the single minimal absent word of type (ii) if
there is one. By definition, the minimal absent words whose longest infix is w are
the ones of the form awp, where o € L(w), 8 € R(w), and (o, §) ¢ B'(w). We
lexicographically sort the elements in L(w), R(w) and B’(w), for all w together,
in O(n) time using radix sort. Then if

|B'(w)| = |L(w)| - |[R(w)| = |B (w)| <= [L(w)| - |R(w)| < 2|B'(w)],

we pre-compute all minimal absent words with longest infix w in O(|B’(w)|)
time by generating all possible awd, a € L(w),b € R(w) in lexicographical order,
filtering out awbd such that (a,b) € B’(w) by scanning B’(w) at the same time.
We store these words in the linked list A; (Jw]).

Otherwise, if |L(w)|-|R(w)| > 2|B’(w)|, we store L(w), R(w) and B'(w) as an
element in the linked list A3 (|w|). This requires O(n) time in total by Lemma 1;
and the total size of Ay and As is O(n).

By definition, the number of minimal absent words whose longest infix is w
is |L(w)] - |R(w)| — | B’ (w)|. We can thus maintain this information per length in
an integer array C initialised to zeros, by adding this number to C[|w]|], for all
representatives w. This requires O(n) time in total and the array is of size O(n).

Querying. For a reporting on-line query £, we can output M in O(1+| M%) time
as follows. We locate the elements in V' with representatives of length ¢ — 2. For
the representatives for which we have already pre-computed the minimal absent
words we output them from A; (¢ — 2); for the rest, we perform the computation
described above for each w based on the sets L(w), R(w) and B’(w), which are
stored in Ay (¢ — 2). For a counting on-line query ¢, we output |M’| = C[¢ — 2].

Lemma 7 guarantees the correctness of the algorithm and we thus arrive
at Theorem 6. If we apply Theorem 6 for pre-processing and then query for
¢ = 2,...,n+ 1, we obtain the respective result of [23], which is based on
constructing the directed acyclic word graph for x [7,13] and on refining the
algorithm of [16].

Corollary 9 ([23]). Given a word x of length n over an integer alphabet, M,
can be computed in the optimal O(n + |[My]|) time.



3.2 Sequence Comparison

In [11], the authors introduced a measure of similarity between two words z
and y based on the notion of minimal absent words. Let M (resp. /\/lf;) denote
the set of minimal absent words of length at most £ of = (resp. y). The authors
made use of a length-weighted index to provide a measure of similarity between
x and y, using their sample sets M% and Mg, by considering the length of each
member in the symmetric difference M% A ./\/li of the sample sets. In [12] the
authors considered a more general measure of similarity for two words x and .
It is based on the set M, A M, and is defined by

1
LW(I’,y) = Z Wa

wWEMzAM,

so without any restriction on the lengths of minimal absent words. The smaller
the value of LW(z, y), the more similar we assume z and y to be; in fact, LW(z, y)
is a metric on X* [12]. Note that LW(z,y) is affected by both the cardinality of
My A M, and the lengths of its elements; longer words in M, A M, contribute
less in the value of LW(x,y) than shorter ones. Hence, intuitively, the shorter
the words in M, A M,, the more dissimilar  and y are.

One of the main results of [12] is that LW(z, y) can be computed in O(o(|z|+
ly|)) time. In what follows, we improve this result for integer alphabets by avoid-
ing to compute the minimal absent words explicitly. We rather exploit the con-
nection between minimal absent words and extended special factors, and thus
remove the dependency on the alphabet size — a somewhat surprising result.

Theorem 10. Given two words x and y over an integer alphabet, LW(x,y) can
be computed in the optimal O(|x| + |y|) time.

Proof. Tt suffices to compute the size of the set M’ A ./\/l?[j, forall2 </<n+1.
We will do that by computing the number of words awb € M’ A /\/lf;, a,be X
for each w that is the longest infix of some minimal absent word of = or of y.

Let us denote by M. ,, the minimal absent words of z whose longest infix is
w. By definition we have that

Ma:,w A My,w - (M:v,w U My,w) \ (Mac,w N My,w)~

This implies

Moo & Mys] = [Maas U Myl = Mo 0 My | =
Mol + My ] = 2Ma s 0 My -

We further denote the sets L(w), R(w), B'(w) for word z by L.(w), R,(w),
B! (w). By the definition of minimal absent words, we have that

Mo w| = [La(w)] - [Re(w)| — [ By (w)]-



This can be computed, for all w, in O(|z|) time by applying the data structure
of Theorem 6. We obtain | M, ,,| analogously. We thus only need to compute:

|M:c,'w n My,w| =
[{(a,b)[(a,b) € (La(w) x Ro(w)) N (Ly(w) x Ry(w)), (a,b) & By (w) U By (w)}] =
{(a,b)[(a,b) € (Lo(w) N Ly(w)) x (R (w) N Ry(w)), (a,b) & By (w) U By, (w)}.

The quantities |(L,(w) N Ly (w)) x (Ry(w) N Ry (w))| can be computed in O(|z|+
ly|) time, for all w, since we store the elements of the sets sorted. We can then
check for each (o, ) € B;(w) U By (w) whether it occurs in (L, (w) N Ly (w)) x
(Rz(w) N Ry(w)), for all w, within the same complexity as follows. Since all
our sets are sorted, we can check whether o € Ly (w) N Ly(w) in time linear
in the total size of B} (w), By (w), Ly(w) and L, (w), for all pairs (a, 8); if so,
we keep («, 8). After we do this for all w, we (globally) sort the surviving pairs
based on their second element — using integer identifiers for representatives w
so that we can regroup them — and conclude in an analogous manner as before
by employing R,(w) N Ry, (w). The result then follows from Theorem 3. O
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